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ABSTRACT. The Poincaré gauge theory of gravity offers opportuni-
ties to solve some principal problems of general relativity theory and
modern cosmology. In the framework of this theory the gravitational
interaction can have both a repulsive character, as well as the usual
attractive character found in gravitating matter with positive values of
energy density and pressure satisfying the energy dominance condition.
Cosmological consequences of gravitational repulsion are considered in
the case of homogeneous isotropic models in connection with the prob-
lem of cosmological singularity and dark energy problem of general
relativity theory. Regular Big Bang inflationary scenario with an ac-
celerating stage of cosmological expansion at asymptotics are discussed
in terms of the principal role of played by space-time torsion.

1 Introduction

Einsteinian general relativity theory (GR) is the base of modern theory
of gravitational interaction and relativistic cosmology. GR allows to de-
scribe different gravitating systems and cosmological models at widely
changing scales of physical parameters. At the same time GR possesses
certain principal problems, which, in particular, appear in cosmology.
One of the most principal cosmological problems is the problem of cos-
mological singularity (PCS).Cosmological solutions of GR describing the
evolution of the Universe have the beginning in the time, and in accor-
dance with Einstein gravitation equations the singular state with diver-
gent energy density and singular metrics appears at the beginning of
cosmological expansion. It is because the gravitational interaction for
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usual gravitating matter with positive values of energy density and pres-
sure satisfying energy dominance condition in the frame of GR as well
as Newton’s theory of gravity has the character of attraction, but never
repulsion. The PCS is particular case of general problem of gravitational
singularities of GR [1]. Note that in the frame of GR the gravitational
interaction can have the repulsion character in the case of gravitating
systems with negative pressure (for example, scalar fields in inflationary
cosmology). However, the PCS can not be solved by taking into account
such systems. According to widely known opinion, the solution of PCS
has to be connected with quantum gravitational effects beyond Planck-
ian conditions, when the energy density surpasses the Planckian one. A
number of particular regular cosmological solutions was obtained in the
frame of candidates to quantum gravitation theory – string theory/M-
theory and loop quantum gravity. Radical ideas connected with notions
of strings, branes, extra-dimensions, space-time foam etc are used in
these theories (some features of these solutions are discussed in [2,3]).

As it was shown in a number of papers (see [2-4] and Refs herein)
the gauge approach in theory of gravitational interaction offers opportu-
nities to solve the PCS in the frame of usual field-theoretical description
of gravity in 4-dimensional physical space-time, where constructive Ein-
steinian definitions of space-time notions are valid locally. The structure
of physical space-time in the framework of gauge approach to gravita-
tion, generally speaking, is more complicated in comparison with GR. So,
in the frame of the Poincaré gauge theory of gravity (PGTG), which is
the most important gauge theory of gravitation, the physical space-time
possesses the structure of Riemann-Cartan continuum. Gravitational
field in PGTG is described by means of interacting metric and torsion
fields. The presence of space-time torsion can change the character of
gravitational interaction by certain physical conditions imposed on the
case of usual gravitating matter. This fact enables the solution of some
principal problems of GR including the PCS.

The present paper is organized by the following way. In Section 2
the question ”why we need the Poincaré gauge theory of gravity” is dis-
cussed. Principal remarks concerning the solution of PCS in the frame
of PGTG are given in Section 3, and in Section 4 recent results about a
possible solution of the ”dark energy problem” of GR in terms of PGTG
are briefly discussed. In Conclusion some possible physical consequences
of space-time torsion in connection with other problems of GR are dis-
cussed.
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2 Local gauge invariance principle and Poincaré gauge theory
of gravity

As it is known, the local gauge invariance principle is the basis of modern
theory of fundamental physical interactions. The theory of electro-weak
interaction, quantum chromodynamics, Grand Unified models of parti-
cle physics were built by using this principle. From physical point of
view, the local gauge invariance principle establishes the correspondence
between certain important conserving physical quantities, connected ac-
cording to the Noether’s theorem with some symmetry groups, and fun-
damental physical fields. These fields are presumed to have as a source
the corresponding physical quantities, and play the role of carriers of
fundamental physical interactions. The application of this principle to
gravitational interaction leads to generalization of Einstein theory of
gravitation.

The local gauge invariance principle was applied by Utiyama in
Ref.[5] in order to build a theory of gravitation by considering the
Lorentz group as gauge group corresponding to gravitational interaction.
Utiyama introduced the Lorentz gauge field, which has transformation
properties of anholonomic Lorentz connection. By identifying this field
with anholonomic connection of Riemannian space-time, Utiyama ob-
tained Einstein gravitation equations of GR. The work by Utiyama [5]
was criticized by many authors. First of all, if anholonomic Lorentz
connection is considered as independent gauge field, it can be identi-
fied with a connection of Riemann-Cartan continuum with torsion, but
not a Riemannian connection [6-8]. Moreover, if a source of gravita-
tional field includes the energy-momentum tensor of gravitating matter,
we can not consider the Lorentz group as gauge group corresponding to
gravitational interaction. Note that metric theories of gravitation in 4-
dimensional pseudo-Riemannian space–time including GR, in the frame
of which the energy-momentum tensor is a source of gravitational field,
can be introduced in the frame of gauge approach by the localization
of 4-parametric translation group [9, 10] 1. By localizing 4-translations
and introducing gauge field as symmetric tensor field of second order,
the structure of initial flat space-time changes, and gauge field becomes

1In the gauge approach, the gravitation interaction is connected with space-time
transformations. Hence the gauge treatment to gravitation has essential differences
in comparison with Yang-Mills fields which are connected with internal symmetries
groups. As a result, there are different gauge treatments to gravitational interaction
not detailed in this paper.
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connected with metric tensor of physical space-time. As the localized
translation group leads us to general coordinate transformations, from
this point of view the general covariance of GR plays the dynamical role.
At the same time the local Lorentz group (group of tetrad Lorentz trans-
formations) in GR and other metric theories of gravitation does not play
any dynamical role from the point of view of gauge approach, because the
corresponding Noether invariant in these theories is identically equal to
zero [11]. The other treatment to localization of translation group was
presented in [12, 13], where gravitation field was introduced as tetrad
field in 4-dimensional space-time with absolute parallelism. This theory
is not covariant with respect to localized tetrad Lorentz transformations,
and in fact it is intermediate step to gravitation theory with indepen-
dent gauge Lorentz field. If one means that the Lorentz group plays
the dynamical role in the gauge field theory and the Lorentz gauge field
exists in the nature, we obtain necessarily the gravitation theory in the
Riemann-Cartan space-time as natural generalization of GR (see, for ex-
ample, [14-16]). The corresponding theory is known as Poincaré gauge
theory of gravitation.

Gravitational gauge field variables in PGTG are the tetrad hi
µ

(translational gauge field) and the Lorentz connection Aik
µ (Lorentz

gauge field); corresponding field strengths are the torsion tensor Si
µν

and the curvature tensor F ik
µν defined as

Si
µ ν = ∂[ν hi

µ] − hk[µAik
ν] ,

F ik
µν = 2∂[µAik

ν] + 2Ail
[µAk

|l |ν] ,

where holonomic and anholonomic space-time coordinates are denoted
by means of greek and latin indices respectively. In the case of gravitat-
ing matter minimally coupled with gravitation, the sources of gravita-
tional field in PGTG are the energy-momentum and spin tensors.

The gravitational Lagrangian of PGTG is invariant built by means of
gravitational field strengths. The simplest PGTG is the Einstein-Cartan
theory based on gravitational Lagrangian in the form of scalar curvature
of Riemann-Cartan space-time [7,8,17]. In certain sense the Einstein-
Cartan theory of gravitation is a degenerate theory [18]. Like gauge
Yang-Mills fields, the gravitational Lagrangian of PGTG has to include
invariants quadratic in gravitational field strengths - curvature and tor-
sion tensors. Inclusion of a linear in curvature term (scalar curvature) to
the gravitational Lagrangian is necessary to satisfy the correspondence
principle with GR.
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We will consider the PGTG with gravitational Lagrangian LG given
in general form containing different invariants quadratic in the curvature
and torsion tensors

LG = f0 F+F αβµν (f1 Fαβµν + f2 Fαµβν + f3 Fµναβ) + F µν (f4 Fµν + f5 Fνµ)

+f6 F 2 + Sαµν (a1 Sαµν + a2 Sνµα) + a3 Sα
µαSβ

µβ , (1)

where Fµν = Fα
µαν , F = Fµ

µ, fi (i = 1, 2, . . . , 6), ak (k = 1, 2, 3) are
indefinite parameters, f0 = (16πG)−1, and G is Newton’s gravitational
constant (the light velocity in the vacuum c = 1). Although the gravita-
tional Lagrangian (1) includes a number of indefinite parameters, grav-
itational equations of PGTG for homogeneous isotropic models (HIM)
considering below depend weakly on the choice of quadratic part of grav-
itational Lagrangian by virtue of their high spatial symmetry.

3 Problem of cosmological singularity and PGTG

According to observational data concerning anisotropy of cosmic mi-
crowave background, our Universe was sufficiently homogeneous and
isotropic during the initial stages of cosmological expansion. In con-
nection with this fact, the investigation of HIM is of greatest interest
for relativistic cosmology. In the frame of PGTG homogeneous isotropic
models are described in general case by means of three functions of time:
the scale factor of Robertson-Walker metrics R(t) and two torsion func-
tions S1(t) and S2(t) determining the following components of torsion
tensor (with holonomic indices) [19]: S1

10 = S2
20 = S3

30 = S1(t),
S123 = S231 = S312 = S2(t) R3r2

√
1−kr2 sin θ, where spatial spherical coor-

dinates are used and k = +1, 0,−1 for closed, flat and open models
respectively. The functions S1 and S2 have different properties with
respect to transformations of spatial inversions, namely, unlike S1 the
function S2 has pseudoscalar character.

At first we will consider HIM with vanishing pseudoscalar torsion
function (see [19, 2-4] and references herein) filled by spinless gravitat-
ing matter with energy density ρ and pressure p. In this case gravita-
tional equations of PGTG lead to the following generalized cosmological
Friedmann equations (GCFE):

k

R2
+

{
d

dt
ln

[
R

√
|1 + α (ρ− 3p)|

]}2

=
8πG

3
ρ + α

4 (ρ− 3p)2

1 + α (ρ− 3p)
, (2)
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R−1 d

dt

[
dR

dt
+ R

d

dt

(
ln

√
|1 + α (ρ− 3p)|

)]
= −4πG

3
ρ + 3p− α

2 (ρ− 3p)2

1 + α (ρ− 3p)
,

(3)

where indefinite parameter α =
f

3f0
2

> 0 (f = f1+ f2
2 +f3+f4+f5+3f6)

has the inverse dimension of energy density 2.
According to gravitational equations the torsion function S1 is

S1 = −1
4

d

dt
ln |1 + α(ρ− 3p)| (4)

and conservation law for gravitating matter has usual form

ρ̇ + 3H (ρ + p) = 0, (5)

where H = Ṙ/R is the Hubble parameter and a dot denotes the differ-
entiation with respect to time.

If the parameter α tends to zero, the torsion function (4) vanishes
and GCFE (2)-(3) coincide with the Friedmann cosmological equations of
GR. The difference of (2)–(3) from the Friedmann cosmological equations
of GR is connected with the terms containing the parameter α. The value
of α−1 determines the scale of extremely high energy densities. The
solutions of GCFE coincide practically with corresponding solutions of
GR, if the energy density is small |α(ρ− 3p)| � 1 (p 6= 1

3ρ). The
difference between GR and PGTG can be significant at extremely high
energy densities |α(ρ− 3p)| & 1, where the dynamics of HIM depends
essentially on the space-time torsion 3.

The structure of GCFE (2)–(3) ensures regular behavior of cosmolog-
ical solutions. In order to demonstrate this fact in the case of inflationary
cosmological models, we will consider below HIM filled with scalar field
φ minimally coupled with gravitation and gravitating matter with equa-
tion of state in the form pm = pm(ρm) (values of gravitating matter are

2The second indefinite parameter a = 2a1 + a2 + 3a3 connected with quadratic in
the torsion part of Lagrangian (1) in gravitational equations for HIM has to be equal
to zero, if one supposes that cosmological equations do not contain high derivatives
with respect to the scale factor R(t).

3Ultrarelativistic matter (p = 1
3
ρ) and gravitating vacuum (p = −ρ) with constant

energy density are two exceptional systems, because GCFE (2)–(3) are identical to
the Friedmann cosmological equations of GR in these cases independently on values
of the energy density.
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denoted by means of index ”m”). Then the energy density ρ and the
pressure p take the form

ρ =
1
2
φ̇2 + V + ρm (ρ > 0), p =

1
2
φ̇2 − V + pm, (6)

where V = V (φ) is a scalar field potential. As the energy density ρ is
positive and α > 0, from equation (2) in the case k = +1, 0 it follows
that:

Z = 1 + α (ρ− 3p) = 1 + α
(
4V − φ̇2 + ρm − 3pm

)
≥ 0. (7)

The condition (7) is valid not only for closed and flat models, but also
for cosmological models of open type (k = −1) [2]. The domain of
admissible values of scalar field φ, time derivative φ̇ and energy density
ρm determined by (7) is limited in the space P of these variables with
boundary L defined as

Z = 0 or φ̇ = ±
(
4V + α−1 + ρm − 3pm

) 1
2 . (8)

Unlike GR at compression stage the time derivative φ̇ does not diverge,
and by reaching the bound L the transition to the second part of cos-
mological solution containing the expansion stage takes place. From
cosmological equation (2) by using the conservation law (5) it follows
that in the space P there are extremum surfaces upon which the Hubble
parameter vanishes [2]. Extremum surfaces play the role of ”bounce sur-
faces”, because the time derivative of the Hubble parameter is positive
on the greatest part of these surfaces in the case of scalar field poten-
tials occurring in chaotic inflation [2,4]. All cosmological solutions have
bouncing character and are regular with respect to metrics, Hubble pa-
rameter, its time derivative and energy density of gravitating matter. If
gravitating matter satisfies standard conditions (energy density is pos-
itive, energy dominance condition is valid), any cosmological solution
is not limited in time, and before the expansion stage the cosmologi-
cal solution contains the compression stage and regular transition from
compression to expansion. If the value of scalar field at the beginning of
cosmological expansion is sufficiently large (φ ≥ 1Mp, where Mp is the
Planckian mass), the cosmological solution (similarly to corresponding
solutions in GR) contains a quasi-de-Sitter inflationary stage and post-
inflationary stage with oscillating scalar field. As the de-Sitter solution is
an exact solution of GCFE [20], characteristics of the inflationary stage
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in our theory (in particular, the duration of this stage by given initial
conditions for scalar field at the beginning of expansion) are close to
that of GR. As numerical analysis of the inflationary solutions of GCFE
shows [4], the duration of transition stage from compression to expan-
sion is several orders of magnitude less than the duration of inflationary
stage. By taking into account that the duration of inflationary stage is
extremely small [21], we can conclude that the regular cosmological so-
lutions, discussed above, correspond to the regular Big Bang scenario or
a Big Bounce. Note that if the scale of extremely high energy densities
defined by α−1 is essentially less than the Planckian one, the behavior
of the cosmological solution at the end of inflationary stage differs from
that of GR (in particular, the Hubble parameter oscillates by changing
its sign) [2,4]. After transformation of oscillating scalar fields into ul-
trarelativistic particles and the transition to radiation dominated stage,
the further evolution of HIM (nucleosynthesis, transition to matter dom-
inated stage) practically coincides with that of GR.

The regular character of all cosmological HIM described by GCFE
is connected with a gravitational repulsion effect, where the principal
role is played by space-time torsion [3]. Such a repulsion occurs in the
theory of usual gravitating matter, with positive energy density, only at
extreme conditions (extremely high energy densities and pressures).

4 Dark energy problem of GR and PGTG

Unlike the PCS, which is an old cosmological problem of GR, the dark
energy problem (DEP) of GR is new problem which appeared together
with the discovery of the acceleration of cosmological expansion at the
present epoch. By using Friedmann cosmological equations of GR in
order to explain accelerating cosmological expansion, the notion of dark
energy (or quintessence) was introduced in cosmology. According to
current estimates, approximately 70% of energy in our Universe is re-
lated with some hypothetical form of gravitating matter with negative
pressure — dark energy — of unknown nature. Previously a number of
investigations devoted to DEP were carried out (see review [22]). Ac-
cording to widely known opinion, the dark energy is associated with a
cosmological term. If the cosmological term is related to the vacuum en-
ergy density, it is necessary to explain why it has the value close to the
critical energy density at the present epoch (see for example [23]). Note
that by including a cosmological term of comparable value to GCFE, we
can build regular cosmology with an observable accelerating expansion
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stage in the frame of PGTG. However, like GR, the DEP is not solved
by this way.

As it was shown in Refs. [24,25], the PGTG offers opportunities to
solve the DEP without using the notion of dark energy. It is because
the space-time torsion in PGTG can change the character of gravita-
tional interaction and lead to gravitational repulsion effect not only at
extreme conditions, but also at very small energy densities. With this
purpose the HIM with two torsion functions were built and investigated
in the frame of PGTG. Cosmological equations for such HIM include
the pseudoscalar torsion function S2 with its first time derivative, and
contain besides α also two other indefinite parameters: b = a2− a1 with
dimension of parameter f0 and dimensionless parameter, ε, which is
function of coefficients fi of gravitational Lagrangian. The pseudoscalar
torsion function S2 satisfies a differential equation of second order. Ac-
cording to the gravitational equations, the function S1 can be expressed
as function of the Hubble parameter; the torsion function S2 with its
first time derivative and parameters characterizing gravitating matter.
If one supposes that S2 = 0, then the equation for S2-function vanishes,
and the cosmological equations and the expression for S1-function take
previous form given in Section 3. However, there is other solution with
not vanishing function S2. As was shown in Refs. [24,25], by certain
restrictions on the indefinite parameters the cosmological equations lead
to an asymptotic accelerating expansion stage, when the physical pa-
rameters characterizing cosmological models are sufficiently small. It is
because the pseudoscalar torsion function has a non-zero constant value,
asymptotically. For the case |ε| � 1 :

S2
2 =

f0(f0 − b)
4fb

+
ρ− 3p

12b
. (9)

As a result the asymptotic cosmological equations take the form of
the cosmological Friedmann equations with an effective cosmological con-
stant induced by pseudoscalar torsion function:

k

R2
+ H2 =

1
6b

[
ρ +

3 (f0 − b)2

4f

]
, (10)

Ḣ + H2 = − 1
12b

[
ρ + 3p− 3 (f0 − b)2

2f

]
. (11)
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By using the equation of state for dust matter at asymptotics, we
find that the cosmological equations (10-11) lead to an observable accel-
erating cosmological expansion, if the indefinite parameters b and α are
connected by the following way b = [1 − (2.8ρcrα)1/2]f0. Note that the
critical energy density is ρcr = 6f0H

2
0 (H0 is the value of the Hubble

parameter at present epoch). If we suppose that the scale of extremely
high energy densities defined by α−1 is larger than the energy density
for quark-gluon matter, but less than the Planckian one, we obtain the
corresponding estimation for b, which is very close to f0.

The investigation of inflationary HIM with a pseudoscalar torsion
function at extreme conditions at the beginning of cosmological expan-
sion shows that the PGTG allows one to construct a totally regular
inflationary Big Bang scenario [25]. Like HIM discussed in Section 3,
there are extremum surfaces in space of independent variables φ, φ̇, S2,
Ṡ2, ρm, upon which the Hubble parameter vanishes H = 0. Extremum
surfaces depend on the indefinite parameters α, ε and in the case of open
and closed models also on the scale factor R (as was noted above, the
value of b depends on α and is close to f0). Unlike HIM with a vanishing
pseudoscalar torsion function, the bounce (Ḣ0 > 0) takes place only in
limited domain of extremum surfaces with sufficiently small values of
the function S2. Properties of regular inflationary solutions with a pseu-
doscalar torsion function differ from that without pseudoscalar torsion
function and depend essentially on indefinite parameters α and ε.

The regular Big Bang scenario was built in the frame of PGTG by
classical description of gravitational field. If the energy density and
values of torsion functions at the transition stage from compression to
expansion are less than the Planckian ones, quantum gravitational era
is absent during the evolution of the Universe. If the Planckian condi-
tions were realized at the beginning of cosmological expansion, quantum
gravitational corrections have to be taken into account; however, classi-
cal cosmological equations of PGTG ensure the regular character of the
Universe evolution.

5 Conclusion

As follows from our consideration, the PGTG leads to certain principal
differences in comparison with GR concerning the character of the gravi-
tational interaction for usual gravitating matter that offers opportunities
to solve some principal problems of GR. Although the direct interaction
of the torsion with minimally coupled spinless matter is absent, corre-
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sponding physical consequences of PGTG are connected essentially with
space-time torsion by virtue of the interaction between metric and tor-
sion fields. According to PGTG, the domain of applicability of GR is
limited. Namely, in the case of cosmological HIM description, the do-
main of admissible energy densities has an upper limit determined by
α−1 and lower limit equal to 3 (f0−b)2

4f . The following question appears:
by what way the physical consequences of PGTG can be verified? As
was noted above, the behavior of regular inflationary cosmological mod-
els at the end of inflationary stage, generally speaking, differs from that
of GR and depends on indefinite parameter α, and in the case of HIM
with pseudoscalar torsion function also on parameter, ε. This can be a
cause of possible differences of perturbations of scalar fields at the end
of inflationary stage in comparison with GR, that has direct physical
interest in connection with observable anomalies in anisotropy of cos-
mic microwave background [26]. This means that the development of
a scalar fields perturbations theory in inflationary HIM in the frame of
PGTG is of direct physical interest and possibly can test the cosmo-
logical consequences. The theoretical results can be important also for
other gravitating systems in astrophysics. In particular, the conclusion
about existence of limiting (maximum) energy density for gravitating
systems can be significant for so-called primordial black holes limiting
their admissible minimum mass 4. Together with dark energy problem,
the problem of the origin of the non-baryonic component of dark matter
is principal problem of relativistic cosmology and astrophysics. From
our consideration of DEP given in Section 4 it follows that Newton’s
law of gravitational attraction has limits of its applicability and space-
time torsion can be essential in Newtonian approximation. If the torsion
can lead to physical consequences in the frame of HIM as dark energy in
GR, possibly the space-time torsion in the case of inhomogeneous matter
distribution could be important for the solution of dark matter problem.

From our analysis given above follows that the PGTG can have the
principal meaning for theory of gravitational interaction. Note that su-
pergravity theory built in connection with the problem of unification
of fundamental physical interactions, corresponds, strongly speaking, to
PGTG, but not to a metric theory of gravitation, because the gauge
group of supergravity theory includes the Lorentz group. As it is known,

4Note that the vacuum Schwarzschild solution for metrics with vanishing torsion
is an exact solution of PGTG independently on indefinite parameters of gravitational
Lagrangian (1).
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the simplest supergravity theory corresponds to the simplest PGTG –
Einstein-Cartan theory. If the PGTG is a correct gravitation theory,
then quantum gravitation theory must have as a quasi-classical approx-
imation the gravitation theory in the Riemann-Cartan, but not pseudo-
Riemannian space-time.
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