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ABSTRACT. We review the application of torsion in field thgorFirst we
show how the notion of torsion emerges in differential getsyen the con-
text of a Cartan circuittorsionis related totranslationssimilar as curvature
to rotations. Cartan’s investigations started by analy&insteins general rel-
ativity theory and by taking recourse to the theory of Caaiseontinua. In
these continua, the points of which carry independent katinsal and rota-
tional degrees of freedom, there occur, besides ordinargdj stresses, ad-
ditionally spin moment stressedn a 3-dimensional “continuized” (Kroner)
crystal with dislocation lines, a linear connection cantiteoiduced that takes
the crystal lattice structure as a basis for parallelismchSai continuum has
similar properties as a Cosserat continuum, and the distocdensity is equal
to the torsion of this connection. Subsequently, thesesiéea applied to 4-
dimensional spacetime. A translational gauge theory ofityré displayed (in
a Weitzenbock or teleparallel spacetime) as well as thel@iBinstein-Cartan
theory (in a Riemann-Cartan spacetime). In both theorhesnbtion of tor-
sion is contained in an essential way. Cartan’s spiralcsia# is described as a
3-dimensional Euclidean model for a space with torsion, arehtually some
controversial points are discussed regarding the mearfitgysion.

P.A.C.S.: 04.20.Cv; 11.10.-z; 61.72.Lk; 62.20.-x; 02\0.

1 A connection induces torsion and curvature

“...the essential achievement of general relativity, ngnte overcome ‘rigid’
space (ie the inertial frame), @nly indirectlyconnected with the introduction

of a Riemannian metric. The directly relevant conceptuai&nt is the ‘dis-
placement field’ [}, ), which expresses the infinitesimal displacement of vec-
tors. It is this which replaces the parallelism of spatiaispitrarily separated
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vectors fixed by the inertial frame (ie the equality of cop@sding compo-
nents) by an infinitesimal operation. This makes it posshé®nstruct tensors
by differentiation and hence to dispense with the introiuncof ‘rigid’ space
(the inertial frame). In the face of this, it seems to be obseary importance
in some sense that some particulafield can be deduced from a Riemannian
metric..”

A. Einstein (4 April 1955)

On a differential manifold, we can introduce a linear coniues the com-
ponents of which are denoted by;*. The connection allows a parallel dis-
placement of tensors and, in particular, of vectors, on thrifald. We denote
(holonomic) coordinate indices with Latin letterg, k,--- =0,1,2,...,n —

1, wheren is the dimension of the manifold. A vectar= u*9y, if parallelly
displaced alongz?, changes according to

Slluf = -1k uldat . 1)

Based on this formula, it is straightforward to show that a-ranishing Cartan
torsion?
Ti* =Ty* —Ty* =20" #0, 2

breaks infinitesimal parallelograms on the manifold, seplFi Here for an-
tisymmetrization we use the abbreviatipn] := 1 (ij — ji) and for sym-
metrization(ij) := % (ij + ji), see [88]. There emergescéosure failure
i.e., a parallelogram is only closed up to a small transhatio

In GR, the connection is identified with the Christoffel syshy';;* =

{;¥;} and is as such symmetr{g*;} = {,;*;}. In other words, the torsion
vanishes in GR.

The torsion surfaces more naturally in a frame formalismedkth point we
have a basis of linearly independent vectoes, = €', 9; and the dual basis of
covectorsd® = e;Pdz’, the so-called coframe, with, |9° = 67 (the interior
product is denoted by). We denote (anholonomic) frame indices with Greek

Ipreface in ‘Cinquant'anni di Relativith 1905-1955.” M.raleo, ed.. Edizioni Giuntine and
Sansoni Editore, Firenze 1955 (translation from the Gerarainal by F. Gronwald, D. Hartley,
and F.W. Hehl). For the role that generalized connectioay pi physics, see Mangiarotti and
Sardanashvily [58].

2According to Kiehn [47], one can distinguish at least fivdedignt notions of torsion. In our
article, we treat Cartan’s torsion of 1922, as it is esthlelisin the meantime in differential geom-
etry, see Frankel [21], p.245. We find it disturbing to useshme name for different geometrical
objects.
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Figure 1: On the geometrical interpretation of torsiosge [39]: Two vector
fieldsu andv are given. At a poinP, we transport parallelly, andv alongv

or u, respectively. They becomj%‘ andv'clz. If a torsion is present, they don't
close, that is, @losure failureT'(u, v) emerges. This is a schematic view. Note
that the points? and(@ are infinitesimally near t&. A proof can be found in
Schouten [88], p.127.

lettersa, 3,v,--- = 0,1,2,...,n — 1. The connection is then introduced
as 1-form I',° = I;,%dz*, and, for a formw*, we can define a covariant
exterior derivative according tbw” := dw? + ppA 5T, A wP. Here the
coefficientSpBAaﬁ describe the behavior af* under linear transformations,
for details see [98] and [39], p.199, anddenotes the exterior product. Then
the torsion 2-form is defined as

T := DY™ = d9™ + T A7 3)

If the frames are chosen as coordinate frames, dl#€n= 0 and the definition
(3) degenerates to (2). From (3) we can read off fhatis a kind of a field
strength belonging to the ‘potential™.

Since we introduced a connectiby?, we can define in the conventional
way the RC-curvature,

R, :=dl,P + TP AT, (4)

3The relation betweed;,® and the holonomid;;* in (1) is T;o? = e’aerfTy;* +
ejaaie]ﬂ.
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If we differentiate (3) and (4), we find straightforwardletfirst and the second
Bianchi identities, respectivefy,

DT* = Rg* N9”, DR,? =0. (5)

We can recognize already here, how closely torsion and tuneare in-
terrelated. Moreover, it is clear, that torsion as well asvature are notions
linked to the process of parallel displacement on a manifold are as such
something very particular.

2 Cartan circuit: Translational and rotational misfits

Since the metric plays an essential role in the applicatimbkave in mind, we
will now introduce — even though it is not necessary at thégjet— besides
the connectio,”, a (symmetric) metrig;; = g;; that determines distances
and angles. The line element is given by

ds? = g;jda’ @ dr? = g™ @97 . (6)

We assume that the connection is compatible with the metec, the non-
metricity Qs vanishes:

Qaﬁ = —Dgaﬁ =0. (7)

A space fulfilling this condition is called Riemann-CartarfRC) space We
can solve (7) with respect to the symmetric part of the (amiainic) connec-
tion:

1
L(ap) = 54905 - @)

Furthermore, we will choose arthonormal coframe We will apply the
formalism to the 4-dimensional (4D) spacetime with Lorérizanetricg,g =
diag(—1, 1,1, 1) or to the 3D space with Euclidean metyics = diag(1,1,1).
Then, due to (8), we find a vanishing symmetric part of the &ramic con-
nection. Accordingly, we have in a RC-space as geometriehl fiariables
the orthonormal coframé® = ¢;%dx’ and the metric-compatible connection
ref =1;%8dx? = T8,

Now we are prepared to characterize a RC-space in the waprCdid.
Locally a RC-space looks Euclidean, since for any singl@tBi there exist

4In 3 dimensions we havex (3+ 3) = 6 and in 4 dimensiong x (4 + 6) = 40 independent
components of the Bianchi identities.
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coordinates:’ and an orthonormal coframg&* in a neighborhood of such

that .
9¥= 65 dx’
{Faﬁ:()l } at P7 (9)

wherel',? are the connection 1-forms referred to the cofraifiesee Hartley
[29] for details. Eq.(9) represents, in a RC-space, the lamloonic analogue
of the (holonomic) Riemannian normal coordinates of a Riemen space.

Oftenitis argued incorrectly that in RC-space normal frammannot exist,
since torsion, as a tensor, cannot be transformed to zenhidmrrontext Rie-
mannian normal coordinates are tacitly assumed and thenass‘superim-
posed’. However, since onlyraatural, i.e., a holonomic or coordinate frame is
attached to Riemannian normal coordinates, one is toagegtrin the discus-
sion right from the beginning. And, of course, the curvatar@so of tensorial
nature — and still Riemannian normal coordinates do exist.

How can a local observer at a point P with coordinafe®ll whether his or
her space carries torsion and/or curvature? The local eésdefines a small
loop (or a circuit) originating from P and leading back to Bem he/sheolls
the local reference spaegthout sliding— this is called Cartan displacement
— along the loop and adds up successively the small relatwesiations and
rotations, see Cartan [13, 14], Schouten [88], Sharpe [8%bpa modern ap-
plication, Wise [106]. As a computation shows, the addedrapslationis a
measure for théorsion and therotation for the curvature Since the loop en-
circles a small 2-dimensional area element, Cartan’s pgpgsm attaches to an
area element a small translation and a small rotation. ThrgonT* and cur-
vatureR*? = — RP“ are both 2-forms in any dimensions> 1, the torsion is
vector-valued, because of the translation vector, theature bivector-valued,
because of the rotations.

In this way Cartan visualized a RC-space as consisting oflaction of
small Euclidean granules that are translated and rotatédrespect to each
other. Intuitively it is clear that this procedure of Cartansimilar to what
one does in gauge field theory: A rigid (or global) symmetmtehthe cor-
responding Euclidean motions of translation and rotatiesnextended to a
local symmetry. In four-dimensional spacetime it is therfearé (or inhomo-
geneous Lorentz) group of Minkowski space that is gaugedtlaaidyields a
RC-spacetime, see [68, 6, 25].

There are two degenerate cases: A RC-space with vanishisigrias the
conventional Riemannian space, a RC-space with vanish@g®Rvature is
called aWeitzenbck spacdq105], or a space with teleparallelism. We will
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come back to this notion later.

We can now list the number of the components of the differentgetrical
guantities in a RC-space of 3 or 4 dimensions. These numbeng#ecting
the3 + 3 generators of the 3D Euclidean group and of4he 6 generators of
the 4D Poincaré group:

orthon. cofr.| RC-connection| Cartan’s torsion| RC-curvature
A res T R
n=3| 9=3x3 9=3x3 9=3x3 9=3x3
n=4| 16=4x4 24 =6 x4 24 =6 x4 36 =6x6

The results of Secs.1 and 2 can all be proven rigorously. ahewll con-
sequences of the introduction of a connectﬂ;zﬂC and a metrigg;;. Let us
now turn to a new ideas that influenced Cartan’s thinking im ¢bntext of
RC-geometry.

3 The Cosserat continuum

Cartan, according to his acknowledgment in [12], was iregploy the broth-
ers Cosserat [16] and their theory of a new type of continulihre classical
continuum of elasticity and fluid dynamics consists of wnstured points, and
the displacement vectar; is the only quantity necessary for specifying the
deformation. The Cosserats conceived a spegiidium with microstructure,
see [26, 10, 24] and for a historical review [3], consistifigtouctured points
such that, in addition to the displacement fieldit is possible to measure the
rotation of such a structured point by the bivector field = —w;;, see Fig.2
for a schematic view.

The deformation measuredistortion 3 and contortion x of a linear
Cosserat continuum are/( is the covariant derivative operator of the Eu-
clidean 3D space)

Bij =Viuj; —wij,  wij = —wj;, (10)

Kijk = ViWjk = —Kikj , (11)

see Gunter [26] and Schaefer [85]. A rigorous derivatiothese deformation
measures is given in the Appendix. In classical elastitity,only deformation
measure is the strainy; := 3(3;; + 8;i) = Buj) = Vuy). Letus visu-
alize these deformations. If the displacement figld~ x and the rotation
field w;; = 0, we find 811 = €11 = const andk,j; = 0, see Fig.3. This
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Figure 2: Schematic view on a two-dimensional Cosseratimont: Unde-
formed initial state.

Figure 3: Conventional homogeneous strainof a Cosserat continuum: Dis-
tance changes of the “particles” caused by force stress

homogeneous strain is created by ordinary force stressesntrast, if we put
u; = 0 andwi ~ x, thenfis = wis ~ x andki12 ~ const, see Fig.4. This
homogeneous contortion is induced by applied spin momeessss. Fig.5
depicts the pure constant antisymmetric stress with= const and Fig.6 the
conventional rotation of the particles according to ordynelasticity. This has
to be distinguished carefully from the situation in Fig.4.

Apparently, in addition to the force streXs; ~ §H/53;; (here’H is an
elastic potential), which is asymmetric in a Cosserat contim, i.e.,X;; #
3;;, we have as new response 8pgn momenstresss; ;. ~ dH /Sky;i. Hence
(force) stresst;; andspin momenstressr;;;, characterize a Cosserat contin-
uum from the static side. We used bars for denoting stressjgindnoment
stress specifically in 3D.
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Figure 4: Homogeneous contortian,, of a Cosserat continuum: Orientation
changes of the “particles” caused by spin moment strgss

Figure 5: Homogeneous Cosserat rotatign of the “particles” of a Cosserat
continuum caused by the antisymmetric piece of the sitess.

Figure 6: Conventional rotatiodk; uy) of the “particles” of a Cosserat contin-
uum caused by an inhomogeneous strain.
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Only in 3D, a rotation can be described by a vector according’t =
L€k w i, wheree;j, = 0,41, —1 is the totally antisymmetric 3D permuta-
tion symbol. We chose here the bivector description suchthieadiscussion
becomes independent of the dimension of the continuum deresi. Even
though there exist 1D Cosserat continua (wires and beard@ines (plates
and shells), we will concentrate here, exactly as Cartanatid3D Cosserat
continua.

The equilibrium conditions for forces and moments fead
VT + fi =0, Vi = Zpij) +mi; =0, 12)

wheref; are the volume forces and;; = —m;; volume moments. They cor-
respond to translational and rotational Noether idestitie classical elasticity

and in fluid dynamicsﬂjk = 0 andm;; = 0; thus, the stress is symmetric,
i[ij] = 0, and then denoted by;;; for early investigations of asymmetric
stress and energy-momentum tensors, see Costa de Bealjfegar

Nowadays the Cosserat continuum finds many applicationen&sexam-
ple we may mention the work of Zeghadi et al. [108] who takedtans of
a metallic polycrystal as (structured) Cosserat partialed develop a linear
Cosserat theory with the constitutive Iaﬁsj ~ Bi; andT;j, ~ Kiji-

The Riemannian space is the analogue of the body of classicéihuum
theory: points and their relative distances is all what isdeal to describe it ge-
ometrically; the analogue of the straiy) of classical elasticity is the difference
between the metric tensgy; of the Riemannian space and a flat background
metric. In GR, a symmetric “stress’;; = o, is the response of the matter
Lagrangian to a variation of the metfg;.

A RC-space can be realized by a generalized Cosserat cantindhe

“deformation measures}® = e;%dz’ andT’'*? = T,*fdz? = —T8* of a
RC-space correspond to those of a Cosserat continuum éogoof]
562_& — Bij 5 5Fiaﬁ — Hijk . (15)

5In exterior calculus we hav®X,, + fo =0 and D75 + V(o A X + mag = 0. These
relations are valid in all dimensions > 1, see [24]. In 3 dimensions we hage+ 3 and in 4
dimensionst + 6 independent components of the “equilibrium” conditions.

6This can be seen from the response of the cofraffieand the Lorentz connectidi; ©# in
a RC-space to a local Poincaré gauge transformation ¢mgsi small translationg® and small
Lorentz transformations®?,

0e;“=—D;e® + e, wy ™ — " T, (13)
or;*P= —Djw™P — YR %P (14)

see [35], Eqs.(4.33),(4.32); hef®; := 0;| D are the components of the exterior covariant deriva-
tive. The second term on the right-hand-side of (13) is dutaéosemi-direct product structure
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Figure 7:Edge dislocatiorafter Kroner [50]: The dislocation line is parallel to
the vectort. The Burgers vectafb, characterizing the missing half-plane, is
perpendicular t&. The vectordg characterizes the gliding of the dislocation
as it enters the ideal crystal.

However, the coframé® and the connectioii®” cannot be derived from a dis-
placement field:; and a rotation field;;, as in (10),(11). Such a generalized
Cosserat continuum is called incompatible, since the dedtion measures;;
andk;;;, don’t fulfill the so-called compatibility conditions

V0B + Kpigie = 0, Vit =0, (16)

see Gunther [26] and Schaefer [85, 86]. They guarantedtibdpotentials”

u; andw;; can be introduced in the way as it is done in (10),(11). Stiflp in

the RC-space, aacompatibleCosserat continuum, we have, besides the force
stressy, ! ~ 6H/de;*, the spin moment stress,5° ~ dH/0T;*%. And in

the geometro-physical interpretation of the structurethefRC-space, Cartan
apparently made use of these results of the brothers Cbssera

In 4D, the stres¥,,* corresponds to energy-momentUR,* and the spin
moment stresg .5’ to spin angular momentum,z*. Accordingly, Cartan
enriched the Riemannian space of GR geometrically bytalson 7;;“ and
statically (or dynamically) by thepin angular momentum,;* of matter.

of the Poincaré group. If we put torsion and curvature t@zérese formulas are analogous to
(10),(112).

"This is well-known from classical electrodynamics: The 3RuMell stress generalizes, in
4D, to the energy-momentum tensor of the electromagnetit, Bee [39].
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Figure 8:Screw dislocatiorafter Kroner [50]: Here the Burgers vector is par-
allel tot.

4 Arule in three dimensions: Dislocation density equals tagion

In the 1930s, the concept of a crystal dislocation was intced in order to
understand the plastic deformation of crystalline solals, for instance, of
iron. Dislocations are one-dimensional lattice defectasially, there ex-
ist two types of dislocations, edge and screw dislocatiee, Weertman &
Weertman [102]. In Fig.7, we depicted a three-dimensior@ion such an
edge dislocation in a cubic primitive crystal. We recogrtizat one atomic
half-plane has been moved to the right-hand-side of theary$he missing
half-plane is characterized by the Burgers vector that ipgraicular to the
dislocation line. The screw dislocation of Fig.8 has agaBuggers vector, but
in this case it is parallel to the dislocation line. In thenfigvork of classical
elasticity, at the beginning of the last century, theoriethe elastic field of
singular defect lines had been developed by Volterra, Skemig, and others,
see Nabarro [66] and Puntigam & Soleng [81]. These theonekide used
to compute the far-field of a crystal dislocation succe$gfior more recent
developments in this field, one may quote Malyshev [57], wiemtbeyond
the linear approximation.

If sufficiently many dislocations populate a crystal, thenaatinuum or
field theory of dislocations is appropriate, see Krondréory of a continuized
crystal [52]. In order to give an idea of such an approachyddbok at a cubic
crystal in which several dislocations are present, se€lEigBy averaging
over, we can define a dislocation density tensgF = —a;;*. The indicesj
denote the area element, here the 12-plane kathe direction of the Burgers
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Figure 9:The ideal cubic crystal in the undeformed statee [34]: A “small”
parallelogram has been drawn.

Figure 10: Homogeneously strained crystal caused by faresss;: The av-
erage distances of the lattice points change. The pargikeloremains closed.

vector, here only the componefit'. Thus, in Fig.11, only they st = —awo; !
components are nonvanishing.

Already in 1953, Nye [70] was able to derive a relation betvie dislo-
cation densityy; 5, and the contortion tensdg; ;, which describes the relative
rotations between neighboring lattice planes:

Kijk = —quji + i — agij = —Kigj - (17)

On purpose we took here the lett&rsimilar to the contortional measukeof
a Cosserat continuum, see (11). In Fig.11, according talEy.o6nly K15, =
— K511 # 0: We have rotations in the 12-plane if we go alongthelirection.

At the same time it becomes clear that, from a macroscopi¢continuum
theoretical view, the response of the crystal to its coitniinduced by the dis-
locations are spin moment stressgg, as indicated in Fig.11, see [36]. This
is the new type of spin moment stress that already surfacbe i@osserat con-
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Figure 11: Deformation of a cubic crystal by edge dislogatiof typea;s!:
The relative orientations of the lattice planes in 2-di@ttchange. A vector
in xo-direction will rotate, if parallelly displaced along the-direction. As a
consequence a contortian; » emerges and the closure failure of the “infinites-
imal” parallelogram occurs.

tinuum in Fig.4. Itis obvious, if one enriches the geometyyalddingtorsion
to curvature, then on the dynamical side one should allosides stress (in
4D energy-momentum3pin moment stregg 4D spin angular momentum).

The ideal reference crystal, in the sense of Cartan, is theformed crystal
of Fig.9. One can imagine to roll it along the dislocated taym Fig.11. Then
the closure failure of Fig.11 is determined, provided werdethe connection
with respect to the lattice vectors. In dislocation thednjs is known as the
Frank-Burgers circuit, the closure failure as the Burgexster. The cracking
of a small parallelogram, defined in the undeformed cryst&ig.9 and left
untouched by the strain in Fig.10, can be recognized in EigQlearly, this
procedure is isomorphic to the Cartan circuit, as has beeweprby Kondo
(1952) [49], Bilby et al. [5], and Kroner [50, 51]. Thus, & &n established fact
thatdislocation densityandtorsionin three dimensions can be used synony-
mously.

We recognize that at each point in a crystal with dislocaianattice di-
rection is well-defined, see Fig.11. In other words, a glael@parallelism is
provided thereby reducing the RC-space to a Weitzenbta&espith vanish-
ing RC-curvature, see Fig.12. It can be shown [89] that theneotion of a
Weitzenbodck space can always be represented in terms aebthponents of
the framee,, = €*,8), and the coframé® = e;dz? as

Fijk = eka 81'63'& . (18)

Accordingly, on the one hand a dislocated crystal carriexrsidn (that is, a
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Figure 12: A Riemann-Cartan space and its special cases eftadfibock and
a Riemannian space.

dislocation density), on the other hand it provides a teigfdism or defines
a Weitzenbock space (that is, a space with vanishing RCature), see, e.g.,
the discussion of Kroner [53].

5 Translation gauge theory of continuously distributed disocations

What are then the deformational measures in the field thefodystmcations,
see Kroner [50, 51, 52, 53]? Clearly, torsiaror contortionK” must be one
measure, but what about the distortion? We turn to the fureddahwork of
Lazar [54, 55], Katanaev [45], and Malyshev [57] on the 3D$tational gauge
approach to dislocation theory. The underlying geomdtstacture of the
theory is the affine tangent bundig M) over the 3-dimensional base space
M. It arises when one replaces at every poindbthe usual tangent space by
an affine tangent space. In the affine space, one can perfansidtions of the
points and vectors, and in this way the translation grdyis realized as an
internal symmetry

The full description of the corresponding scheme requiregarmalism of

fiber bundles and connections on fiber bundles, see, amony athers, the
early work on this subject by Cho [15], also the recent imgatrtvork of Tres-
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guerres [100], and the references given therein. Here wetwidfly formulate
the general ideas and basic results of the translationaleyapproach.

In accordance with the general gauge-theoretic schemg thitee genera-
tors P, of the translation group there corresponds a Lie algebl@edal -form
r@ = Pl(.T)“Pa dxz? as the translational gauge field potential. Under transla-
tionsy® — y* + €* in the affine tangent space, it transforms like a connection

ST = _ e, (19)

SinceTj is Abelian, i.e., translations commute with each otherrehis no
homogeneous term in this transformation law. Thus, it rédesithe phase
transformation of an electromagnetic potential. For theeseeason, the gauge
field strengthF (Mo = gr(Me — %Fi(jT)a dz’ A da? is formally reminiscent
of a generalized electromagnetic field strength. This ajyaleas extensively
used by Itin [41, 42].

In addition to the translational gauge field, another imgatrstructure is a
field £~ defined as a local section of the affine tangent bundle. Gemalby,
this field determines the “origin” of the affine spaces; it iotwn as Cartan’s
“radius vector”. Under the gauge transformation (tramsigtit changes as
£* — £~ + €. However, the combination,® = 9;6* + FET)‘X is obviously
gauge invariantsee [38], Eq.(3.3.1). In a rigorous gauge-theoretic fraark,
the 1-formy® = e;%dz’ = dé@ 4+ I'M)* arises as the nonlinear translational
gauge field with¢® interpreted as the Goldstone field describing the sponta-
neous breaking of the translational symmetry.

We can consistently treg* = e;*dz’ as the coframe of our 3D manifold.
Then the translational gauge field strength is actually ti@enomity 2-form
of this coframe:F(T)e = dr(Me = gy, Collecting our results, we have the
deformation measures

;% =96 + T (20)
FMe —qgrMe — gyo (21)
If, in linear approximation, we compare these measures thighCosserat

deformation measure (10),(11), then we find, in generadinaif the Cosserat
structure,

e;*— B;; (distortion), (22)
£€* —u; (displacement) (23)
FZ(-TM —wi; (1), (24)

F‘Z(yT)a — Kkji (Contortion). (25)
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Here Fig?”“ ~ ayj;, represents the dislocation density (torsion). Hence (25)
represents Nye’s relation (17), and the second deformedtinaasure of dislo-
cation theory with its 9 independent components corresptmthe contortion
of the Cosserat theory. However, as we can recognize frojmtf#ldislocated
continuum requires a more general description. The 3 comidDosserat ro-
tationw;; = —wj; is substituted by the asymmetric 9 component (translationa

gauge) potentialTET)“. Still, the distortions;; carries also 9 independent com-
ponents and the corresponding static response is repeedanthe asymmetric
force stres;; ~ 6H /035

If the second deformation measure in dislocation theoryewsimilar to
the Cosserat theory, the gradientif ', i.e., 9, T\", it would have 27
independent components and the static responses woulgtaseated hyper-
stresses with and without moments, see [24]. However, amisout, see (25)
— and this is very decisive — it is the dislocation densityrgton), i.e., the
curl of FZ(.T)“, with only 9 independent components that plays a role. Her th
reason, the static response in dislocation theory are aamin a Cosserat con-
tinuum, just spin moment stressegy, ~ dH/dKy;i, see [36]. Note that; ;i
is equivalent t& T, ~ 0H/dayj. Thus, in dislocation theory as well as in
the Cosserat continuum, we have the same type of str&sead?ag in spite
of the newly emerging 9 component fiel]‘élT)"‘.

Continuum theories afmoving dislocationsre still a developing subject,
see, e.g., Lazar [54] and Lazar & Anastassiadis [55] (anditérature quoted
therein). Probably it is fair to say that they didn't find to@ny real applica-
tions so far. Nevertheless, the identification of the diatmn density with the
torsion is invariably a cornerstone of all these theories.

6 Translational gauge theory of gravity

The construction of a translation gauge theory does notrdepa the dimen-
sion of the underlying space. Hence we can take in 4D spaedtisn same
fundamental formulas (20),(21). Incidentally, the coustion of the gauge
theory for the group of translations is quite nontrivial &ese the local space-
time translations look very similar to the diffeomorphisaispacetime. They
are, however, different [101, 100]. The underlying geoinatistructure of the
theory is, as explained in the previous section, the affingeat bundle. The
corresponding translational connection is the 1—f6}fr:ﬁ)“dxi with the trans-
formation law (19). Now, however, the Latin and Greek indicen from O to
3.

8ln 4D it is called the spin energy potential, see [38], Eq.&#) and (5.1.22).
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With the help of the Goldstone type fief¢, the translational gauge field
gives rise to the coframé® = e;“dz’ as described in (20). The anholonomity
2-form F(T)« s the corresponding translational gauge field strength (21e
gravitational theories based on the coframe as the fundafrfeid have long
history. The early coframe (or so-called vierbein, or wirar teleparallel)
gravity models were developed by Mgller [64], Pellegrinddtebanski [74],
Kaempfer [44], Hayashi and Shirafuji [30], to mention bueaf The first fiber
bundle formulation was provided by Cho [15]. The dynamieaitents of the
model was later studied by Schweizer et al. [92], Nitsch artlIf69], Meyer
[61], and more recent advances can be found in AldrovandPanelira [1], An-
drade and Pereira [2], Gronwald [23], Itin [42, 43], Malufdatha Rocha-Neto
[56], Muench [65], Obukhov and Pereira [72], and Schuckind Surowitz
[90, 91].

The Yang-Mills type Lagrangian 4-form for the translatibgauge field
J¢ is constructed as the sum of the quadratic invariants of ¢ $irength:

V(0,d) = F(T)“ (Z ar DE¢ T>> (26)

Herex = 87G/c?, and* denotes the Hodge dual of the Minkowski flat metric
gap = 0ap := diag(—1,1,1,1), thatis used also to raise and lower the Greek
(local frame) indices. As it is well known, we can decompdexfteld strength
F(De into the three irreducible pieces of the field strength:

(1)F(T)a.7F(T)a @) p(Ma _ (3)F(T)a’ (27)

@) p(Ma._ 1904 (eﬁjF(T)5> , (28)
o 1 @ T

@Mz e (9 AF), (29)

i.e., the tensor part, the trace, and the axial trace, réspsc

There are three coupling constants in this theory, in génerg az, as.
In accordance with the general Lagrange-Noether scheme3g]3one de-
rives from (26) the translational excitation 2-form and ttamonical energy-
momentum 3-form:

S A (1) po(T)
Ho == ora= <Z ar DF{ (30)

E, = %Zeaﬂ? + (ea ] FTP) A Hg. (31)
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Accordingly, the variation of the total Lagrangi@n= V + L., with respect
to the tetrad results in the gravitational field equations

dHy — By = %, (32)
with the canonical energy-momentum current 3-form of nmatte

6Lmat
Yo =
e

(33)

as the source.

The coframe models do not possess any other symmetry exeegdifteo-
morphism invariance and the invariance underriga Lorentz rotations of
the tetrads. However, for a special choice of the couplintstants,

1
0,1:1, a2:_27 a3:_§7
the field equations turn out to be invariant underltdl Lorentztransforma-
tions¥® — Lg(x)9” with the matrices.*s(x) arbitrary functions of the
spacetime coordinates. At the same time, one can demantigdtthe tetrad
field equations (32) are then recanticallyinto the form of Einstein’s equa-
tion (heren.g, = * (¥4 A 93 A ¥,) and* denotes the Hodge star operator):

(34)

1 -
o Moy RV =3,. (35)

HereR,” = dI",’ +T.,° AT," is the Riemannian curvature of the Christoffel
connection

- T
Fap =3 eal By — eg] FD) — (eales | FD) A 97| (36)
For that reason, the coframe gravity model with the choidgi&usually called
ateleparallel equivalenof general relativity theory.

7 Einstein-Cartan theory of gravity

Einstein-Cartan (EC) theory is an extension of Einsteirgaagal relativity,
in which the local Lorentz symmetry, which appears to bedemtal in the
teleparallel equivalent model above, is taken seriouslyfasdamental feature
of the gravitational theory.

One can naturally arrive at the EC-theory by using the héaasguments
based on the mapping of the Noether to Bianchi identitiesha/n in McCrea
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et al. [37, 60]. Similar are the thoughts of Ruggiero and aglia [82], who
consider the EC-theory as a defect type theory; see also kbach{@7], Ryder
and Shapiro [83], and Trautman [97, 99].

However, the most rigorous derivation is based on the gapgeoach for
the Poincaré group (see [23, 38], for example), in whichghege potentials
are the cofram@® and the Lorentz connectidn,”. They correspond to the
translational and the Lorentz subgroups of the Poincarémmespectively.

The dynamics of the gravitational field is described in thisdel by the
Hilbert-Einstein Lagrangian plus, in general, a cosmalabierm:

1
_ af
V =— —2I€ (Uaﬁ A R*P — 2)\77) . (37)

Heren is the volume 4-form ang.s = * (Y, A 93). The field equations arise
from the variations of the total Lagrangidf,; = V + L.t With respect to
the coframe and connection, see Sciama [93] and Kibble [46]:

1

5 Napy A Rﬁ’y - )‘77(1 =KXq, (38)
1
3 Napy NT7 = KTag. (39)

Here in addition to the canonical energy-momentum curi@3it, the canonical
spin current 3-form of matter

L 5Lmat
P ST

TOC

(40)

arises as the source of the gravitational field. Two souxizeandr s satisfy
the identities (“covariant conservation laws”) that fel® from the Noether
theorem for the invariance of the theory under diffeomospts and the local
Lorentz group:

DY = (ea) T?) N 25 + (ea| Rgy) AT, (41)
Drop+0q A Eg = 0. (42)

When the matter has no spin} s = 0, the second (Cartan’s) field equa-
tion (39) yields the zero spacetime torsidif: = 0. As a result, the Riemann-
Cartan curvatur&?”” reduces to the Riemannian curvatuté”, and the first
field equation (38) reduces to Einstein’s equation (35) olegal relativity the-
ory. Physical effects of classical and quantum matter inERetheory are
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overviewed in [35, 94]. There emerges, as compared to gerdasvity, an
additional spin-spin contact interaction of gravitatiboidgin that only plays a
role at extremely high matter densities.

Blagojevi€ et al. [7] found in 3D gravity with torsion an eresting quan-
tum effect: The black hole entropy depends on the torsioegteks of free-
dom.

8 Poincaré gauge theory and metric-affine gravity

Einstein-Cartan theory, outlined in Sec. 7, representsgerkrate Poincaré
gauge model in which spin couples algebraically to the Ltreonnection.
As a result, torsion is a nonpropagating field and vanishestically outside
the material sources.

Things are however different in the Yang-Mills type moddlthe Poincaré
gravity based on the quadratic Lagrangians in torsion amdature. These
models are discussed by Hehl [31], Ponomariov and ObukHhgly ztonwald
and Hehl [25], see also a recent review by Obukhov [71].

The general Lagrangian which is at magtadratic (q) in the Poincaré
gauge field strengths — in the torsion and the curvature -sread

3
1
__ 1 of _ a (1)
Va== 5= a0 R Anag = 200+ T A (ga, Ta>
6
1
-5 RPN <Z by (J)Rag> . (43)
J=1

We use the unit system in which the dimension of the grawitati constant
is [k] = £2 with the unit length?. The coupling constanis, a1, az, a3 and
bi, ..., bs aredimensionlesswhereag\] = ¢~2. These coupling constants
determine the particle contents of the quadratic Poingatige models. The
three irreducible parts of the torsiéh T, are defined along the pattern (27)-
(29), whereas the irreducible decomposition of the cureditito the six pieces
(J>Raﬁ is given in [38]. The Lagrangian (43) has the general stmacsimilar
to that of the Yang—Mills Lagrangian for the gauge theoryntéinal symmetry
group.

The Poincaré gauge field equations are derived from théltagrangian
V4 + Lmas from the variations with respect to the coframe and conogcti
They read explicitly

DH, —E,=%., (44)
DH®s — E®5=1%. (45)
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The right-hand sides describe the material sources of tme&®& gauge grav-
ity: the canonical energy—momentum (33) and the spin (4@gtHorms. The
left-hand sides are constructed from tfeuge field momentaforms

A oo
oTe’ B T ORB

and thecanonical3—forms of the energy-momentum and spin of the gauge
gravitational field

H, =

(46)

Eo:= % = eaJVq + (eaJTﬁ) NHg+ (eaJRﬁv) A Hﬁ% (47)
EP = % = —gl* A HA (48)

The class of gravitational models (43) has a rich geoméiaicd physical
structure. Depending on the choice of the coupling constait;, az, a3 and
b1, ..., b, the field equations (44) and (45) admit black hole, cosniodgand
wave solutions that generalize the general-relativigtiat®ons of Einstein’s
theory at small distances. On large time and space scatephifsical predic-
tions of Poincaré gravity agree (in the generic case of thegpling constants
ay andb ;) with the results of general relativity, see [31, 25, 38,.71]

The Cosserat medium in elasticity theory and the physioalcss in the
Poincaré gauge gravity deal with the material continua laodies, the ele-
ments of which have rigid microstructure. A further genieatlon is possible
when the matter elements possdeformable microstructurdn elasticity the-
ory this is the case, for example, in Mindlin’s 3-dimensibo@ntinuum with
microstructure [62]. In 4 dimensions, the correspondingnterpart arises as
metric-affine gravitfMAG) theory. The proper framework is then the gauge
theory based on the general affine symmetry group [38]. Thengéry of such
an elastic medium and of the spacetime in MAG is charactgyimeaddition
to the curvature and torsion, by a nontrivienmetricity

9 Cartan’s spiral staircase: A 3D Euclidean model for a spacevith tor-
sion
Apparently in order to visualize torsion in a simple 3D modse Fig.13,

Cartan proposed a certain construction that, in his owmgteded) words of
1922 [12], reads as follows:

“...imagine a space F which corresponds point by point with a
Euclidean space E, the correspondence preserving distanbe
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Figure 13:Cartan’s spiral staircasesee Garcia et al. [22]. Cartan’s rules [12]
for the introduction of a non-Euclidean connection in a 3Cxli€lean space
are as follows: (i) A vector which is parallelly transporteldng itself does
not change (cf. a vector directed and transported-direction). (ii) A vector
that is orthogonal to the direction of transport rotateaiprescribed constant
“velocity” (cf. a vector iny—direction transported im—direction). The winding
sense around the three coordinate axes is always positive.
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difference between the two spaces is the following: two agth

nal triads issuing from two points A and A’ infinitesimally awy

in F will be parallel when the corresponding triads in E may be
deduced one from the other by a given helicoidal displacémen
(of right—-handed sense, for example), having as its axiditiee
joining the origins. The straight lines in F thus corresptmthe
straight lines in E: They are geodesics. The space F thusedefin
admits a six parameter group of transformations; it wouldbe
ordinary space as viewed by observers whose perceptiors hav
been twisted. Mechanically, it corresponds to a mediumrigavi
constant pressure and constant internal torque.”

One can show [22] that Cartan’s prescription yields a thie@drame and a
constant connection,

9 = 6% dx' res = 77’77&5 , (49)

with the 1-formp®# = * (9> A ¥?) and* as the Hodge star operator; more-
over,7 and/ are constants. The components of the connection are tatatity
symmetricl'yo3 = ey |Tap = (T /€) nyap- Thus, autoparallels and geodesics
coincide. Accordingly, in the spiral staircase, extrenaatsEuclideanstraight
lines. This is apparent in Cartan’s construction. By simgdtgebra we find
for the torsion, the Riemannian curvature, and the Rien@aran curvature,
respectively,

T =2

~19

~ 2
9 R¥ =0, Raﬁ:—%ﬁa/\ﬂﬁ. (50)

In components, the torsion tensor reddss,; = 2Zeqs,, with the totally
antisymmetric Levi-Civita symbal, 3. ; the pitch of the helices is proportional
to the constant .

For asolid state physicistisimmediately clear that the geometry in Fig.13
represents a set of three perpendicular constant ‘foreSsErewdislocations
of equal strength. Hence Cartan thought in terms of screlwadisons without
knowing them! Of course, the totally antisymmetric part lo€ islocation
densityay;;1 is an irreducible piece of the torsion which has one indepand
component. Wouldn't it be interesting to find this spiralistase as an exact
solution in dislocation gauge theory? Since only one iroftole piece of the
dislocation density (torsion) is involved, this should lxsgible.
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Cartan apparently had in mind a 3D space with Euclidean gigeaFor
an alternative interpretation of Cartan’s spiral staiecage consider the 3D
Einstein—Cartan field equations without cosmological tams

1 —

5 NaBy Rﬁ’y =/ Ea 5 (51)
1 _
577(167 T’YZETQQ. (52)

The coframe and the connection of (49), Euclidean signaesemed, form
a solution of the Einstein—Cartan field equatiomsh matter provided the
energy—momentum current (for Euclidean signature theefstiess tensag,”)
and the spin current (here the torque or spin moment strassrte,g") are
constant,

= E _ T
Yo = ’taﬁ ng = B No and Tag =:8q87 1y = = Vg - (53)
Inversion yields
E T
taﬁ = _E_B 55 ) Sapy = _E_Q NaBy - (54)

We find a constant hydrostaficessure-72/¢3 and a constartbrque—7 /2,
exactly as foreseen by Cartan.

By studying the spiral staircase and reading also more irCdréan book
[13], it becomes clear that Cartan’s intuition worked in 2D not in 4D). This
led Cartan to a decisive mistake in this context. Take theggrmomentum
law in a 4D RC-space, if the mater field equation is fulfillegk $41),

DY, = (ea] T?) NS5 + (ea) Rgy) A TPV, 4D. (55)

Note the Lorentz type forces on the right-hand-side, inipaldr the last term
representing a Mathisson-Papapetrou type of force witlvature x spin.
However, straightforward algebra yields, for 3D,

DS, =0, 3D. (56)

Cartan assumed incorrectly that (56) is also valid in foanetisions. For that
reason he ran into difficulties with his 4D gravitationaldhethat includes (56)
and came, after his 1923/1924 papers, never back to hiscéred Einstein-
Cartan-)theory. Hence intuition (without algebra) canrelead the greatest
mathematical minds astray.
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10 Some controversial points

In more physically oriented papers, the authors treat thesstipn of the pos-
sible existence of a torsion as a dynamical one. Hanson agdeR28], e.g.,
open their paper with the statemefifVe suggest that the absence of torsion
in conventional gravity could in fact be dynamical. A gravibnal Meissner
effect might produce instanton-like vortices of nonzersitm concentrated at
four-dimensional points..”Accordingly they study certain dynamical models
in order to find a possible answer for this question. We dailbdv this train

of thought. However, such a model building is a desirabléifea

In contrast, in the literature there are numerous statesvahdut a possible
torsion of the spacetime manifold that don’t stand a clogangnation. Let us
guote some examples:

1. Ohanian and Ruffin[73] claim that the Einstein-Cartan theory is de-
fective, see ref.[73], pp. 311 and 312. Since this is a widebd and,
otherwise, excellent textbook, we would just like to cominem their
arguments, see also [32]:

“If T7,, were not symmetric, the parallelogram would fail to close.
This would mean that the geometry of the curved spacetifezgiffom

a flat geometry even on a small scale — the curved spacetimig wot
be approximated locally by a flat spacetime.”

Equation (9), see also the paper of Hartley [29], disprokesQhanian
and Rulffini statement right away. In (9) it is clearly dispaythat the
Riemann-Cartan geometry is Euclidean ‘in the infinitesimAhd this
was, as we discussed in Sec.2, one of the guiding principlesan.

“...we do not know the ‘genuine’ spin content of elementastiples..”

According to present day wisdom, matter is built up from dpsaand
leptons. No substructures have been found so far. Accortdirthe
mass-spin classification of the Poincaré group and therewmpatal in-
formation of lepton and hadron collisions etc., leptons qudrks turn
out to be fermions with spin 1/2 (obeying the Pauli princjpks long as
we accept the (local) Poincaré group as a decisive striéburdescrib-
ing elementary particles, there can be no doubt what spltyisaAnd

abandoning the Poincaré group would result in an overhia(iboally

valid) special relativity theory.

The nucleon is a composite particle and things related ttuiid-up of
its spin are not clear so far. But we do know that we can treas ia
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fermion with spinl/2. As long as this can be taken for granted, at least
in an effective sense, we know its spin and therefore itsdorsontent.

. Carroll [11] argues in his book on p.190 as follows:

“...Thus, we do not really lose any generality by considgriiheories of
torsion-free connections (which lead to GR) plus any nunaféensor
fields, which we can name what we like. Similar consideratidn

(i) This opinion is often expressed by particle physicistowlon’t think
too profoundly about geometry. As we saw in Secs.1 and 2,dhe t
sion tensor is noany tensor, but it is a particular tensor related to the
translation group.A torsion tensor cracks infinitesimal parallelograms,
see Fig.1. A parallelogram is deeply related to the geontdtaymani-
fold with a linear connection. The closure failure of a pllalgram can
only be created by a distinctive geometrical quantity, rigrtie torsion
tensor — and not by any other tensor. This fact alone makeCar
argument defective.

(ii) Another way of saying this is that torsion affects theBchi identi-
ties (5). This cannot be done by any other tensor, apart frenctirva-
ture tensor. Moreover, as we saw in Sec.5, the torsion isdltedirength
belonging to the translation group.

(i) In particular, as Sciama [93] has shown, an indepenhdementz

connection couples to the spin of a matter field in a similay a&the
coframe couples to the energy-momentum of matter. This shoathat
a splitting off of the Levi-Civita connection is of no use ich a context.
The Einstein-Cartan theory of gravity is a viable gravaatl theory. If

one studies its variational principle etc., then one witlagnize that the
splitting technique advised by Carroll messes up the whaletire.

(iv) If one minimally couples to a connection, it is decisiwhich con-
nection one really has. Of course, one can couple minimalfifye Levi-
Civita connection and add later nonminimaltorsion¥ pieces thereby
transforming a minimal to a nonminimal coupling; also heme messes
up the structure. Minimal coupling would lose its heurigtaver.

. Kleinert and Shabano}48] postulate that a scalar particle moves in a

Riemann-Cartan space along an autoparallel. Howeverghatiens of
motion cannot be postulated freely, they have rather to bermned
from the energy-momentum and the angular momentum lawseainh
derlying theory. Then it turns out that a scalar particle oaly ‘feel’

the Riemannian metric of spacetime, it is totally insewmsitb a possibly
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existent torsion (and nonmetricity) of spacetime. This Ibesn proven,
e.g., by Yasskin and Stoeger [107], Ne’eman and Hehl [6 1 arPuet-
zfeld and Obukhov [80].

4. Weinberg[103] wrote an article about “Einstein’s mistakes”. In a re-
sponse, Becker [4] argued that for “generalizing genetativity” one
should allow torsion and teleparallelism. Weinberg’s cesge [104] was
as follows:

“I may be missing the point of Robert Becker’'s remarks, butudinever
understood what is so important physically about the pdlityilof tor-
sion in differential geometry. The difference between dinetonnec-
tion with torsion and the usual torsion-free Christoffeh#yol is just a
tensor, and of course general relativity in itself does nongtrain the
tensors that might be added to any dynamical theory. Whédrdifce
does it make whether one says that a theory has torsion, ottteaffine
connection is the Christoffel symbol but happens to be apaoied in
the equations of the theory by a certain tensor? The firstrradiive
may offer the opportunity of a different geometrical intetation of the
theory, but it is still the same theory.”

This statement of Weinberg was answered by one of us, se¢ [
argued, as in this essay, that torsion is related to thel&@ms group
and that it is, in fact, the translation gauge field strengthoreover,
we pointed out the existence of a new spin-spin contactant&m in
the EC-theory and that torsion could be measured by the gg&reof
nuclear spins.

Weinberg'’s answer was:

“Sorry, | still don't get it. Is there any physical principlesuch as a
principle of invariance, that would require the Christdfsymbol to be
accompanied by some specific additional tensor? Or that dvfarbid

it? And if there is such a principle, does it have any othetaiele con-
sequences?”

The physical principle Weinberg is looking for imanslational gauge
invariance see Sec.6. And the testable consequences are related to the
new spin-spin contact interaction and to the precessiorleshentary
particle spins in torsion fields.

5. Mao, Tegmark, Guth, and Cafs9] claim that torsion can be measured
by means of the Gravity Probe B experiment. This is totallgoin
rect since the sensitive pieces of this gyroscope expetirttenrotating
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quartz balls, don’t carry uncompensated elementary pagin. If the
balls were made of polarized elementary particle sping, ighaf one
had anuclear gyroscopesee Simpson [96], as they were constructed for
inertial platforms, then the gyroscope would be sensitiviotsion. As
mentioned in the last point regarding Kleinert et al., anagigun of mo-
tion in a general relativistic type of field theory has to beivks from

the energy-momentum and angular momentum laws, see Yasskin
Stoeger [107] and Puetzfeld and Obukhov [79, 80]. Then idwut
that measuring torsion requires elementary spin — there athmer way.

. Torsion in string theory®Quite some time ago it was noticed by Scherk

and Schwarz [87] that the low-energy effective string tiyezan be el-
egantly reformulated in geometrical terms by using a nagrRinnian
connection. The graviton field, the dilaton field, and thasymimet-

ric tensor field (2-formB), which represent the massless modes of the
closed string, then give rise to a spacetime with torsionreomanetricity.

In particular, the 3-fornfi = dB is interpreted in this picture as one of
the irreducible parts (namely, the axial trace part, cf)2®the space-
time torsion. Later this idea was extended to interpret tta¢anh field as

the potential for the (Weyl) nonmetricity, see [18, 84, #@f,example.

Another formal observation reveals certain mathematicklaatages
in discussing compactification schemes with torsion for lgher-
dimensional string models, see [8, 75].

It is however unclear whether some fundamental principleodel un-
derlies these formal observations. The geometrical inééation of this
kind is certainly interesting, but one should take it withraig of salt.
The qualitative difference (from the elastic models witlfied¢s and the
gauge gravity models) lies in the fact that the fiéld although viewed
as torsion, is not an independent variable in this approatéarises from
the potential 2-fornB. Consistent with this view is Polchinski’s defini-
tion of string torsion in his glossary, see [75], p.5140rsion a term
applied in various 3-form field strengths, so called becahsg appear
in covariant derivatives in combination with the Chriseffonnectior.

Thus, the notion of torsion in string theory is used in an timmox way
and should not be mixed up with Cartan’s torsion of 1922.

. In the past, there have been several attempts to relatotsien of

spacetime to electromagnetism. A recent approach is the@bBeans
[19, 20], who tried to construct a unified field theory. As we/dnaeen
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in Secs.1 and 2, torsion is irresolvably tied to the notioa tnslation.
Thus, torsion has nothing to do with internal (unitary) syetm groups.
We have shown in two separate papers [33, 40] that Evanshthiso
untenable.

11 Outlook

In three-dimensional dislocated crystals, the equalityhef dislocation den-
sity and torsion is an established fact. In four dimensiarnitf) respect to the
experimental predictions, the Einstein-Cartan theoryughale gravity model

that is presently indistinguishable from Einstein’s geheelativity. The con-

tact character of the spin-connection interaction andrfedlsess of Newton’s
gravitational coupling constant underlies this fact forcnescopic distances
and large times.

Sciamawas the first in 1961 to derive the field equations (38)n tensor
notation [93]; in 1979 he passed the following judgmentygié communica-
tion): “The idea that spin gives rise to torsion should notdéggarded as an ad
hoc modification of general relativity. On the contrary, &sha deep group-
theoretical and geometric basis. If the history had beeearsexd and the spin
of the electron discovered before 1915, | have little dothds Einstein would
have wanted to include torsion in his original formulatidrgeneral relativity.
On the other hand, the numerical differences which arisenarmally very
small, so that the advantages of including torsion areagtiheoretical.”

However, the quadratic Poincaré gauge models and theargkrations in
the framework of MAG predict propagating torsion (and notnniy) modes
which can potentially be detected on extremely small sc@digh energies).
The appropriate physical conditions may occur during théyestiages of the
cosmological evolution of the universe, see, e.g., Minkle\63], Puetzfeld
[78], and Brechet, Hobson, and Lasenby [9].
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Appendix: Derivation of the deformation measures of a Cossat contin-
uum

Let us consider a 3D Euclidean space. Its geometrical strei¢s determined

by the 1-form fields of the coframcé‘l and the connectioﬁaﬁ . They satisfy
the trivial Cartan relations:

A9 + T A 9P=T% = 0, (57)
dfaﬁ + fyﬂ A f‘a’yz %aﬂ =0. (58)
The right-hand sides, given by the torsion and the curvatfilems, respec-

tively, vanish for the Euclidean space.

We now consider an infinitesimal deformation of this mardfotoduced by
the “generalized gauge transformation” which is defined asmabination of
the diffeomorphism and of the local rotation. The diffeoptusm is generated
by some vector field, whereas the rotation is given by3the3 matrix which
acts on the anholonomic (Greek indices) components. Werassoat a de-
formation is small which means that we only need to consiteirtfinitesimal
diffeomorphism and rotational transformations. By deiimit the deformation
is the sum of the two infinitesimal gauge transformations:

BU=AY" = Saig 9™ + Oror 9™, (59)
Haﬂ::Afaﬁ = 5diﬂ'faﬂ + 5rotf‘o¢ﬂ- (60)

Let u be an arbitrary vector field, and we recall that a diffeom@h gen-
erated by it, is described by the Lie derivative along thistoe field, i.e.,
dair = ¢u = dul] + u|d. As for the local rotations, they are given by the
standard transformation formulas,

51‘ot1c§a = 5a,ﬁ ;;,6’ 51‘otfaﬂ = _Bfﬂa- (61)

Heref) is the covariant derivative defined by the connecl[(i)onFor the Lie
derivative of the coframe we find (with® = v 5"‘)

0% =du® + uld§®
=du® —u|(Ts* A9?) +u|T™
=du® +T'g" uP — (uJI‘ﬁO‘) 98, (62)
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We used here (57) because the space is Euclidean. Subsgfi6f) together
with (61) into (59), we find for the translational deformatio

B = Du® — w5 9°. (63)

Here we introduced® g := ]| fga —e%g.
Analogously we have for the Lie derivative of the connection

[e]

Cul s =d (u)Ts™) + u)d T
=d(u|Ts") — u)(D," ATp") +ulRs"
=d (u|T5*) + T (u|Ts") = T (T, ). (64)
We again used here (58) for the Euclidean space. Now, sutistjt(64) to-
gether with (61) into (60), we find for the rotational defottina
kol = D (65)

We thus recovered the deformation measures (10),(11) ¢ifitrer Cosserat

continuum. Using local coordinates, we exparid= e;%dz*, and then (63)
and (65) reduce in tensor components to

B =Vl — i, (66)
Hijkzviwkj. (67)
Thus, the deformation measures of the Cosserat continueitenally given

by the deformations of coframe and connection (59),(60).

The compatibility conditions (16) can be derived from (68H465) by
applying the covariant derivative. The result reads

DB +ks® AP =0,  Drg®=0. (68)

The crucial point is that the geometry of the space is Eualidnd flat.

When, however, the space has a nontrivial Riemann-Car@ameey with
the coframe’d® and connectiod’,? satisfying Cartan’s structure equations
with the nontrivial torsiorll"® and curvatureR,,”, the deformation measures
are given by

Be=Du® — w3 9% +u|T*, (69)
ko?=Dw?, + u| R.P, (70)
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and they no longer satisfy the compatibility conditions)(6@& 4D, after suit-
ably adjusting the signs, Egs.(69) and (70) coincide with Floincaré gauge
transformations (13), (14).
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