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ABSTRACT. We review the application of torsion in field theory. First we
show how the notion of torsion emerges in differential geometry. In the con-
text of a Cartan circuit,torsion is related totranslationssimilar as curvature
to rotations. Cartan’s investigations started by analyzing Einsteins general rel-
ativity theory and by taking recourse to the theory of Cosserat continua. In
these continua, the points of which carry independent translational and rota-
tional degrees of freedom, there occur, besides ordinary (force) stresses, ad-
ditionally spin moment stresses.In a 3-dimensional “continuized” (Kröner)
crystal with dislocation lines, a linear connection can be introduced that takes
the crystal lattice structure as a basis for parallelism. Such a continuum has
similar properties as a Cosserat continuum, and the dislocation density is equal
to the torsion of this connection. Subsequently, these ideas are applied to 4-
dimensional spacetime. A translational gauge theory of gravity is displayed (in
a Weitzenböck or teleparallel spacetime) as well as the viable Einstein-Cartan
theory (in a Riemann-Cartan spacetime). In both theories, the notion of tor-
sion is contained in an essential way. Cartan’s spiral staircase is described as a
3-dimensional Euclidean model for a space with torsion, andeventually some
controversial points are discussed regarding the meaning of torsion.

P.A.C.S.: 04.20.Cv; 11.10.-z; 61.72.Lk; 62.20.-x; 02.40.Hw

1 A connection induces torsion and curvature

“...the essential achievement of general relativity, namely to overcome ‘rigid’
space (ie the inertial frame), isonly indirectlyconnected with the introduction
of a Riemannian metric. The directly relevant conceptual element is the ‘dis-
placement field’ (Γl

ik), which expresses the infinitesimal displacement of vec-
tors. It is this which replaces the parallelism of spatiallyarbitrarily separated
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vectors fixed by the inertial frame (ie the equality of corresponding compo-
nents) by an infinitesimal operation. This makes it possibleto construct tensors
by differentiation and hence to dispense with the introduction of ‘rigid’ space
(the inertial frame). In the face of this, it seems to be of secondary importance
in some sense that some particularΓ field can be deduced from a Riemannian
metric...”

A. Einstein (4 April 1955)1

On a differential manifold, we can introduce a linear connection, the com-
ponents of which are denoted byΓij

k. The connection allows a parallel dis-
placement of tensors and, in particular, of vectors, on the manifold. We denote
(holonomic) coordinate indices with Latin lettersi, j, k, · · · = 0, 1, 2, . . . , n −
1, wheren is the dimension of the manifold. A vectoru = uk∂k, if parallelly
displaced alongdxi, changes according to

δ||uk = −Γij
kujdxi . (1)

Based on this formula, it is straightforward to show that a non-vanishing Cartan
torsion,2

Tij
k = Γij

k − Γji
k ≡ 2Γ[ij]

k 6= 0 , (2)

breaks infinitesimal parallelograms on the manifold, see Fig.1. Here for an-
tisymmetrization we use the abbreviation[ij] := 1

2 (ij − ji) and for sym-
metrization(ij) := 1

2 (ij + ji), see [88]. There emerges aclosure failure,
i.e., a parallelogram is only closed up to a small translation.

In GR, the connection is identified with the Christoffel symbol Γij
k =

{i
k

j} and is as such symmetric{i
k

j} = {j
k

i}. In other words, the torsion
vanishes in GR.

The torsion surfaces more naturally in a frame formalism. Ateach point we
have a basis ofn linearly independent vectorseα = ei

α∂i and the dual basis of
covectorsϑβ = ej

βdxj , the so-called coframe, witheα⌋ϑ
β = δβ

α (the interior
product is denoted by⌋). We denote (anholonomic) frame indices with Greek

1Preface in ‘Cinquant’anni di Relatività 1905–1955.’ M. Pantaleo, ed.. Edizioni Giuntine and
Sansoni Editore, Firenze 1955 (translation from the Germanoriginal by F. Gronwald, D. Hartley,
and F.W. Hehl). For the role that generalized connections play in physics, see Mangiarotti and
Sardanashvily [58].

2According to Kiehn [47], one can distinguish at least five different notions of torsion. In our
article, we treat Cartan’s torsion of 1922, as it is established in the meantime in differential geom-
etry, see Frankel [21], p.245. We find it disturbing to use thesame name for different geometrical
objects.
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Figure 1: On the geometrical interpretation of torsion,see [39]: Two vector
fieldsu andv are given. At a pointP , we transport parallellyu andv alongv

or u, respectively. They becomeu||
R andv

||
Q. If a torsion is present, they don’t

close, that is, aclosure failureT (u, v) emerges. This is a schematic view. Note
that the pointsR andQ are infinitesimally near toP . A proof can be found in
Schouten [88], p.127.

lettersα, β, γ, · · · = 0, 1, 2, . . . , n − 1. The connection is then introduced
as 1-form3 Γα

β = Γiα
βdxi, and, for a formwA, we can define a covariant

exterior derivative according toDwA := dwA + ρB
A α

β Γα
β ∧ wB . Here the

coefficientsρB
A α

β describe the behavior ofwA under linear transformations,
for details see [98] and [39], p.199, and∧ denotes the exterior product. Then
the torsion 2-form is defined as

T α := Dϑα = dϑα + Γβ
α ∧ ϑβ . (3)

If the frames are chosen as coordinate frames, thendϑα = 0 and the definition
(3) degenerates to (2). From (3) we can read off thatT α is a kind of a field
strength belonging to the ‘potential’ϑα.

Since we introduced a connectionΓα
β , we can define in the conventional

way the RC-curvature,

Rα
β := dΓα

β + Γγ
β ∧ Γα

γ . (4)

3The relation betweenΓiα
β and the holonomicΓij

k in (1) is Γiα
β = ej

αek
βΓij

k +
ej

α∂iej
β .
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If we differentiate (3) and (4), we find straightforwardly the first and the second
Bianchi identities, respectively,4

DT α = Rβ
α ∧ ϑβ , DRα

β = 0 . (5)

We can recognize already here, how closely torsion and curvature are in-
terrelated. Moreover, it is clear, that torsion as well as curvature are notions
linked to the process of parallel displacement on a manifoldand are as such
something very particular.

2 Cartan circuit: Translational and rotational misfits

Since the metric plays an essential role in the applicationswe have in mind, we
will now introduce — even though it is not necessary at this stage — besides
the connectionΓα

β, a (symmetric) metricgij = gji that determines distances
and angles. The line element is given by

ds2 = gijdxi ⊗ dxj = gαβϑα ⊗ ϑβ . (6)

We assume that the connection is compatible with the metric,i.e., the non-
metricityQαβ vanishes:

Qαβ := −Dgαβ = 0 . (7)

A space fulfilling this condition is called aRiemann-Cartan(RC) space. We
can solve (7) with respect to the symmetric part of the (anholonomic) connec-
tion:

Γ(αβ) =
1

2
dgαβ . (8)

Furthermore, we will choose anorthonormal coframe. We will apply the
formalism to the 4-dimensional (4D) spacetime with Lorentzian metricgαβ =
diag(−1, 1, 1, 1) or to the 3D space with Euclidean metricgαβ = diag(1, 1, 1).
Then, due to (8), we find a vanishing symmetric part of the anholonomic con-
nection. Accordingly, we have in a RC-space as geometrical field variables
the orthonormal coframeϑα = ei

αdxi and the metric-compatible connection
Γαβ = Γi

αβdxi = −Γβα.

Now we are prepared to characterize a RC-space in the way Cartan did.
Locally a RC-space looks Euclidean, since for any single point P , there exist

4In 3 dimensions we have1× (3+3) = 6 and in 4 dimensions4× (4+6) = 40 independent
components of the Bianchi identities.
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coordinatesxi and an orthonormal coframeϑα in a neighborhood ofP such
that {

ϑα= δα
i dxi

Γα
β= 0

}
at P , (9)

whereΓα
β are the connection 1-forms referred to the coframeϑα, see Hartley

[29] for details. Eq.(9) represents, in a RC-space, the anholonomic analogue
of the (holonomic) Riemannian normal coordinates of a Riemannian space.

Often it is argued incorrectly that in RC-space normal frames cannot exist,
since torsion, as a tensor, cannot be transformed to zero. Inthis context Rie-
mannian normal coordinates are tacitly assumed and the torsion is ‘superim-
posed’. However, since only anatural, i.e., a holonomic or coordinate frame is
attached to Riemannian normal coordinates, one is too restrictive in the discus-
sion right from the beginning. And, of course, the curvatureis also of tensorial
nature – and still Riemannian normal coordinates do exist.

How can a local observer at a point P with coordinatesxi tell whether his or
her space carries torsion and/or curvature? The local observer defines a small
loop (or a circuit) originating from P and leading back to P. Then he/sherolls
the local reference spacewithout sliding— this is called Cartan displacement
— along the loop and adds up successively the small relative translations and
rotations, see Cartan [13, 14], Schouten [88], Sharpe [95] or, for a modern ap-
plication, Wise [106]. As a computation shows, the added uptranslationis a
measure for thetorsionand therotation for thecurvature. Since the loop en-
circles a small 2-dimensional area element, Cartan’s prescription attaches to an
area element a small translation and a small rotation. Thus,torsionT α and cur-
vatureRαβ = −Rβα are both 2-forms in any dimensionsn > 1, the torsion is
vector-valued, because of the translation vector, the curvature bivector-valued,
because of the rotations.

In this way Cartan visualized a RC-space as consisting of a collection of
small Euclidean granules that are translated and rotated with respect to each
other. Intuitively it is clear that this procedure of Cartanis similar to what
one does in gauge field theory: A rigid (or global) symmetry, here the cor-
responding Euclidean motions of translation and rotations, is extended to a
local symmetry. In four-dimensional spacetime it is the Poincaré (or inhomo-
geneous Lorentz) group of Minkowski space that is gauged andthat yields a
RC-spacetime, see [68, 6, 25].

There are two degenerate cases: A RC-space with vanishing torsion is the
conventional Riemannian space, a RC-space with vanishing RC-curvature is
called aWeitzenb̈ock space[105], or a space with teleparallelism. We will
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come back to this notion later.

We can now list the number of the components of the different geometrical
quantities in a RC-space of 3 or 4 dimensions. These numbers are reflecting
the3 + 3 generators of the 3D Euclidean group and of the4 + 6 generators of
the 4D Poincaré group:

orthon. cofr. RC-connection Cartan’s torsion RC-curvature
ϑα Γαβ T α Rαβ

n = 3 9 = 3 × 3 9 = 3 × 3 9 = 3 × 3 9 = 3 × 3
n = 4 16 = 4 × 4 24 = 6 × 4 24 = 6 × 4 36 = 6 × 6

The results of Secs.1 and 2 can all be proven rigorously. Theyare all con-
sequences of the introduction of a connectionΓij

k and a metricgij . Let us
now turn to a new ideas that influenced Cartan’s thinking in the context of
RC-geometry.

3 The Cosserat continuum

Cartan, according to his acknowledgment in [12], was inspired by the broth-
ers Cosserat [16] and their theory of a new type of continuum.The classical
continuum of elasticity and fluid dynamics consists of unstructured points, and
the displacement vectorui is the only quantity necessary for specifying the
deformation. The Cosserats conceived a specificmedium with microstructure,
see [26, 10, 24] and for a historical review [3], consisting of structured points
such that, in addition to the displacement fieldui, it is possible to measure the
rotation of such a structured point by the bivector fieldωij = −ωji, see Fig.2
for a schematic view.

The deformation measuresdistortion β and contortion κ of a linear
Cosserat continuum are (∇i is the covariant derivative operator of the Eu-
clidean 3D space)

βij =∇iuj − ωij , ωij = −ωji , (10)

κijk =∇iωjk = −κikj , (11)

see Günter [26] and Schaefer [85]. A rigorous derivation ofthese deformation
measures is given in the Appendix. In classical elasticity,the only deformation
measure is the strainεij := 1

2 (βij + βji) ≡ β(ij) = ∇(iuj). Let us visu-
alize these deformations. If the displacement fieldu1 ∼ x and the rotation
field ωij = 0, we findβ11 = ε11 = const andκijk = 0, see Fig.3. This
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Figure 2: Schematic view on a two-dimensional Cosserat continuum: Unde-
formed initial state.

Figure 3: Conventional homogeneous strainε11 of a Cosserat continuum: Dis-
tance changes of the “particles” caused by force stressσ11.

homogeneous strain is created by ordinary force stresses. In contrast, if we put
ui = 0 andω12 ∼ x, thenβ12 = ω12 ∼ x andκ112 ∼ const, see Fig.4. This
homogeneous contortion is induced by applied spin moment stresses. Fig.5
depicts the pure constant antisymmetric stress withω12 = const and Fig.6 the
conventional rotation of the particles according to ordinary elasticity. This has
to be distinguished carefully from the situation in Fig.4.

Apparently, in addition to the force stressΣij ∼ δH/δβij (hereH is an
elastic potential), which is asymmetric in a Cosserat continuum, i.e.,Σij 6=
Σji, we have as new response thespin momentstressτ ijk ∼ δH/δκkji. Hence
(force) stressΣij andspin momentstressτ ijk characterize a Cosserat contin-
uum from the static side. We used bars for denoting stress andspin moment
stress specifically in 3D.
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Figure 4: Homogeneous contortionκ112 of a Cosserat continuum: Orientation
changes of the “particles” caused by spin moment stressτ21

1.

Figure 5: Homogeneous Cosserat rotationω12 of the “particles” of a Cosserat
continuum caused by the antisymmetric piece of the stressΣ[12].

Figure 6: Conventional rotation∂[1u2] of the “particles” of a Cosserat contin-
uum caused by an inhomogeneous strain.
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Only in 3D, a rotation can be described by a vector according to ωi =
1
2ǫijkωjk, whereǫijk = 0, +1,−1 is the totally antisymmetric 3D permuta-
tion symbol. We chose here the bivector description such that the discussion
becomes independent of the dimension of the continuum considered. Even
though there exist 1D Cosserat continua (wires and beams) and 2D ones (plates
and shells), we will concentrate here, exactly as Cartan did, on 3D Cosserat
continua.

The equilibrium conditions for forces and moments read5

∇jΣi
j + fi = 0, ∇kτ ij

k − Σ[ij] + mij = 0, (12)

wherefi are the volume forces andmij = −mji volume moments. They cor-
respond to translational and rotational Noether identities. In classical elasticity
and in fluid dynamics,τ ij

k = 0 andmij = 0; thus, the stress is symmetric,
Σ[ij] = 0, and then denoted byσij ; for early investigations of asymmetric
stress and energy-momentum tensors, see Costa de Beauregard [17].

Nowadays the Cosserat continuum finds many applications. Asone exam-
ple we may mention the work of Zeghadi et al. [108] who take thegrains of
a metallic polycrystal as (structured) Cosserat particlesand develop a linear
Cosserat theory with the constitutive lawsΣij ∼ βij andτ ijk ∼ κkji.

The Riemannian space is the analogue of the body of classicalcontinuum
theory: points and their relative distances is all what is needed to describe it ge-
ometrically; the analogue of the strainεij of classical elasticity is the difference
between the metric tensorgij of the Riemannian space and a flat background
metric. In GR, a symmetric “stress”σij = σji is the response of the matter
Lagrangian to a variation of the metricgij .

A RC-space can be realized by a generalized Cosserat continuum. The
“deformation measures”ϑα = ei

αdxi andΓαβ = Γi
αβdxi = −Γβα of a

RC-space correspond to those of a Cosserat continuum according to6

δei
α → βij , δΓi

αβ → κijk . (15)

5In exterior calculus we haveDΣα + fα = 0 andDταβ + ϑ[α ∧ Σβ] + mαβ = 0. These
relations are valid in all dimensionsn ≥ 1, see [24]. In 3 dimensions we have3 + 3 and in 4
dimensions4 + 6 independent components of the “equilibrium” conditions.

6This can be seen from the response of the coframeei
α and the Lorentz connectionΓi

αβ in
a RC-space to a local Poincaré gauge transformation consisting of small translationsǫα and small
Lorentz transformationsωαβ ,

δei
α=−Diǫ

a + ei
γωγ

α − ǫγTγi
α , (13)

δΓi
αβ=−Diω

αβ − ǫγRγi
αβ , (14)

see [35], Eqs.(4.33),(4.32); hereDi := ∂i⌋D are the components of the exterior covariant deriva-
tive. The second term on the right-hand-side of (13) is due tothe semi-direct product structure
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Figure 7:Edge dislocationafter Kröner [50]: The dislocation line is parallel to
the vectort. The Burgers vectorδb, characterizing the missing half-plane, is
perpendicular tot. The vectorδg characterizes the gliding of the dislocation
as it enters the ideal crystal.

However, the coframeϑα and the connectionΓαβ cannot be derived from a dis-
placement fieldui and a rotation fieldωij , as in (10),(11). Such a generalized
Cosserat continuum is called incompatible, since the deformation measuresβij

andκijk don’t fulfill the so-called compatibility conditions

∇[iβj]k + κ[ij]k = 0 , ∇[iκj]kl = 0 , (16)

see Günther [26] and Schaefer [85, 86]. They guarantee thatthe “potentials”
ui andωij can be introduced in the way as it is done in (10),(11). Still,also in
the RC-space, asincompatibleCosserat continuum, we have, besides the force
stressΣα

i ∼ δH/δei
α, the spin moment stressταβ

i ∼ δH/δΓi
αβ . And in

the geometro-physical interpretation of the structures ofthe RC-space, Cartan
apparently made use of these results of the brothers Cosserat.

In 4D, the stressΣα
i corresponds to energy-momentum7 Σα

i and the spin
moment stressταβ

i to spin angular momentumταβ
i. Accordingly, Cartan

enriched the Riemannian space of GR geometrically by thetorsionTij
α and

statically (or dynamically) by thespin angular momentumταβ
i of matter.

of the Poincaré group. If we put torsion and curvature to zero, these formulas are analogous to
(10),(11).

7This is well-known from classical electrodynamics: The 3D Maxwell stress generalizes, in
4D, to the energy-momentum tensor of the electromagnetic field, see [39].
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Figure 8:Screw dislocationafter Kröner [50]: Here the Burgers vector is par-
allel tot.

4 A rule in three dimensions: Dislocation density equals torsion

In the 1930s, the concept of a crystal dislocation was introduced in order to
understand the plastic deformation of crystalline solids,as, for instance, of
iron. Dislocations are one-dimensional lattice defects. Basically, there ex-
ist two types of dislocations, edge and screw dislocation, see Weertman &
Weertman [102]. In Fig.7, we depicted a three-dimensional view on such an
edge dislocation in a cubic primitive crystal. We recognizethat one atomic
half-plane has been moved to the right-hand-side of the crystal. The missing
half-plane is characterized by the Burgers vector that is perpendicular to the
dislocation line. The screw dislocation of Fig.8 has again aBurgers vector, but
in this case it is parallel to the dislocation line. In the framework of classical
elasticity, at the beginning of the last century, theories of the elastic field of
singular defect lines had been developed by Volterra, Somigliana, and others,
see Nabarro [66] and Puntigam & Soleng [81]. These theories could be used
to compute the far-field of a crystal dislocation successfully. For more recent
developments in this field, one may quote Malyshev [57], who went beyond
the linear approximation.

If sufficiently many dislocations populate a crystal, then acontinuum or
field theory of dislocations is appropriate, see Kröner’s theory of a continuized
crystal [52]. In order to give an idea of such an approach, letus look at a cubic
crystal in which several dislocations are present, see Fig.11. By averaging
over, we can define a dislocation density tensorαij

k = −αji
k. The indicesij

denote the area element, here the 12-plane, andk the direction of the Burgers
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Figure 9:The ideal cubic crystal in the undeformed state,see [34]: A “small”
parallelogram has been drawn.

Figure 10: Homogeneously strained crystal caused by force stressσ11: The av-
erage distances of the lattice points change. The parallelogram remains closed.

vector, here only the componentδb1. Thus, in Fig.11, only theα12
1 = −α21

1

components are nonvanishing.

Already in 1953, Nye [70] was able to derive a relation between the dislo-
cation densityαijk and the contortion tensorKijk, which describes the relative
rotations between neighboring lattice planes:

Kijk = −αijk + αjki − αkij = −Kikj . (17)

On purpose we took here the letterK similar to the contortional measureκ of
a Cosserat continuum, see (11). In Fig.11, according to Eq.(17), onlyK121 =
−K211 6= 0: We have rotations in the 12-plane if we go along thex1-direction.

At the same time it becomes clear that, from a macroscopic, i.e., continuum
theoretical view, the response of the crystal to its contortion induced by the dis-
locations are spin moment stressesτij

k, as indicated in Fig.11, see [36]. This
is the new type of spin moment stress that already surfaced inthe Cosserat con-
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Figure 11: Deformation of a cubic crystal by edge dislocations of typeα12
1:

The relative orientations of the lattice planes in 2-direction change. A vector
in x2-direction will rotate, if parallelly displaced along thex1-direction. As a
consequence a contortionκ112 emerges and the closure failure of the “infinites-
imal” parallelogram occurs.

tinuum in Fig.4. It is obvious, if one enriches the geometry by addingtorsion
to curvature, then on the dynamical side one should allow, besides stress (in
4D energy-momentum),spin moment stress(in 4D spin angular momentum).

The ideal reference crystal, in the sense of Cartan, is the undeformed crystal
of Fig.9. One can imagine to roll it along the dislocated crystal in Fig.11. Then
the closure failure of Fig.11 is determined, provided we define the connection
with respect to the lattice vectors. In dislocation theory,this is known as the
Frank-Burgers circuit, the closure failure as the Burgers vector. The cracking
of a small parallelogram, defined in the undeformed crystal in Fig.9 and left
untouched by the strain in Fig.10, can be recognized in Fig.11. Clearly, this
procedure is isomorphic to the Cartan circuit, as has been proven by Kondo
(1952) [49], Bilby et al. [5], and Kröner [50, 51]. Thus, it is an established fact
that dislocation densityand torsion in three dimensions can be used synony-
mously.

We recognize that at each point in a crystal with dislocations a lattice di-
rection is well-defined, see Fig.11. In other words, a globalteleparallelism is
provided thereby reducing the RC-space to a Weitzenböck space with vanish-
ing RC-curvature, see Fig.12. It can be shown [89] that the connection of a
Weitzenböck space can always be represented in terms of thecomponents of
the frameeα = ek

α∂k and the coframeϑα = ej
αdxj as

Γij
k = ek

α ∂iej
α . (18)

Accordingly, on the one hand a dislocated crystal carries a torsion (that is, a
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Figure 12: A Riemann-Cartan space and its special cases of a Weitzenböck and
a Riemannian space.

dislocation density), on the other hand it provides a teleparallelism or defines
a Weitzenböck space (that is, a space with vanishing RC-curvature), see, e.g.,
the discussion of Kröner [53].

5 Translation gauge theory of continuously distributed dislocations

What are then the deformational measures in the field theory of dislocations,
see Kröner [50, 51, 52, 53]? Clearly, torsionα or contortionK must be one
measure, but what about the distortion? We turn to the fundamental work of
Lazar [54, 55], Katanaev [45], and Malyshev [57] on the 3D translational gauge
approach to dislocation theory. The underlying geometrical structure of the
theory is the affine tangent bundleA(M) over the 3-dimensional base space
M . It arises when one replaces at every point ofM the usual tangent space by
an affine tangent space. In the affine space, one can perform translations of the
points and vectors, and in this way the translation groupT3 is realized as an
internal symmetry.

The full description of the corresponding scheme requires the formalism of
fiber bundles and connections on fiber bundles, see, among many others, the
early work on this subject by Cho [15], also the recent important work of Tres-
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guerres [100], and the references given therein. Here we only briefly formulate
the general ideas and basic results of the translational gauge approach.

In accordance with the general gauge-theoretic scheme, to the three genera-
torsPα of the translation group there corresponds a Lie algebra-valued 1-form
Γ(T ) = Γ

(T )α
i Pα dxi as the translational gauge field potential. Under transla-

tionsyα → yα + ǫα in the affine tangent space, it transforms like a connection

δΓ
(T )α
i = −∂iǫ

α. (19)

SinceT3 is Abelian, i.e., translations commute with each other, there is no
homogeneous term in this transformation law. Thus, it resembles the phase
transformation of an electromagnetic potential. For the same reason, the gauge
field strengthF (T )α = dΓ(T )α = 1

2 F
(T )α
ij dxi ∧ dxj is formally reminiscent

of a generalized electromagnetic field strength. This analogy was extensively
used by Itin [41, 42].

In addition to the translational gauge field, another important structure is a
field ξα defined as a local section of the affine tangent bundle. Geometrically,
this field determines the “origin” of the affine spaces; it is known as Cartan’s
“radius vector”. Under the gauge transformation (translation) it changes as
ξα → ξα + ǫα. However, the combinationei

α = ∂iξ
α + Γ

(T )α
i is obviously

gauge invariant, see [38], Eq.(3.3.1). In a rigorous gauge-theoretic framework,
the 1-formϑα = ei

αdxi = dξα + Γ(T )α arises as the nonlinear translational
gauge field withξα interpreted as the Goldstone field describing the sponta-
neous breaking of the translational symmetry.

We can consistently treatϑα = ei
αdxi as the coframe of our 3D manifold.

Then the translational gauge field strength is actually the anholonomity 2-form
of this coframe:F (T )α = dΓ(T )α = dϑα. Collecting our results, we have the
deformation measures

ei
α = ∂iξ

α + Γ
(T )α
i , (20)

F (T )α = dΓ(T )α = dϑα . (21)

If, in linear approximation, we compare these measures withthe Cosserat
deformation measure (10),(11), then we find, in generalization of the Cosserat
structure,

ei
α →βij (distortion), (22)

ξα →ui (displacement), (23)

Γ
(T )α
i →ωij (!) , (24)

F
(T )α
ij →κkji (contortion). (25)
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HereF
(T )α
ij ∼ αijk represents the dislocation density (torsion). Hence (25)

represents Nye’s relation (17), and the second deformational measure of dislo-
cation theory with its 9 independent components corresponds to the contortion
of the Cosserat theory. However, as we can recognize from (24), the dislocated
continuum requires a more general description. The 3 component Cosserat ro-
tationωij = −ωji is substituted by the asymmetric 9 component (translational

gauge) potentialΓ(T )α
i . Still, the distortionβij carries also 9 independent com-

ponents and the corresponding static response is represented by the asymmetric
force stressΣij ∼ δH/δβij .

If the second deformation measure in dislocation theory were, similar to
the Cosserat theory, the gradient ofΓ

(T )α
i , i.e., ∂j Γ

(T )α
i , it would have 27

independent components and the static responses would be represented hyper-
stresses with and without moments, see [24]. However, as it turns out, see (25)
— and this is very decisive — it is the dislocation density (torsion), i.e., the
curl of Γ

(T )α
i , with only 9 independent components that plays a role. For this

reason, the static response in dislocation theory are again, as in a Cosserat con-
tinuum, just spin moment stressesτ ijk ∼ δH/δKkji, see [36]. Note thatτ ijk

is equivalent to8 µijk ∼ δH/δαkji. Thus, in dislocation theory as well as in
the Cosserat continuum, we have the same type of stressesΣα andταβ in spite

of the newly emerging 9 component fieldΓ
(T )α
i .

Continuum theories ofmoving dislocationsare still a developing subject,
see, e.g., Lazar [54] and Lazar & Anastassiadis [55] (and theliterature quoted
therein). Probably it is fair to say that they didn’t find too many real applica-
tions so far. Nevertheless, the identification of the dislocation density with the
torsion is invariably a cornerstone of all these theories.

6 Translational gauge theory of gravity

The construction of a translation gauge theory does not depend on the dimen-
sion of the underlying space. Hence we can take in 4D spacetime the same
fundamental formulas (20),(21). Incidentally, the construction of the gauge
theory for the group of translations is quite nontrivial because the local space-
time translations look very similar to the diffeomorphismsof spacetime. They
are, however, different [101, 100]. The underlying geometrical structure of the
theory is, as explained in the previous section, the affine tangent bundle. The
corresponding translational connection is the 1-formΓ

(T )α
i dxi with the trans-

formation law (19). Now, however, the Latin and Greek indices run from 0 to
3.

8In 4D it is called the spin energy potential, see [38], Eqs.(5.1.24) and (5.1.22).
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With the help of the Goldstone type fieldξα, the translational gauge field
gives rise to the coframeϑα = ei

αdxi as described in (20). The anholonomity
2-formF (T )α is the corresponding translational gauge field strength (21). The
gravitational theories based on the coframe as the fundamental field have long
history. The early coframe (or so-called vierbein, or tetrad, or teleparallel)
gravity models were developed by Møller [64], Pellegrini and Plebański [74],
Kaempfer [44], Hayashi and Shirafuji [30], to mention but a few. The first fiber
bundle formulation was provided by Cho [15]. The dynamical contents of the
model was later studied by Schweizer et al. [92], Nitsch and Hehl [69], Meyer
[61], and more recent advances can be found in Aldrovandi andPereira [1], An-
drade and Pereira [2], Gronwald [23], Itin [42, 43], Maluf and da Rocha-Neto
[56], Muench [65], Obukhov and Pereira [72], and Schucking and Surowitz
[90, 91].

The Yang-Mills type Lagrangian 4-form for the translational gauge field
ϑα is constructed as the sum of the quadratic invariants of the field strength:

Ṽ (ϑ, dϑ) = −
1

2κ
F (T )α ∧ ⋆

(
3∑

I=1

aI
(I)F (T )

α

)
. (26)

Hereκ = 8πG/c3, and⋆ denotes the Hodge dual of the Minkowski flat metric
gαβ = oαβ := diag(−1, 1, 1, 1), that is used also to raise and lower the Greek
(local frame) indices. As it is well known, we can decompose the field strength
F (T )α into the three irreducible pieces of the field strength:

(1)F (T )α:=F (T )α − (2)F (T )α − (3)F (T )α, (27)

(2)F (T )α:=
1

3
ϑα ∧

(
eβ⌋F

(T )β
)

, (28)

(3)F (T )α:=
1

3
eα⌋

(
ϑβ ∧ F

(T )
β

)
, (29)

i.e., the tensor part, the trace, and the axial trace, respectively.

There are three coupling constants in this theory, in general: a1, a2, a3.
In accordance with the general Lagrange-Noether scheme [23, 38] one de-
rives from (26) the translational excitation 2-form and thecanonical energy-
momentum 3-form:

H̃α = −
∂Ṽ

∂F (T )α
=

1

κ
⋆

(
3∑

I=1

aI
(I)F (T )

α

)
, (30)

Ẽα =
∂Ṽ

∂ϑα
=eα⌋Ṽ + (eα⌋F

(T )β) ∧ H̃β. (31)
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Accordingly, the variation of the total LagrangianL = Ṽ + Lmat with respect
to the tetrad results in the gravitational field equations

dH̃α − Ẽα = Σα, (32)

with the canonical energy-momentum current 3-form of matter

Σα :=
δLmat

δϑα
(33)

as the source.

The coframe models do not possess any other symmetry except the diffeo-
morphism invariance and the invariance under therigid Lorentz rotations of
the tetrads. However, for a special choice of the coupling constants,

a1 = 1, a2 = − 2, a3 = −
1

2
, (34)

the field equations turn out to be invariant under thelocal Lorentztransforma-
tionsϑα −→ Lα

β(x)ϑβ with the matricesLα
β(x) arbitrary functions of the

spacetime coordinates. At the same time, one can demonstrate that the tetrad
field equations (32) are then recastidenticallyinto the form of Einstein’s equa-
tion (hereηαβγ = ⋆ (ϑα ∧ ϑβ ∧ ϑγ) and⋆ denotes the Hodge star operator):

1

2κ
ηαβγ ∧ R̃βγ = Σα. (35)

HereR̃α
β = dΓ̃α

β +Γ̃γ
β ∧ Γ̃α

γ is the Riemannian curvature of the Christoffel
connection

Γ̃αβ :=
1

2

[
eα⌋F

(T )
β − eβ⌋F

(T )
α − (eα⌋eβ⌋F

(T )
γ ) ∧ ϑγ

]
. (36)

For that reason, the coframe gravity model with the choice (34) is usually called
a teleparallel equivalentof general relativity theory.

7 Einstein-Cartan theory of gravity

Einstein-Cartan (EC) theory is an extension of Einstein’s general relativity,
in which the local Lorentz symmetry, which appears to be accidental in the
teleparallel equivalent model above, is taken seriously asa fundamental feature
of the gravitational theory.

One can naturally arrive at the EC-theory by using the heuristic arguments
based on the mapping of the Noether to Bianchi identities, asshown in McCrea
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et al. [37, 60]. Similar are the thoughts of Ruggiero and Tartaglia [82], who
consider the EC-theory as a defect type theory; see also Hammond [27], Ryder
and Shapiro [83], and Trautman [97, 99].

However, the most rigorous derivation is based on the gauge approach for
the Poincaré group (see [23, 38], for example), in which thegauge potentials
are the coframeϑα and the Lorentz connectionΓα

β . They correspond to the
translational and the Lorentz subgroups of the Poincaré group, respectively.

The dynamics of the gravitational field is described in this model by the
Hilbert-Einstein Lagrangian plus, in general, a cosmological term:

V = −
1

2κ

(
ηαβ ∧ Rαβ − 2λη

)
. (37)

Hereη is the volume 4-form andηαβ = ⋆ (ϑα ∧ ϑβ). The field equations arise
from the variations of the total LagrangianVtot = V + Lmat with respect to
the coframe and connection, see Sciama [93] and Kibble [46]:

1

2
ηαβγ ∧ Rβγ − ληα =κΣα, (38)

1

2
ηαβγ ∧ T γ =κταβ . (39)

Here in addition to the canonical energy-momentum current (33), the canonical
spin current 3-form of matter

τα
β :=

δLmat

δΓα
β

(40)

arises as the source of the gravitational field. Two sourcesΣα andτα
β satisfy

the identities (“covariant conservation laws”) that follows from the Noether
theorem for the invariance of the theory under diffeomorphisms and the local
Lorentz group:

DΣα = (eα⌋T
β) ∧ Σβ + (eα⌋Rβγ) ∧ τβγ , (41)

Dταβ+ϑ[α ∧ Σβ] = 0. (42)

When the matter has no spin,τα
β = 0, the second (Cartan’s) field equa-

tion (39) yields the zero spacetime torsion,T α = 0. As a result, the Riemann-
Cartan curvatureRβγ reduces to the Riemannian curvatureR̃βγ , and the first
field equation (38) reduces to Einstein’s equation (35) of general relativity the-
ory. Physical effects of classical and quantum matter in theEC-theory are
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overviewed in [35, 94]. There emerges, as compared to general relativity, an
additional spin-spin contact interaction of gravitational origin that only plays a
role at extremely high matter densities.

Blagojević et al. [7] found in 3D gravity with torsion an interesting quan-
tum effect: The black hole entropy depends on the torsional degrees of free-
dom.

8 Poincaŕe gauge theory and metric-affine gravity

Einstein-Cartan theory, outlined in Sec. 7, represents a degenerate Poincaré
gauge model in which spin couples algebraically to the Lorentz connection.
As a result, torsion is a nonpropagating field and vanishes identically outside
the material sources.

Things are however different in the Yang-Mills type models of the Poincaré
gravity based on the quadratic Lagrangians in torsion and curvature. These
models are discussed by Hehl [31], Ponomariov and Obukhov [76], Gronwald
and Hehl [25], see also a recent review by Obukhov [71].

The general Lagrangian which is at mostquadratic (q) in the Poincaré
gauge field strengths – in the torsion and the curvature – reads

Vq=−
1

2κ

[
a0 Rαβ ∧ ηαβ − 2λ η + T α ∧ ∗

(
3∑

I=1

aI
(I)Tα

)]

−
1

2
Rαβ ∧ ∗

(
6∑

J=1

bJ
(J)Rαβ

)
. (43)

We use the unit system in which the dimension of the gravitational constant
is [κ] = ℓ2 with the unit lengthℓ. The coupling constantsa0, a1, a2, a3 and
b1, ..., b6 are dimensionless, whereas[λ] = ℓ−2. These coupling constants
determine the particle contents of the quadratic Poincarégauge models. The
three irreducible parts of the torsion(I)Tα are defined along the pattern (27)-
(29), whereas the irreducible decomposition of the curvature into the six pieces
(J)Rαβ is given in [38]. The Lagrangian (43) has the general structure similar
to that of the Yang–Mills Lagrangian for the gauge theory of internal symmetry
group.

The Poincaré gauge field equations are derived from the total Lagrangian
Vq + Lmat from the variations with respect to the coframe and connection.
They read explicitly

DHα − Eα =Σα , (44)

DHα
β − Eα

β = τα
β . (45)
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The right-hand sides describe the material sources of the Poincaré gauge grav-
ity: the canonical energy–momentum (33) and the spin (40) three–forms. The
left-hand sides are constructed from thegauge field momenta2-forms

Hα := −
∂Vq

∂T α
, Hα

β := −
∂Vq

∂Rα
β

, (46)

and thecanonical3–forms of the energy-momentum and spin of the gauge
gravitational field

Eα :=
∂Vq

∂ϑα
= eα⌋Vq + (eα⌋T

β) ∧ Hβ + (eα⌋Rβ
γ) ∧ Hβ

γ , (47)

Eαβ :=
∂Vq

∂Γαβ

= −ϑ[α ∧ Hβ]. (48)

The class of gravitational models (43) has a rich geometrical and physical
structure. Depending on the choice of the coupling constantsa0, a1, a2, a3 and
b1, ..., b6, the field equations (44) and (45) admit black hole, cosmological, and
wave solutions that generalize the general-relativistic solutions of Einstein’s
theory at small distances. On large time and space scales, the physical predic-
tions of Poincaré gravity agree (in the generic case of the coupling constants
aI andbJ ) with the results of general relativity, see [31, 25, 38, 71].

The Cosserat medium in elasticity theory and the physical sources in the
Poincaré gauge gravity deal with the material continua andbodies, the ele-
ments of which have rigid microstructure. A further generalization is possible
when the matter elements possessdeformable microstructure. In elasticity the-
ory this is the case, for example, in Mindlin’s 3-dimensional continuum with
microstructure [62]. In 4 dimensions, the corresponding counterpart arises as
metric-affine gravity(MAG) theory. The proper framework is then the gauge
theory based on the general affine symmetry group [38]. The geometry of such
an elastic medium and of the spacetime in MAG is characterized, in addition
to the curvature and torsion, by a nontrivialnonmetricity.

9 Cartan’s spiral staircase: A 3D Euclidean model for a spacewith tor-
sion

Apparently in order to visualize torsion in a simple 3D model, see Fig.13,
Cartan proposed a certain construction that, in his own (translated) words of
1922 [12], reads as follows:

“. . . imagine a space F which corresponds point by point with a
Euclidean space E, the correspondence preserving distances. The
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x
y

z

Figure 13:Cartan’s spiral staircase,see Garcı́a et al. [22]. Cartan’s rules [12]
for the introduction of a non-Euclidean connection in a 3D Euclidean space
are as follows: (i) A vector which is parallelly transportedalong itself does
not change (cf. a vector directed and transported inx-direction). (ii) A vector
that is orthogonal to the direction of transport rotates with a prescribed constant
“velocity” (cf. a vector iny–direction transported inx–direction). The winding
sense around the three coordinate axes is always positive.
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difference between the two spaces is the following: two orthogo-
nal triads issuing from two points A and A’ infinitesimally nearby
in F will be parallel when the corresponding triads in E may be
deduced one from the other by a given helicoidal displacement
(of right–handed sense, for example), having as its axis theline
joining the origins. The straight lines in F thus correspondto the
straight lines in E: They are geodesics. The space F thus defined
admits a six parameter group of transformations; it would beour
ordinary space as viewed by observers whose perceptions have
been twisted. Mechanically, it corresponds to a medium having
constant pressure and constant internal torque.”

One can show [22] that Cartan’s prescription yields a trivial coframe and a
constant connection,

ϑα = δα
i dxi , Γαβ =

T

ℓ
ηαβ , (49)

with the 1-formηαβ = ⋆
(
ϑα ∧ ϑβ

)
and⋆ as the Hodge star operator; more-

over,T andℓ are constants. The components of the connection are totallyanti-
symmetric,Γγαβ = eγ⌋Γαβ = (T /ℓ) ηγαβ. Thus, autoparallels and geodesics
coincide. Accordingly, in the spiral staircase, extremalsareEuclideanstraight
lines. This is apparent in Cartan’s construction. By simplealgebra we find
for the torsion, the Riemannian curvature, and the Riemann-Cartan curvature,
respectively,

T α = 2
T

ℓ
⋆ϑα , R̃αβ = 0 , Rαβ = −

T 2

ℓ2
ϑα ∧ ϑβ . (50)

In components, the torsion tensor readsT[αβγ] = 2T
ℓ
ǫαβγ , with the totally

antisymmetric Levi-Civita symbolǫαβγ ; the pitch of the helices is proportional
to the constantT .

For asolid state physicistit is immediately clear that the geometry in Fig.13
represents a set of three perpendicular constant ‘forests’of screwdislocations
of equal strength. Hence Cartan thought in terms of screw dislocations without
knowing them! Of course, the totally antisymmetric part of the dislocation
densityα[ijk] is an irreducible piece of the torsion which has one independent
component. Wouldn’t it be interesting to find this spiral staircase as an exact
solution in dislocation gauge theory? Since only one irreducible piece of the
dislocation density (torsion) is involved, this should be possible.
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Cartan apparently had in mind a 3D space with Euclidean signature. For
an alternative interpretation of Cartan’s spiral staircase we consider the 3D
Einstein–Cartan field equations without cosmological constant:

1

2
ηαβγ Rβγ = ℓ Σα , (51)

1

2
ηαβγ T γ = ℓ ταβ . (52)

The coframe and the connection of (49), Euclidean signatureassumed, form
a solution of the Einstein–Cartan field equationswith matter provided the
energy–momentumcurrent (for Euclidean signature the force stress tensortαβ)
and the spin current (here the torque or spin moment stress tensorsαβ

γ) are
constant,

Σα =: tα
β ηβ = −

T 2

ℓ3
ηα and ταβ =: sαβ

γ ηγ = −
T

ℓ2
ϑαβ . (53)

Inversion yields

tα
β = −

T 2

ℓ3
δβ
α , sαβγ = −

T

ℓ2
ηαβγ . (54)

We find a constant hydrostaticpressure−T 2/ℓ3 and a constanttorque−T /ℓ2,
exactly as foreseen by Cartan.

By studying the spiral staircase and reading also more in theCartan book
[13], it becomes clear that Cartan’s intuition worked in 3D (and not in 4D). This
led Cartan to a decisive mistake in this context. Take the energy-momentum
law in a 4D RC-space, if the mater field equation is fulfilled, see (41),

DΣα = (eα⌋T
β) ∧ Σβ + (eα⌋Rβγ) ∧ τβγ , 4D . (55)

Note the Lorentz type forces on the right-hand-side, in particular the last term
representing a Mathisson-Papapetrou type of force with curvature× spin.
However, straightforward algebra yields, for 3D,

DΣα = 0 , 3D . (56)

Cartan assumed incorrectly that (56) is also valid in four dimensions. For that
reason he ran into difficulties with his 4D gravitational theory that includes (56)
and came, after his 1923/1924 papers, never back to his (truncated Einstein-
Cartan-)theory. Hence intuition (without algebra) can even lead the greatest
mathematical minds astray.
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10 Some controversial points

In more physically oriented papers, the authors treat the question of the pos-
sible existence of a torsion as a dynamical one. Hanson and Regge [28], e.g.,
open their paper with the statement:“We suggest that the absence of torsion
in conventional gravity could in fact be dynamical. A gravitational Meissner
effect might produce instanton-like vortices of nonzero torsion concentrated at
four-dimensional points...”Accordingly they study certain dynamical models
in order to find a possible answer for this question. We don’t follow this train
of thought. However, such a model building is a desirable feature.

In contrast, in the literature there are numerous statements about a possible
torsion of the spacetime manifold that don’t stand a closer examination. Let us
quote some examples:

1. Ohanian and Ruffini[73] claim that the Einstein-Cartan theory is de-
fective, see ref.[73], pp. 311 and 312. Since this is a widelyread and,
otherwise, excellent textbook, we would just like to comment on their
arguments, see also [32]:

“If Γβ
νµ were not symmetric, the parallelogram would fail to close.

This would mean that the geometry of the curved spacetime differs from
a flat geometry even on a small scale – the curved spacetime would not
be approximated locally by a flat spacetime.”

Equation (9), see also the paper of Hartley [29], disproves the Ohanian
and Ruffini statement right away. In (9) it is clearly displayed that the
Riemann-Cartan geometry is Euclidean ‘in the infinitesimal’. And this
was, as we discussed in Sec.2, one of the guiding principles of Cartan.

“...we do not know the ‘genuine’ spin content of elementary particles...”

According to present day wisdom, matter is built up from quarks and
leptons. No substructures have been found so far. Accordingto the
mass-spin classification of the Poincaré group and the experimental in-
formation of lepton and hadron collisions etc., leptons andquarks turn
out to be fermions with spin 1/2 (obeying the Pauli principle). As long as
we accept the (local) Poincaré group as a decisive structure for describ-
ing elementary particles, there can be no doubt what spin really is. And
abandoning the Poincaré group would result in an overhaul of (locally
valid) special relativity theory.

The nucleon is a composite particle and things related to thebuild-up of
its spin are not clear so far. But we do know that we can treat itas a
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fermion with spin1/2. As long as this can be taken for granted, at least
in an effective sense, we know its spin and therefore its torsion content.

2. Carroll [11] argues in his book on p.190 as follows:

“...Thus, we do not really lose any generality by considering theories of
torsion-free connections (which lead to GR) plus any numberof tensor
fields, which we can name what we like. Similar considerations...”

(i) This opinion is often expressed by particle physicists who don’t think
too profoundly about geometry. As we saw in Secs.1 and 2, the tor-
sion tensor is notany tensor, but it is a particular tensor related to the
translation group.A torsion tensor cracks infinitesimal parallelograms,
see Fig.1. A parallelogram is deeply related to the geometryof a mani-
fold with a linear connection. The closure failure of a parallelogram can
only be created by a distinctive geometrical quantity, namely the torsion
tensor — and not by any other tensor. This fact alone makes Carroll’s
argument defective.

(ii) Another way of saying this is that torsion affects the Bianchi identi-
ties (5). This cannot be done by any other tensor, apart from the curva-
ture tensor. Moreover, as we saw in Sec.5, the torsion is the field strength
belonging to the translation group.

(iii) In particular, as Sciama [93] has shown, an independent Lorentz
connection couples to the spin of a matter field in a similar way as the
coframe couples to the energy-momentum of matter. This shows too that
a splitting off of the Levi-Civita connection is of no use in such a context.
The Einstein-Cartan theory of gravity is a viable gravitational theory. If
one studies its variational principle etc., then one will recognize that the
splitting technique advised by Carroll messes up the whole structure.

(iv) If one minimally couples to a connection, it is decisivewhich con-
nection one really has. Of course, one can couple minimally to the Levi-
Civita connection and add later nonminimal∼ (torsion)2 pieces thereby
transforming a minimal to a nonminimal coupling; also here one messes
up the structure. Minimal coupling would lose its heuristicpower.

3. Kleinert and Shabanov[48] postulate that a scalar particle moves in a
Riemann-Cartan space along an autoparallel. However, the equations of
motion cannot be postulated freely, they have rather to be determined
from the energy-momentum and the angular momentum laws of the un-
derlying theory. Then it turns out that a scalar particle canonly ‘feel’
the Riemannian metric of spacetime, it is totally insensitive to a possibly
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existent torsion (and nonmetricity) of spacetime. This hasbeen proven,
e.g., by Yasskin and Stoeger [107], Ne’eman and Hehl [67], and by Puet-
zfeld and Obukhov [80].

4. Weinberg[103] wrote an article about “Einstein’s mistakes”. In a re-
sponse, Becker [4] argued that for “generalizing general relativity” one
should allow torsion and teleparallelism. Weinberg’s response [104] was
as follows:

“I may be missing the point of Robert Becker’s remarks, but I have never
understood what is so important physically about the possibility of tor-
sion in differential geometry. The difference between an affine connec-
tion with torsion and the usual torsion-free Christoffel symbol is just a
tensor, and of course general relativity in itself does not constrain the
tensors that might be added to any dynamical theory. What difference
does it make whether one says that a theory has torsion, or that the affine
connection is the Christoffel symbol but happens to be accompanied in
the equations of the theory by a certain tensor? The first alternative
may offer the opportunity of a different geometrical interpretation of the
theory, but it is still the same theory.”

This statement of Weinberg was answered by one of us, see [104]. We
argued, as in this essay, that torsion is related to the translation group
and that it is, in fact, the translation gauge field strength.Moreover,
we pointed out the existence of a new spin-spin contact interaction in
the EC-theory and that torsion could be measured by the precession of
nuclear spins.

Weinberg’s answer was:

“Sorry, I still don’t get it. Is there any physical principle, such as a
principle of invariance, that would require the Christoffel symbol to be
accompanied by some specific additional tensor? Or that would forbid
it? And if there is such a principle, does it have any other testable con-
sequences?”

The physical principle Weinberg is looking for istranslational gauge
invariance, see Sec.6. And the testable consequences are related to the
new spin-spin contact interaction and to the precession of elementary
particle spins in torsion fields.

5. Mao, Tegmark, Guth, and Cabi[59] claim that torsion can be measured
by means of the Gravity Probe B experiment. This is totally incor-
rect since the sensitive pieces of this gyroscope experiment, the rotating
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quartz balls, don’t carry uncompensated elementary particle spin. If the
balls were made of polarized elementary particle spins, that is, if one
had anuclear gyroscope, see Simpson [96], as they were constructed for
inertial platforms, then the gyroscope would be sensitive to torsion. As
mentioned in the last point regarding Kleinert et al., an equation of mo-
tion in a general relativistic type of field theory has to be derived from
the energy-momentum and angular momentum laws, see Yasskinand
Stoeger [107] and Puetzfeld and Obukhov [79, 80]. Then it turns out
that measuring torsion requires elementary spin — there is no other way.

6. Torsion in string theory?Quite some time ago it was noticed by Scherk
and Schwarz [87] that the low-energy effective string theory can be el-
egantly reformulated in geometrical terms by using a non-Riemannian
connection. The graviton field, the dilaton field, and the antisymmet-
ric tensor field (2-formB), which represent the massless modes of the
closed string, then give rise to a spacetime with torsion andnonmetricity.
In particular, the 3-formH = dB is interpreted in this picture as one of
the irreducible parts (namely, the axial trace part, cf. (29)) of the space-
time torsion. Later this idea was extended to interpret the dilaton field as
the potential for the (Weyl) nonmetricity, see [18, 84, 77],for example.

Another formal observation reveals certain mathematical advantages
in discussing compactification schemes with torsion for thehigher-
dimensional string models, see [8, 75].

It is however unclear whether some fundamental principle ormodel un-
derlies these formal observations. The geometrical interpretation of this
kind is certainly interesting, but one should take it with a grain of salt.
The qualitative difference (from the elastic models with defects and the
gauge gravity models) lies in the fact that the fieldH , although viewed
as torsion, is not an independent variable in this approach but arises from
the potential 2-formB. Consistent with this view is Polchinski’s defini-
tion of string torsion in his glossary, see [75], p.514: “torsion a term
applied in various 3-form field strengths, so called becausethey appear
in covariant derivatives in combination with the Christoffel connection.”

Thus, the notion of torsion in string theory is used in an unorthodox way
and should not be mixed up with Cartan’s torsion of 1922.

7. In the past, there have been several attempts to relate thetorsion of
spacetime to electromagnetism. A recent approach is the oneof Evans
[19, 20], who tried to construct a unified field theory. As we have seen
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in Secs.1 and 2, torsion is irresolvably tied to the notion ofa translation.
Thus, torsion has nothing to do with internal (unitary) symmetry groups.
We have shown in two separate papers [33, 40] that Evans’ theory is
untenable.

11 Outlook

In three-dimensional dislocated crystals, the equality ofthe dislocation den-
sity and torsion is an established fact. In four dimensions,with respect to the
experimental predictions, the Einstein-Cartan theory is aviable gravity model
that is presently indistinguishable from Einstein’s general relativity. The con-
tact character of the spin-connection interaction and the smallness of Newton’s
gravitational coupling constant underlies this fact for macroscopic distances
and large times.

Sciama was the first in 1961 to derive the field equations (38),(39) in tensor
notation [93]; in 1979 he passed the following judgment (private communica-
tion): “The idea that spin gives rise to torsion should not beregarded as an ad
hoc modification of general relativity. On the contrary, it has a deep group-
theoretical and geometric basis. If the history had been reversed and the spin
of the electron discovered before 1915, I have little doubtsthat Einstein would
have wanted to include torsion in his original formulation of general relativity.
On the other hand, the numerical differences which arise arenormally very
small, so that the advantages of including torsion are entirely theoretical.”

However, the quadratic Poincaré gauge models and their generalizations in
the framework of MAG predict propagating torsion (and nonmetricity) modes
which can potentially be detected on extremely small scales(high energies).
The appropriate physical conditions may occur during the early stages of the
cosmological evolution of the universe, see, e.g., Minkevich [63], Puetzfeld
[78], and Brechet, Hobson, and Lasenby [9].
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Appendix: Derivation of the deformation measures of a Cosserat contin-
uum

Let us consider a 3D Euclidean space. Its geometrical structure is determined

by the 1-form fields of the coframe
◦

ϑα and the connection
◦

Γα
β . They satisfy

the trivial Cartan relations:

d
◦

ϑ
α +

◦

Γβ
α ∧

◦

ϑ
β=

◦

T
α = 0, (57)

d
◦

Γα
β +

◦

Γγ
β ∧

◦

Γα
γ=

◦

Rα
β = 0. (58)

The right-hand sides, given by the torsion and the curvature2-forms, respec-
tively, vanish for the Euclidean space.

We now consider an infinitesimal deformation of this manifold produced by
the “generalized gauge transformation” which is defined as acombination of
the diffeomorphism and of the local rotation. The diffeomorphism is generated
by some vector field, whereas the rotation is given by the3 × 3 matrix which
acts on the anholonomic (Greek indices) components. We assume that a de-
formation is small which means that we only need to consider the infinitesimal
diffeomorphism and rotational transformations. By definition, the deformation
is the sum of the two infinitesimal gauge transformations:

βα:=∆
◦

ϑ
α = δdiff

◦

ϑ
α + δrot

◦

ϑ
α, (59)

κα
β :=∆

◦

Γα
β = δdiff

◦

Γα
β + δrot

◦

Γα
β. (60)

Let u be an arbitrary vector field, and we recall that a diffeomorphism, gen-
erated by it, is described by the Lie derivative along this vector field, i.e.,
δdiff = ℓu = du⌋ + u⌋d. As for the local rotations, they are given by the
standard transformation formulas,

δrot

◦

ϑ
α = εα

β

◦

ϑ
β , δrot

◦

Γα
β = −

◦

Dεβ
α. (61)

Here
◦

D is the covariant derivative defined by the connection
◦

Γ. For the Lie

derivative of the coframe we find (withuα = u⌋
◦

ϑα)

ℓu

◦

ϑ
α=d uα + u⌋d

◦

ϑ
α

=d uα − u⌋(
◦

Γβ
α ∧

◦

ϑ
β) + u⌋

◦

T
α

=d uα +
◦

Γβ
α uβ − (u⌋

◦

Γβ
α)

◦

ϑ
β . (62)
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We used here (57) because the space is Euclidean. Substituting (62) together
with (61) into (59), we find for the translational deformation

βα =
◦

Duα − ωα
β

◦

ϑ
β . (63)

Here we introducedωα
β := u⌋

◦

Γβ
α − εα

β .

Analogously we have for the Lie derivative of the connection

ℓu

◦

Γβ
α=d (u⌋

◦

Γβ
α) + u⌋d

◦

Γβ
α

=d (u⌋
◦

Γβ
α) − u⌋(

◦

Γγ
α ∧

◦

Γβ
γ) + u⌋

◦

Rβ
α

=d (u⌋
◦

Γβ
α) +

◦

Γγ
α(u⌋

◦

Γβ
γ) −

◦

Γβ
γ(u⌋

◦

Γγ
α). (64)

We again used here (58) for the Euclidean space. Now, substituting (64) to-
gether with (61) into (60), we find for the rotational deformation

κα
β =

◦

Dωβ
α. (65)

We thus recovered the deformation measures (10),(11) of thelinear Cosserat

continuum. Using local coordinates, we expand
◦

ϑα =
◦
ei

αdxi, and then (63)
and (65) reduce in tensor components to

βi
j=

◦

∇iu
j − ωj

i, (66)

κij
k=

◦

∇iω
k

j . (67)

Thus, the deformation measures of the Cosserat continuum are literally given
by the deformations of coframe and connection (59),(60).

The compatibility conditions (16) can be derived from (63) and (65) by
applying the covariant derivative. The result reads

◦

Dβα + κβ
α ∧

◦

ϑ
β = 0,

◦

Dκβ
α = 0. (68)

The crucial point is that the geometry of the space is Euclidean and flat.

When, however, the space has a nontrivial Riemann-Cartan geometry with
the coframeϑα and connectionΓα

β satisfying Cartan’s structure equations
with the nontrivial torsionT α and curvatureRα

β, the deformation measures
are given by

βα=Duα − ωα
β ϑβ + u⌋T α, (69)

κα
β=Dωβ

α + u⌋Rα
β, (70)
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and they no longer satisfy the compatibility conditions (68). In 4D, after suit-
ably adjusting the signs, Eqs.(69) and (70) coincide with the Poincaré gauge
transformations (13), (14).
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[14] É. Cartan,Riemannian Geometry in an Orthogonal Frame, from lectures deliv-
ered in 1926/7, transl. from the Russian by V.V. Goldberg, World Scientific, New
Jersey (2001).

[15] Y.M. Cho,Einstein Lagrangian as the translational Yang-Mills Lagrangian,Phys.
Rev.D14 (1976) 2521–2525.
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[71] Yu.N. Obukhov,Poincaré gauge gravity: Selected topics,Int. J. Geom. Meth.

Mod. Phys.3 (2006) 95–138; [arXiv:gr-qc/0601090].
[72] Yu.N. Obukhov and J.G. Pereira,Metric-affine approach to teleparallel gravity,

Phys. Rev.D67 (2003) 044016 (17 pages).
[73] H.C. Ohanian and R. Ruffini,Gravitation and Spacetime,2nd ed., Norton, New

York (1994).
[74] C. Pellegrini and J. Plebanski,Tetrad fields and gravitational fields, Mat. Fys. Skr.

Dan. Vid. Selsk.2, no. 4 (1963) 1–39.
[75] J. Polchinski,String Theory Volume II, Superstring Theory and Beyond,Cam-

bridge University Press, Cambridge, UK (1998).
[76] V.N. Ponomariov and Yu. Obukhov:The generalized Einstein-Maxwell theory of

gravitation.Gen. Relat. Grav.14 (1982) 309–330.
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