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ABSTRACT. Generally, spin is considered to be the source of torsion,
but there are several other possibilities in which torsion emerges in
different contexts. In some cases a phenomenological counterpart is
absent, in some other cases torsion arises from sources without spin
as a gradient of a scalar field. Accordingly, we propose two classifi-
cation schemes. The first one is based on the possibility to construct
torsion tensors from the product of a covariant bivector and a vector
and their respective space-time properties. The second one is obtained
by starting from the decomposition of torsion into three irreducible
pieces. Their space-time properties again lead to a complete classifica-
tion. The classifications found are given in a U4, a four dimensional
space-time where the torsion tensors have some peculiar properties.
The irreducible decomposition is useful since most of the phenomeno-
logical work done for torsion concerns four dimensional cosmological
models. In the second part of the paper two applications of these clas-
sification schemes are given. The modifications of energy-momentum
tensors are considered that arise due to different sources of torsion.
Furthermore, we analyze the contributions of torsion to shear, vortic-
ity, expansion and acceleration. Finally the generalized Raychaudhuri
equation is discussed.
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1 Introduction

The issue to enlarge the classical scheme of General Relativity is felt
strongly today since several questions strictly depend on the fact if the
spacetime connection is symmetric or not. General Relativity is essen-
tially a classical theory which does not take into account quantum effects.
These ones must be considered in any theory which deals with gravity
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on a fundamental level. Passing from V4 to U4 manifolds, is the first
straightforward generalization which tries to include the spin fields of
matter into the same geometrical scheme of General Relativity. The
Einstein–Cartan–Sciama–Kibble (ECSK) theory is one of the most seri-
ous attempts in this direction [1]. However, this mere inclusion of spin
matter fields does not exhaust the role of torsion which seems to give
important contributions in any fundamental theory.

For example, a torsion field appears in (super)string theory if we
consider the fundamental string modes; we need, at least, a scalar mode
and two tensor modes: a symmetric and an antisymmetric one. The
latter one, in the low energy limit for the effective string action, gives
the effects of a torsion field [2].

Furthermore, several attempts of unification between gravity and
electromagnetism have to take into account torsion in four and in higher–
dimensional theories such as Kaluza-Klein ones [3].

Any theory of gravity considering twistors needs the inclusion of tor-
sion [4] while supergravity is the natural arena in which torsion, curva-
ture and matter fields are treated in an analogous way [5].

Besides, several people agree with the line of thinking that torsion
could have played some specific role in the dynamics of the early uni-
verse and, by the way, it could have yielded macroscopically observable
effects today. In fact, the presence of torsion naturally gives repulsive
contributions to the energy-momentum tensor so that cosmological mod-
els become singularity-free [6]. This feature, essentially, depends on spin
alignments of primordial particles which can be considered as the source
of torsion [7]. If the universe undergoes one or several phase transi-
tions, torsion could give rise to topological defects (e.g. torsion walls
[8]) which today can act as intrinsic angular momenta for cosmic struc-
tures as galaxies. Furthermore, the presence of torsion in an effective
energy-momentum tensor alters the spectrum of cosmological perturba-
tions giving characteristic lengths for large scale structures [31].

All these arguments, and several more, do not allow to neglect torsion
in any comprehensive theory of gravity which takes into account the non
gravitational counterpart of the fundamental interactions.

However, in most articles, a clear distinction is not made among
the different kinds of torsion. Usually torsion is related with the spin
density of matter, but very often there are examples where it cannot be
derived from it and assumes meanings quite different from the models
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with spinning fluids and particles. It can be shown that there are many
independent torsion tensors with different properties.

In order to clarify these points, we have found two classification
schemes of torsion tensors based on the geometrical properties of vectors
and bivectors that can be used to decompose them. The first classifi-
cation found is based on the possibility to construct the torsion tensors
as the tensor product of a simple covariant bivector and a contravariant
vector. Such objects are well understood in General Relativity and they
can be easily classified [12]. Then classifying all the possible combina-
tions, we find 24 independent tensors. We call these tensors elementary
torsions.

The second classification follows from the decomposition at one point
of a U4 space-time of the torsion tensors into three irreducible tensors
with respect to the Lorentz group. Again we could use vectors and bivec-
tors to identify their geometrical properties. It follows that the elements
of the second classification are generally expressed as a combination of
“elementary torsion tensors”, while the “elementary torsion tensors” are
generally non-irreducible.

One of the main results of our classifications is that in many theories,
such as the Einstein-Cartan-Sciama-Kibble theory, torsion is related to
its sources by an algebraic equation; it follows that these two classifica-
tions clarify the nature of the sources too. This feature leads to recognize
which tensors can be generated by the spin and which not and which do
not even have a physical origin.

To our knowledge, two other classifications have been already pro-
posed. The first one was given in [9] and it is based on the properties of
the Riemann and Ricci tensors as defined in a U4 spacetime compared
with the Weyl and Ricci tensors as defined in a V4 spacetime. The sec-
ond, given in [10], deals with the algebraic classification of spacetimes
with torsion following from the application of the BRST operator.

The classifications of the torsion tensors show of how the different
sources of torsion can influence the physical phenomena. It is well
known[1] that the ECSK theory can be recast in a nonminimal coupling
version of ordinary General Relativity, where the energy-momentum ten-
sor is modified by the torsion sources. This contributions are calculated
and discussed for all types found in the classification.

From a phenomenological point of view, the torsion theories may be
relevant in cosmology. This because the kinematical quantities, shear,
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vorticity, acceleration, expansion and their evolution equations are mod-
ified by the presence of torsion.

The paper is organized as follows. In Sec.2, we give general notations
and definitions following [1] and references therein.

In Sec.3, we give the first classification through the elementary torsion
tensors and in 4 we specify the elements of the second classification. In
Sec.5, without any pretence of completeness, we review some relevant
torsion models that have been used in literature. As a result it is shown
that just three of them can be related to the usual spin sources generally
treated in literature [1]; while the other kinds have sources of a physically
different origin or even, to our knowledge, their possible sources have not
a clear physical interpretation.

In Secs.6 and 7, some applications are given. In the former, the
contributions to the energy-momentum tensor in the ECSK theory are
calculated. In the latter, the contributions of torsion to the different com-
ponents of the gradient of the 4-velocity Ua are obtained. This discussion
is completed finding the most general expression of the Raychaudhuri
equation. General discussion and conclusions are given in Sec.8.

2 General Definitions

In this section, we give general definitions of torsion and associated quan-
tities which, below, will be specified in the particular U4 spacetimes. We
shall use, essentially, the notation in [1].

The torsion tensor S c
ab it the antisymmetric part of the affine con-

nection coefficients Γc
ab, that is

S c
ab =

1
2

(Γc
ab − Γc

ba) ≡ Γc
[ab] , (1)

where a, b, c = 0, . . . 3.

In General Relativity it is postulated that S c
ab = 0. It is a general

convention to call U4 a 4-dimensional space-time manifold endowed with
metric and torsion. The manifolds with metric and without torsion are
labeled as V4 (see [11]).

Often in the calculations, torsion occurs in linear combinations as in
the contortion tensor, defined as

K c
ab = −S c

ab − Sc
ab + S c

b a = −K c
a b , (2)
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and in the modified torsion tensor

T c
ab = S c

ab + 2δ
c

[a Sb] (3)

where Sa ≡ S b
ab .

According to these definitions, it follows that the affine connection
can be written as

Γc
ab = {c

ab} −K c
ab , (4)

where {c
ab} are the usual Christoffel symbols of the symmetric connec-

tion. The presence of torsion in the affine connection implies that the
covariant derivatives of a scalar field φ do not commute, that is

∇̃[a∇̃b]φ = −S c
ab ∇̃cφ; (5)

and for a vector va and a covector wa, one has the following relations

(∇̃a∇̃b − ∇̃b∇̃a)vc = R c
abd vd − 2S d

ab ∇̃dv
c, (6)

and

(∇̃a∇̃b − ∇̃b∇̃a)wd = R d
abc wd − 2S d

ab ∇̃dwc (7)

where the Riemann tensor is defined as

R d
abc = ∂aΓd

bc − ∂bΓd
ac + Γd

aeΓ
e
bc − Γd

beΓ
e
ac. (8)

The contribution to the Riemann tensor of torsion can be explicitly
given by

R d
abc = R d

abc ({})−∇aK
d

bc +∇bK
d

ac + K d
ae K e

bc −K d
be K e

ac (9)

where R d
abc ({}) is the tensor generated by the Christoffel symbols. The

symbols ∇̃ and ∇ have been used to indicate the covariant derivative
with and without torsion respectively.

From Eq.(9), the expressions for the Ricci tensor and the curvature
scalar are

Rab = Rab({})− 2∇aSc +∇bK
b

ac + K b
ae K e

bc − 2SeK
e

ac (10)

and
R = R({})− 4∇aSa + KcebK

bce − 4SaSa. (11)
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2.1 Bivectors and Tetrads Fields

In the following, we will use the tetrad fields. They are defined at
each point of the manifold as a base of orthonormal vectors ea

A, where
A,B,C · · · = 0, 1, 2, 3 label the tetrad vectors and a, b, c, · · · = 0, 1, 2, 3
are the component indices; ea

0 is a time-like vector and ea
I is space-like.

Correspondingly, a cotetrad eA
a is defined such that

ea
AeA

b = δa
b , (12)

ea
AeB

a = δB
A . (13)

The tetrad metric is

ηAB = ηAB = diag(−1, 1, 1, 1), (14)

then the space-time metric can be reconstructed in the following way

gab = ηABeA
a eB

b . (15)

In the construction of the torsion tensors, it will be useful to consider ex-
pression of the simple bivectors. These are given by the skew-symmetric
tensor product of two vectors. Generally a bivector Bab is simple, if and
only if it satisfies the equation

B[abBc]d = 0. (16)

By the tetrad vectors in a N -dimensional manifold, one can construct
the N(N − 1)/2 simple bivectors

F ab
AB = e

[a
Ae

b]
B (17)

and any bivector Bab is expressed as

Bab = BABea
Aeb

B (18)

with BAB = −BBA.
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2.2 The decomposition of torsion tensor

An important property of torsion is that it can be decomposed with
respect to the Lorentz group into three irreducible tensors, i.e. it can be
written as

S c
ab = T S c

ab + AS c
ab + V S c

ab . (19)

Torsion has 24 components, of which T Sab has 16 components, ASab has
4 and V Sab has the remaining 4 components [13],[14],[15].

One has
V S c

ab =
1
3
(Saδc

b − Sbδ
c
a), (20)

where Sa = S b
ab ,

AS c
ab = gcdS[abd] (21)

which is called the axial (or totally anti-symmetric) torsion, and

T S c
ab = S c

ab − AS c
ab − V S c

ab (22)

which is the traceless non totally anti-symmetric part of torsion.

For the sake of brevity, in the following, we will refer respectively to
the tensor (20) as a V-torsion, to the tensor (21) as an A-torsion and to
the tensor (22) as a T-torsion.

The dual operation (see [13],[15]) defined as

+S c
ab =

1
2
εde

abS
c

de (23)

has the relevant property, that it associates an A-torsion tensor to a
V-torsion tensor and vice versa. Then it associates a T-torsion to a
T-torsion.

2.3 The Einstein-Cartan field equations

The introduction of torsion as an extension of the gravitational field
theories has some relevant consequences.

The closest theory to General Relativity is the Einstein-Cartan-
Sciama-Kibble (ECSK) theory. It is described by

L =
√
−g

(
R

2k
+ Lm

)
, (24)
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which is the lagrangian density of General Relativity depending on the
metric tensor gab and on the connection Γc

ab, where R is the curvature
scalar (11) and Lm the Lagrangian function of matter fields, which yields

tab =
δLm

δgab
, (25)

which is the symmetric stress–energy tensor while

τ ba
c =

δLm

δK c
ab

, (26)

is the source of torsion. In many instances, it can be identified with a
spin density. But, as will be clear from the following sections, there are
many cases in which the source of the torsion field (26) is not spin.

From the variation of (24) and introducing the canonical energy-
momentum tensor

Σab = tab + ∗∇̃c(τabc − τ bca + τ cab) , (27)

where we used the abridged notation ∗∇̃c := ∇̃c + 2S d
cd , the following

field equations are derived [1]

Gab = kΣab , (28)

and
T c

ab = kτ c
ab , (29)

where k = 8πG, c = 1.

Equation (28) is the generalizes the Einstein equations in a U4.

Unlike Eq.(28), Eq.(29) is algebraic so that it is always possible to
cast Eq.(28) in a pure Einstein one, by substituting the torsion terms
with their sources. It results in defining an effective energy–momentum
tensor as the source of the Riemannian part of the Einstein tensor [1].
In doing so, one obtains

Gab({}) = kt̃
ab

, (30)

where Gab({}) is the Riemannian part of the Einstein tensor. The
effective energy–momentum tensor is
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t̃
ab

=tab + k
[
−4τac

[dτ
bd

c] − 2τacdτ b
cd + τ cdaτ b

cd

+
1
2
gab(4τ c

e [dτ
ed

c] + τecdτecd)
]

. (31)

The tensor tab can be of the form

tab = (p + ρ)uaub − pgab, (32)

if standard perfect–fluid matter is considered. But when spin fluids
are considered, one has to define a different stress–energy tensor in which
the spin contributions are taken into account as in [19],[20],[21], [22].

3 The classification of elementary torsion tensors

It can be observed that a tensor with all properties of torsion can be
constructed as the tensor product of a bivector Fab with a vector Σc.

It is well known that any generic bivector in a four dimensional man-
ifold can be always reduced into the sum of two simple bivectors with a
particular choice of the coordinates (see e.g. [12]). In analogy with the
electromagnetic case, we can call the bivector with the timelike vector,
the electric term and the one with two spacelike vectors, the magnetic
term and label them respectively with Eab and Bab. Then we can intro-
duce the concept of elementary torsion tensor given as the tensor product
of a simple bivector with a vector.

We say that a bivector Aab and a vector V c are orthogonal if V aAab =
0.

We consider only the cases where any four-vector Σc is either or-
thogonal to a simple bivector or is one of its components. All the other
possible cases are combinations of these two cases.

Then the 24 elementary torsion tensors can be classified according
to the space-time properties of their bivectors and the corresponding
vectors.

At this point an important remark is necessary. Any generic torsion
tensor can be decomposed in terms of these elementary parts. Let us
practically construct the elementary torsion tensors by the vectors of a
tetrad. In general, we have

S
(el)c
ABCab = eA

[aeB
b]e

c
C , (33)
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and then any torsion tensor can be expressed as

S c
ab = S C

AB eA
[aeB

b]e
c
C , (34)

where the coefficients have to be

S C
AB = S c

ab e
[a
Ae

b]
BeC

c . (35)

The classification of elementary torsion tensors in which Σa does not
lie on the plane defined by the bivector is then the following:

a) if Eab is a bivector obtained from the antisymmetric tensor product
of a timelike covector and a spacelike covector, Σa must be any spacelike
vector orthogonal to Eab. The pure electric case is represented just by
one family of tensors. It will be labeled with the symbol Es;

b) in the pure magnetic case, one has that Σa can be either a spacelike
vector, a timelike vector or a null vector, leading to three family of
tensors. These three families will be labeled respectively as Bs, Bt and
Bn;

c) In the null case, it turns out that there are two possibilities for
Σa, i.e. it can be either a null vector or a spacelike vector. The labels
will be Nn and Ns respectively.

Regarding the case in which the vector Σa lies on the plane described
by the bivector, it can be noted that, if B ≡ C in (33), we have V-
torsions.

Finally, let us note that the previous discussion changes if a null
tetrad, defined by la = ea

0 − ea
1 , na = ea

0 + ea
1 , ma = ea

2 − iea
3 and

m∗a = ea
2 + iea

3 , is considered.
In this case, it follows that the elementary torsions like

S c
ab = m[alb]l

c (36)

bear all properties of a T-torsion.

4 Irreducible tensors in four dimensions

To classify the torsion tensors, according to their irreducible properties,
let us first consider the V-torsion. It follows, from Eq.(20), that the
V-torsion is characterized by a covector

Sa = S b
ab . (37)
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Sa can be either time-like, space-like or light-like. So we have three
different possible types of V-torsion, which can be labeled respectively
by the symbols V t, V s and V `.

It can be noted that the V-torsion is expressed as a combination of
elementary torsion tensors.

From Eqs.(20) and (12), it follows that

V S c
ab =

2
3
S[aeA

b]e
c
A (38)

The A-torsion can be expressed by the equation

ASabc = εabcdσ
d. (39)

Its properties can be characterized by the space-time properties of the
vector σd. As for the V-torsion, we label the A-torsion with At, As or A`
depending on whether the vector σa is time-like, space-like or light-like.

The statement given in §2.2 can be proved here by direct calculation.
In fact, we have

εde
abS[dδ

c
e] = εdc

abSd , (40)

which is an A-torsion, on the other hand

εef
abε

c
def Sd = S[aδc

b] , (41)

which is a V-torsion.
Finally, the T-torsion tensors can be constructed through a combi-

nation of elementary torsion tensors of the forms

T S c
ab = V[aeA

b]C
B

A ec
B , (42)

and
T S c

ab = εef
abV[ee

A
f ]C

B
A ec

B , (43)

where C B
A is an arbitrary matrix. By the null–trace conditions

V[aeA
b]C

B
A eb

B = 0 , (44)

and
εef

abV[ee
A
f ]C

B
A eb

B = 0 , (45)

on (42) and (43), we obtain 7 constraints on the matrix C B
A , by fixing

Va. As a consequence, C B
A has 9 independent components. In order to
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get the 16 components of the T-torsion from the expressions (42) and
(43), we have to impose a further condition. If V 2 ≡ V aVa 6= 0, we can
impose that

C B
A eA

a eb
BV aVb = 0 . (46)

which reduces one of the constraints following from (44) to

C A
A = 0 , (47)

If V is a null vector, the constraint (46) follows from (44) and the equa-
tion (47) has to be imposed as a supplementary constraint on the matrix
C B

A .
From the previous discussion, it follows that the T-torsion tensors

can be classified according to the nature of the vector Va which can be
time-like, space-like, or null. We label the T-torsion with Tt, Ts or T`
depending on whether the 4-vector V a is time-like, space-like or light-
like.

5 Some examples

In a first group of examples, we show how some torsion tensors frequently
found in literature, can be classified according to the irreducible tensors
classification given above.

1. Scalar fields φ produce torsion only in nonminimally coupled the-
ories with a ξφ2R term in the Lagrangian density or in a R2 the-
ory in a U4 (where the Ricci scalar is R coupled to itself). As a
result, the torsion is related to the gradient of the field. For ex-
ample, in homogeneous cosmologies, one obtains a V t tensor. In a
Schwarzchild solution one deals with a V s tensor. See for example
[26],[27],[28],[24].

2. According to [14] and [16], it turns out that the only torsion
tensors compatible with a Friedmann-Lemaitre-Robertson-Walker
universe are of class V t and At. A cosmological solution with a
torsion tensor of class At is discussed also in [25].

3. Examples of torsion of class V ` and A` are found in [9] to describe
null electromagnetic plane waves.

4. As and V s tensors introduce anisotropies in a spacetime, since the
spacelike vector yields a privileged direction.
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5. The spin of classical Dirac particles is the source of an As torsion
for massive particles and of an An torsion for a massless neutrino
[1]. The At torsion is generated by tachyon Dirac particles.

6. An example of T-torsion tensors can be found in simple supergrav-
ity where torsion is given in terms of the Rarita–Schwinger spinors
(see, for example, [30]). They contribute also to torsion in the
Weyssenhoff spin fluids (see below and discussion in [29]).

7. The Lanczos tensor was considered in [9] as a candidate of torsion
in a non-ECSK theory. It is a sort of Weyl tensor potential and it
bears all the characteristics of a traceless torsion tensor. Then its
properties depend on the symmetries of spacetime.

8. The influence of an At torsion on cosmological perturbations is
discussed in [31].

9. The helicity flip of fermions can be induced by a Al torsion [32].

10. The same kind of torsion can induce a geometrical contribution to
the Berry phase of Dirac particles [33].

The next group of examples is related to elementary torsion tensors
found in literature.

11. The torsion tensors related to spin, usually found in the literature,
are generated by the Weyssenhoff spinning particle and the clas-
sical Dirac particle. In the first case, the torsion tensor is a Bs
tensor, in the second case, one has a As tensor. Spin fluids à la
Weyssenhoff can be found in [1], [19],[21],[22], [18],[34], and have
been discussed by many other authors.

12. Cosmological models with a Bs torsion have been studied in [34].

6 The role of the energy-momentum tensor

After straightforward calculation, one obtains that the contribution of
the antisymmetric and vector parts of torsion to the energy-momentum
tensor are respectively proportional to the following expressions

Atb
a = 2σbσa + δb

aσcσc , (48)

and
V tb

a =
8
3
SbSa −

4
3
δb
aScSc . (49)



208 S. Capozziello and C. Stornaiolo

The contribution of the T-torsion, when expressed from (42) is

T1tab = −CcdC(cd)V
aV b − V cCcdV

(aCb)d +
1
2
V cVc(C

a
f Cfb − Ca

fCbf )

−1
2
V cV dC a

c C b
d +

1
2
gab(CcdC(cd)V

fVf −
1
2
V cCcdV

fC d
f ) , (50)

otherwise when the T-torsion is expressed by (43)

T2tab = CcdCcdV
aV b + V dVd(C

a
f Cfb + Ca

fCbf )− V cV dC a
c C b

d

−V fCfd(V aCbd + V bCad) +
1
2
(V cV dCcfCf

d − V fVfCcdCcd) . (51)

In (50) and in (51) we have used the expression C b
a = C B

A eA
ae b

B . The
presence of contributions of distinct irreducible tensors does not lead to
interaction terms except when the two classes of T-torsion are present.

An elementary torsion tensor, S k
ij = FijΣk, contributes to the

energy-momentum tensor with a symmetric tensor proportional to

etb
a = −2Σ2F bcFac + F 2ΣbΣa −

1
2
F 2Σ2δb

a , (52)

where Σ2 = ΣaΣa and F 2 = F abFab.
Expression (31), through Eqs.(3) and (29), is the final result involving

also ordinary perfect–fluid matter.

7 Torsion vs. shear, expansion, vorticity and acceleration

It has often been pointed out in the literature how torsion can modify
the behaviour of fluids. In [20] it was shown that the presence of a tor-
sion generated by a Weyssenhoff fluid generalizes the Bernoulli theorem,
through an extension of the definition of the vorticity. In the same way
such a modification of the vorticity has led some authors to argue about
the possibility of having cosmological models with torsion which could
avert the initial singularity [18]. An extended analysis of this problem
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has been made by restating the Raychaudhuri equation in the presence
of torsion for a Weyssenhoff fluid [35][38].

In [39] it was considered an inflationary Bianchi I universe in the
ECSK theory. In this paper it was shown how torsion could con-
tribute to an isotropic expansion universe even in anisotropic universes,
if the energy density of spin was sufficiently large to counterbalance the
anisotropic terms. As a result it followed that this model supplies a rapid
isotropization mechanism of the universe during the inflationary stage.

The previous considerations suggest considering how the kinematical
quantities are modified by each of the irreducible components of torsion.

In [40] a gauge invariant and covariant formalism for cosmological
perturbations was formulated. In this derivation an important rôle is
attributed to the Raychaudhuri equation. Such formulation has been
extended recently in ([41]) for the ECSK theory. It follows that impor-
tant tests for torsion in the primordial universe through its effects on
the spectrum of perturbations. A complete study of perturbations for
all the irreducible torsion tensors can be useful to extend this program.

7.1 Kinematics

One of the consequences of introducing torsion in a space-time is that
the definition of some quantities can be modified. This is the case of the
kinematical quantities, defined from the following decomposition of the
covariant derivative of the four velocity Ua [23]

∇̃aUb = σ̃ab +
1
3
habθ̃ + ω̃ab − Uaãb (53)

where hab = gab + UaUb and

θ̃ = ∇̃aUa = θ − 2ScUc, (54)

σ̃ab = hc
ahd

b∇̃(cUd) = σab + 2hc
ahd

bK
e

(cd) Ue, (55)

ω̃ab = hc
ahd

b∇̃[cUd] = ωab + 2hc
ahd

bK
e

[cd] Ue, (56)

and the acceleration

ãc = Ua∇̃aUc = ac + UaK d
ac Ud. (57)

The quantities without the tilde are those usually defined in General
Relativity.

We will summarize in Tables I and II the contributions to this objects
given by the irreducible torsion tensors.
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V S c
ab

AS c
ab

θ̃ = θ − 2ScUc θ

ãb = ab − Sb − SaUaUb ab

ω̃ab = ωab ωab − εabcdσ
dU c

σ̃ab = σab σab

Table I: Contributions of V-torsion and A-torsion to the kinematical
quantities.

T1S c
ab

T2S c
ab

θ̃ = θ θ

ãb = ab + 2V[bCa]cU
cUa ab − 2εefhbV

eCfcU
hUa

ω̃ab = ωab + hc
ahd

bV[cC
e

d] Ue ωab + hc
ahd

bεefcdV
eCfgUg

σ̃ab = σab − 2hc
ahd

b(VeC(cd) − Ce(cVd))Ue σab − 2hc
ahd

bεefg(aV eCf
d)U

g

Table II: Contributions of the two T-torsions to the kinematical
quantities.

7.2 The derivation of the Raychaudhuri equation

Given the four-velocity Ua (UaUa = −1), bearing in mind the identity

U b∇̃c∇̃bUa = ∇̃c(U b∇̃bUa)− ∇̃cU
b∇̃bUa (58)

and from Eq.(8)

U b∇̃c∇̃bUa = U b∇̃b∇̃cUa + R d
cba UdU

b − 2U bS c
ab ∇̃dUc (59)
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we find the equation

1
3
hcaθ̃ + σ̃ca + ω̃ca − Ucãa = ∇̃cãa

−

(
1
9
hcaθ̃ +

2
3
θ̃σ̃ca +

2
3
θ̃ω̃ca + 2σ̃b

cω̃ba

σ̃b
cσ̃ba + ω̃b

cω̃ba −
1
3
Ucθ̃ãa − Ucã

bσ̃ba − Ucã
bω̃ba

)

−R d
cba UdU

d − 2U bS c
ab

(
1
3
hdcθ̃ + σ̃dc + ω̃dc − Udãc

)
. (60)

Contracting the indices in Eq.(60), one obtains immediately the most
general expression for the Raychaudhuri equation, i.e.

˙̃
θ = ∇̃cã

c−1
3
θ2−σ̃abσ̃ab+ω̃abω̃ab−RabU

aU b−2U bS d
ab

(
1
3
ha

dθ̃ + σ̃a
d + ω̃a

d − Udã
a

)
.

(61)
This is the Raychaudhuri equation in its most general form in presence
of torsion. Simpler versions of this equation have already been discussed
in [35], [36], [38] and in [37].

8 Discussion and Conclusions

As we discussed in Sec.5, there are several ways to build a torsion tensor.
In this paper, we deal with the problem of finding a geometrical classi-
fication of torsion tensors. A decomposition of torsion into irreducible
tensors has been already given (see e.g. [13],[14], and, for a systematic
account, [15]). Essentially, one has three classes of tensors: traceless,
vector and totally antisymmetric ones. However, we propose to add a
classification scheme to this decomposition. Our proposal is based on
the space-time properties of 4-vectors and bivectors which can be used
to construct these torsion tensors. According to this classification, we
have shown that it is possible to construct two tensors of the same irre-
ducible class, with distinct properties, due to the fact that one can use
space-like, time-like, or null 4-vectors.

As a byproduct, we found also a second decomposition and classifi-
cation scheme based on elementary torsions. These elementary tensors
are given by the tensor product of simple bivectors and vectors. As a
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consequence, the classification of these tensors is based on the space-time
properties of the simple bivectors (which we distinguished in electric and
magnetic bivectors), and on those of the vectors.

These two classifications, in our opinion, can help to distinguish the
physical situations associated to different torsion tensors.

As an application, we have provided a general scheme for the mod-
ification induced by torsion tensors on kinematical quantities (such as
shear, vorticity, expansion and acceleration). Moreover, we discussed a
general form of the Raychaudhuri equation which can be physically rele-
vant for the study of many issues such as the cosmological perturbations
(e.g. see [41]).
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