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RÉSUMÉ. Nous discutons la structure générale des géometries métri-
ques, et comment la métricité implique un tenseur de Cartan complè-
tement antisymétrique; une application dans le cadre de la théorie du
groupe de Lie sera donnée en exemple. Une revue des interprétations
d’une torsion complètement antisymétrique à l’intérieur de modèles
physiques sera effectuée.

ABSTRACT. We discuss the general structure of metric geometries,
and how metricity implies the complete antisymmetry of Cartan tensor;
an application in the frame of Lie group theory is given. Interpreta-
tions of the completely antisymmetric torsion in physical models are
reviewed.

1 Introduction

Theory of General Relativity is built up on the idea that our description
of natural phenomena must be generally covariant, meaning that, even
if we need a frame to represent nature, this frame cannot endow our
description with informations not contained in nature itself; after the
mathematical translation of this idea, we find that General Relativity
is written in the language of tensors: any physical object is expressed
by a tensor and properties of physical objects are expressed by tenso-
rial equations, so to remove any dependence on the system of reference
whatsoever.

After tensorial geometry is developed, it turns out that the space is
endowed with a metric structure and with a differential one, the former
being represented by the metric tensor g, the latter being defined through
a connection Γ, and, up to this point, these two entities are the two
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fundamental ones in the description of the geometrical properties of the
space we want to study.

Using the connection, it is possible to define, beside the covariant
derivative D, a couple of very particular tensors, the Cartan tensor Q
and the Riemann tensor G; also, it is possible to calculate the covariant
derivative applied to the metric tensor itself Dg.

All these quantities are tensors that can be zero, and, side by side,
different geometries can be defined: geometries in which all the three
tensors are a priori different from zero are considered for example by
Hehl, McCrea, Mielke and Ne’eman in [1] and by McCrea in [2], and
in the references therein; situations in which Q = 0 are considered by
Poltorak in [3]; cases in which both Q = 0 and G = 0 are considered by
Nester and Yo in [4]; the condition Dg = 0 gives rise to geometries con-
sidered by de Sabbata and Sivaram in [5], for a general review, and, in
more details, they are considered by Shapiro, by Obukhov, by Arcos and
Pereira, by Watanabe and Hayashi, by Capozziello, Lambiase and Stor-
naiolo, respectively in [6], [7], [8], [9], [10], and in the references therein;
situations in which Dg = 0 is accompanied by G = 0 are considered
by de Andrade, Barbosa and Pereira in [11], while cases in which the
condition Dg = 0 is followed by the assumption Q = 0 are the very well
known metric geometries considered almost everywhere, for example in
the classic text [12] by Einstein; finally, if all three tensors are zero, the
geometry reduces to be the one of the flat Minkowskian space.

Within the framework of the geometries characterized by the con-
dition Dg = 0 with a non-vanishing Cartan tensor, Cartan tensor it-
self does not undergo to any constraint; instead, we will see that some
constraints are actually achieved, and we will have a look at the con-
sequences these constraints will have, reviewing a couple of the most
important physical models.

2 Relativistic Theories with a
Completely Antisymmetric Cartan Tensor

Given the metric tensor g, the most general connection that can be
defined is decomposable as

Γκ
αω = Λκ

αω − Lκ
αω + Kκ

αω (1)

where: the part

Λκ
αω =

1
2
gκρ (∂αgρω + ∂ωgρα − ∂ρgαω) (2)
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is a connection that defines a covariant derivative ∇α such that ∇αgµν ≡
0 and that is symmetric in the two lower indices, while conversely, these
two conditions are together verified only by this connection, called Levi-
Civita connection; the part

Lκ
αω =

1
2
gκρ (Dαgρω + Dωgρα −Dρgαω) (3)

is a tensor that is symmetric in the two lower indices; finally

Kκ
αω =

1
2
(Qκ

αω + Q κ
αω + Q κ

ωα ); (4)

is a tensor that is antisymmetric in the first two indices, called contortion
tensor (see Wasserman [13]).

It has been showed by Hehl and Kröner and by Hehl in [14] and [15]
that it is reasonable to assume the condition Dg = 0 to hold.

We give the following

Definition 1 When a general connection defines a covariant derivative
that acts upon the metric satisfying the condition

Dαgµν = 0, (5)

called Metric-compatibility condition, or Metricity condition, the connec-
tion is called Metric Connection, and a geometry in which we have this
condition is a Metric-compatible M Geometry.

After having assumed the metricity condition we have that the de-
composition of the connection (1) reduces to

Γκ
αω = Λκ

αω + Kκ
αω; (6)

explicitly, we can write it in the form

Γκ
αω = Λκ

αω +
(

Q κ
αω + Q κ

ωα

2

)
+

1
2
Qκ

αω (7)

where the first term is the Levi-Civita connection and it is symmetric in
the two lower indices, the second term is tensorial and symmetric in the
same couple of indices and the third term is tensorial but antisymmetric
in the same indices.
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Now, we said that metric-compatible geometries are defined by the
presence of metric connections, and, from a logical viewpoint, we have
then two possibilities: (i) all the connections are metric, or (ii) some of
the connections are metric, while some others are not; in order to distin-
guish them we will talk about, respectively: (i) metric-hypercompatible
MH geometries, and (ii) proper metric-compatible pM geometries.

In the case (ii), we have that the most general form of the metric
connections is given as in equation (7), while for the others the most
general form is given as in equation (1): but we see that the case in
which Dg is equal to zero is a particular case of a more general situation
in which Dg can assume any value, so that the former expression is a
particular case of the latter expression, which turns out to be the most
general type of connection we can have in case (ii); a pM space does not
give any additional information with respect to an M space, in which the
most general connection is non-metric (while some connections happen
to be metric anyway). Then, we can not consider (ii) to be a meaningful
way to define metric-compatible geometries.

In order to have a meaningful definition of what a metric-compatible
geometry should be, we have to define it as in case (i), to be a metric-
hypercompatible MH geometry.

We have then justified the following

Definition 2 When all the connections define covariant derivatives that
act upon the metric satisfying the conditions

Dαgµν = 0, (8)

now called Metric-Hypercompatibility conditions, or Metricity condi-
tions, the connections are called Metric Connections, and a geometry
in which we have these conditions is a Metric-Hypercompatible MH Ge-
ometry.

After having assumed the metricity condition for all the connections
definable in a given space, we have that the decomposition of the most
general connection is given as in

Theorem 1 In a metric-hypercompatible geometry, the most general
connection is decomposable in the form

Γκ
αω = Λκ

αω +
1
2
Qκ

αω (9)
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where the first term is the Levi-Civita connection and the second term is
the completely antisymmetric Cartan tensor of that connection.
� Proof. Let us consider the quantity

eΓκ
αω = Λκ

αω +

„
Q κ

αω + Q κ
ωα

2

«
:

it is clear that it is a connection; since in a metric-hypercompatible geometry all the
connections have to be metric, this is a metric connection; further, this connection
is symmetric in the two lower indices: a symmetric-metric connection is necessary
the Levi-Civita connection, so

Λκ
αω +

„
Q κ

αω + Q κ
ωα

2

«
= eΓκ

αω ≡ Λκ
αω ,

which gives the tensorial condition

Q κ
αω + Q κ

ωα ≡ 0

that expresses the antisymmetry in the first and second index of Cartan tensor; on
the other side, Cartan tensor is by definition antisymmetric in the second and third
index: and this gives the complete antisymmetry of Cartan tensor. Finally, consid-
ering the connection (7), it is immediate to see that, with a completely antisymmetric
Cartan tensor, it reduces to

Γκ
αω = Λκ

αω +
1

2
Qκ

αω

proving the theorem. �

After this decomposition of the connection, the metric g and the com-
pletely antisymmetric Cartan tensor Q turn out to be the fundamental
tensors of the tensorial calculus.

Riemann tensor G can be written as

Theorem-Definition 2 In metric-hypercompatible geometries, we have
that the most general Riemann tensor is decomposable in the form

Gκ
ασµ ≡ Rκ

ασµ +
1
2
(∇σQκ

αµ −∇µQκ
ασ) +

1
4
(Qκ

ρσQρ
αµ −Qκ

ρµQρ
ασ),

(10)
where the first term is the Riemann curvature tensor, written in terms of
the Levi-Civita connection, that is in terms of the metric and the second
term is written in terms of the completely antisymmetric Cartan tensor
of the connection that defines the Riemann tensor; its unique indepen-
dent contraction is Gµ

αµβ = Gαβ called Ricci tensor, whose contraction
is Gαβgαβ = G called Ricci scalar.
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2.1 Lie Groups

Let us consider an application of the general structures studied above
from the point of view of Lie theory of groups.

We have that

Theorem 3 In metric-hypercompatible geometries, if a continuous trans-
formation has generators represented by a basis that admits a dual one,
then they are Killing vectors; they define a connection whose Cartan ten-
sor is equal to minus the structure coefficients of the anholonomic basis,
and its Riemann tensor vanishes.
� Proof. Consider the basis of vectors {ξµ

(b)
} together with the orthonormal dual

basis {ξ(b)
µ } such that ξ

(a)
µ ξµ

(b)
= δa

b and ξ
(m)
µ ξν

(m)
= δν

µ; defining

Γα
βγ = ξα

(k)∂βξ
(k)
γ ,

we see that it is a connection, and it has to be metric: so, we have that

0 = ξα
(a)0 = ξα

(a)Dαgρω = ξα
(a)(∂αgρω − gβωξβ

(k)
∂ρξ

(k)
α − gρβξβ

(k)
∂ωξ

(k)
α ) =

= ξα
(a)∂αgρω + gβω∂ρξβ

(a)
+ gρβ∂ωξβ

(a)
≡ L(a)gρω ,

that is, the Lie derivative of the metric vanishes, and so the vectors are Killing
vectors.

It is a straightforward calculation to see that, given the previous connection, its

Cartan tensor is equal to minus the structure coefficients. Finally, it is possible to

prove by a direct calculation that its Riemann tensor vanishes. �

3 Physical Models with a
Completely Antisymmetric Torsion Tensor

After the decomposition of the connection, we have seen that the metric g
and the completely antisymmetric Cartan tensor Q are the fundamental
objects of metric-hypercompatible geometries.

When considered under the point of view of a physical quantity, Car-
tan tensor Q is usually called Torsion.

We will now review some physical models that use a completely an-
tisymmetric torsion tensor as a dynamical field.

I Higher-dimensional Theories. As we have seen in Sect. 2.1,
a Lie group admits a connection whose Riemann tensor vanishes;
this is referred to the Flattening of a space as described by that
connection, and in this case, the space is said to be Parallelizable:
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hence, we can say that it is possible to flatten a space that has the
structure of a Lie group.

Nonetheless, there are spaces which are not Lie groups, but they
are parallelizable in this sense: this is the case of the 7-sphere
S7, which, being isomorphic to the unitary Octonions, which are
non-associative, is not a Lie group, but a suitable completely an-
tisymmetric Cartan tensor gives the possibility to get a vanishing
Riemann tensor, and thus it is parallelizable; moreover, S7 is the
only sphere that can be parallelized.

As showed by Englert in [16], the flattening of S7 comes from
the choice of the complete antisymmetry of Cartan tensor; on the
background of the present discussion, the complete antisymmetry
of Cartan tensor is not a choice anymore: it is the most general
Cartan tensor we can have. Consequently, the connection used by
Englert is not a particular connection chosen ad hoc, but it is the
most general connection that we can use to parallelize S7.

The possibility to squash S7 is essential in the framework of
Kaluza-Klein Multidimensional Theories; in these theories, the
space is considered a priori as a generic n-dimensional space, and
then the number of dimensions is fixed by using phenomenolog-
ical considerations: according to Witten’s observation that 11 is
the only dimension for which a space is big enough to contain
U(1)× SU(2)× SU(3) and small enough to allow supersymmetry
([17]), 11-dimensional spaces are quite an attractive choice for the
background of KK theories.

In 11-dimensional KK theory, the parallelization of the S7 is the
fundamental process for the decomposition of the 11-dimensional
space into the product of the 7-dimensional compactified space rep-
resented by the 7-sphere itself, and a remaining non-compactified 4-
dimensional Minkowskian space-time; after that the vacuum space
configuration is structured in M (1,3) × S7, the general form of the
metric is fixed, and the known physical fields can take place in it
(for a general introduction to KK theories, see the original works
of Kaluza and Klein, among the others, in [18] and also in [19]).

The completely antisymmetric torsion in KK theories is taken as
a completely antisymmetric potential for a correspondent com-
pletely antisymmetric strength; this strength is the superfield we
need to induce the spontaneous compactification mechanism for
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11-dimensional KK theory of supergravity (Englert [16]).

Other applications of the completely antisymmetric torsion tensor
can be found in String and Superstring theories, as described by
Agricola, Friedrich, Nagy and Puhle in [20], by Strominger in [21]
and by Gauntlett, Martelli and Waldram in [22]; in particular,
Wormholes have been studied by Hochberg and Visser in [23].

For whom is concerned by the superfield of the 11-dimensional KK
theories, and finds arbitrariness in the choice of the number of
dimensions, 4-dimensional spacetime is then the only space gravi-
tation can take place in.

II Quadridimensional Theories. Considering torsion and the Rie-
mann tensor, it is possible to see that they verify the so-called
Jacobi-Bianchi identities; when fully contracted, these identities
get the form

∇κQκ
νµ ≡ Gνµ −Gµν , (11)

which tells us that Ricci tensor has the antisymmetric part equal
to the divergence calculated with respect to the Levi-Civita con-
nection of the Cartan tensor, and

DµGµ
ρ −

1
2
DρG−GµβQβµρ +

1
2
GµκβρQ

βµκ ≡ 0 (12)

for Riemann tensor.

Now, considering the theory of matter fields, we know that their
spin Sαρω and energy-momentum Tαω are tensors that are related
by the coupled relationships

DµTµν = −TαρQ
αρν + SαρσGαρσν (13)

and

∇αSαµν = −1
2
(Tµν − T νµ), (14)

as discussed in [9] and [24], in which, using two complementary
methods, the authors get the same result.

Coming back to the Jacobi-Bianchi fully contracted identities, it is
obvious how the two sets of equations (11)-(12) and (13)-(14) look
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alike: this analogy is used to suggest the form of field equations of
the theory to be

Qκνρ = kSκνρ (15)

and

Gµρ − 1
2
gµρG = −k

2
Tµρ (16)

in terms of the coupling constant k; then, once these field equations
are given, the two sets of equations (11)-(12) and (13)-(14) do
coincide.

Equations (15)-(16) are called Einstein-Sciama-Kibble field equa-
tions; and the theory they define is the Einstein-Sciama-Kibble
theory: according to the picture drawn by the ESK theory, the
spin of matter fields is the torsion, described by Cartan tensor
Q, while the energy-momentum of mater fields acts geometrically
by changing the metric of the spacetime g (for a general discussion
about ESK theory see, for example, the original papers by Einstein
[25] and by Kibble and Sciama [26] and [27]).

Watching at the metric as related, through the energy-momentum,
to mass and torsion as related to spin, it is easy to recognize the
analogies between the metric and torsion as fundamental quantities
in Relativity and mass and spin as the fundamental quantum num-
bers that label elementary particles in terms of unitary irreducible
representations of the Poincaré group.

As discussed by Wigner in [28], according to this classification, no
constraint affects the mass, while spin is a number that is quan-
tized, and whose values can only be of the form k

2 with k ∈ N; the
quantum number that labels spin can thus provide a classification
of quantum matter fields.

Now, in terms of this classification of fields, we have that for spin-0
fields the spin tensor vanishes, for spin- 1

2 fields it is completely an-
tisymmetric, and for any other case in general it is non-completely
antisymmetric, as discussed by Rarita and Schwinger in [29].

Thus said, it is clear how only fundamental fields of matter whose
spin is equal to 0 or 1

2 can find place in this geometry, that is
scalar fields and Dirac fields are the sole fundamental matter fields
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we can consider in our physical description of nature, according to
the ESK theory.

Considering spin- 1
2 fields, it is well-known how the Dirac-Fock-

Ivanenko fermionic fields find a natural place in the ESK theory;
the resulting Dirac-Fock-Ivanenko field equation is non-linear, and
an autointeracting term arises (see, for example, [30]): this new
autointeracting term can provide the mechanism for CP violation
in a spontaneous way as explained by Andrianov and Soldati in [31]
and by Andrianov, Giacconi and Soldati in [32] and [33]. Further,
Chiral Anomalies have been treated in [34] by Mielke and in [35]
by Kreimer and Mielke.

As the Dirac-Fock-Ivanenko field equation describes the behaviour
of fundamental matter fields, the macroscopic approximation of
this matter field equation has to reduce to Newton’s equation of
motion.

Given the line element ds2 = gµνdxµdxν with which we can build
up the 4-velocity dxµ/ds = uµ, we have that the equation of motion
for a test body of mass m reads

muµDµuα = Fα,

where Fα is the covariant force acting on it; because in the frame-
work of ESK theory the action of the gravitational field is al-
ready contained in the metric-symmetric part of the connection,
the equation of motion in a gravitational field is a free equation of
motion, so that it actually reads

uµDµuα = 0

and this equation is called Autoparallel Equation, representing the
straightest line between two points in a space of given connection;
because of the complete antisymmetry of Cartan tensor, we have
that the latter equation reduces to

uµ∇µuα = 0

called Geodesics Equation, which represents the shortest line be-
tween two points in a space of given metric, and it is the equation
we would have had in absence of torsion.
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This tells us that, even in presence of torsion, the geodesic equa-
tion is not distinguishable from the autoparallel equation, and this
allows us to solve the AG paradox discussed by Fiziev in [36].

The fact that the autoparallel equation is not distinguishable from
the geodesic equation is equivalent to the fact that torsion has
no influence in the motion of macroscopic test bodies, and since
torsion is spin, this means that spin does not affect the motion
of test bodies in macroscopic situations; this is not surprising, for
spin is a quantum effect, and it naturally disappears at macroscopic
scales.

Anyway, although we can not detect torsion at macroscopic scales,
we can detect it, almost paradoxically, at cosmological scales,
where the presence of torsion filling up the whole universe in the
early epoch could have had effects still measurable nowadays.

In the work [37], Gönner and Müller-Hoissen build up a cosmolog-
ical model in which torsion is present as well as curvature in the
generalized Friedman equations, and the most general torsion has
only two independent components, namely

Qjj0 = h(t)
Qijk = f(t)

where t is the time labeled by 0, and where i, j, k are the spatial
coordinates; in [38], Böhmer describes the particular situation in
which the field h is equal to zero: within the framework of our treat-
ment, the completely antisymmetric torsion constrains the field h
to be zero, and the model considered by Böhmer is not one of the
possible cases, but the only physical case this cosmological model
can have. In this optic, Böhmer’s ansatz of exponential expansion
of a universe in which torsion is the leading contribution for field
equations can explain the inflation era without the introduction
of other particles, beside the fact that it can explain why torsion
nowadays might be a small but non-vanishing field we can actually
detect by cosmological measures (see de Andrade in [39]).

So, even if torsion is too small a field to be detected in a direct way,
its effects on the evolution of the universe might be measured at
cosmological scales, as discussed in [5] by de Sabbata and Sivaram;
also, for a general discussion about macro and micro-gravity, see
Hehl in [40].
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Also, see the works [41] and [40] by de Berredo-Peixoto, Helayel-
Neto and Shapiro and by Hehl for general considerations about
matter fields in the ESK theory, through the so-called gauge theory
for the Lorentz-Poincaré group.

Finally, in order to study Topological Invariants, Drechsler in [42]
proposed a new set of field equations that differs from that of the
ESK theory, although always in a 4 dimensional spacetime, and
with a completely antisymmetric torsion.

Everything we discussed here refers to 4-dimensional spacetime;
anyhow, it is possible to consider also lower-dimensional spaces.

III Lower-dimensional Theories. In this case, the dimension can
only be equal to 3 or 2, and accordingly:

i 3-dimensional Theories. For these theories, a completely
antisymmetric torsion is proportional to the completely anti-
symmetric Levi-Civita tensor

Qijk = φεijk

for a given pseudo-scalar field; models for this space have
been proposed especially by Mielke and Baekler in [43] and
by Baekler, Mielke and Hehl in [44], as discussed in general
by Blagojevic and Cvetkovic in [45].

ii 2-dimensional Theories. In the case of 2-dimensions, we
have that the completely antisymmetric torsion always van-
ishes, making this latter case trivial.

This concludes the overview of some of the most fundamental physical
models that use a completely antisymmetric torsion tensor as a dynam-
ical field.

4 Conclusions

In the present paper, we have considered what we defined to be a metric-
hypercompatible geometry, in which Cartan tensor is completely anti-
symmetric; it has been given an application in the case of the Lie group
theory. In terms of physical interpretation, the complete antisymmet-
ric torsion supplies the condition needed for plenty of applications in
complementary models of physical theories: in 11-dimensional KK the-
ories the complete antisymmetry of Cartan tensor is what allows the
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flattening process that squashes the 7-sphere for the spontaneous com-
pactification mechanism, while in the ordinary 4-dimensional spacetimes
the completely antisymmetric torsion is the spin of matter fields in the
scheme of the ESK theory, and also 3- and 2-dimensional spaces have
been considered.

Acknowledgments

The author would like to thank the section of Bologna of I.N.F.N. and
the University of Bologna for financial support.

References

[1] Friedrich W. Hehl, J. Dermott McCrea, Eckehard W. Mielke and Yuval
Ne’eman, Phys. Rept. 258, 1 (1995).

[2] J. Dermott McCrea, Class. Quant. Grav. 9, 553 (1992).

[3] A. Poltorak, arXiv:gr-qc/0407060.

[4] J. M. Nester and H. J. Yo, arXiv:gr-qc/9809049.

[5] Venzo de Sabbata and C. Sivaram, “Spin and Torsion in Gravitation”,
chapter I. World Scientific, Singapore (1994).

[6] I. L. Shapiro, Phys. Rept. 357, 113 (2002).

[7] Y. N. Obukhov, Int. J. Geom. Meth. Mod. Phys. 3, 95 (2006).

[8] H. I. Arcos and J. G. Pereira, Int. J. Mod. Phys. D13, 2193 (2004).

[9] T. Watanabe and M. J. Hayashi, arXiv:gr-qc/0409029.

[10] S. Capozziello, G. Lambiase and C. Stornaiolo,
Annalen Phys. 10, 713 (2001).

[11] V. C. de Andrade, A. L. Barbosa and J. G. Pereira,
Int. J. Mod. Phys. D14, 1635 (2005).

[12] Albert Einstein, “The Meaning of Relativity”.
Princeton University Press, Princeton-N.J. U.S.A. (2004).

[13] Robert H. Wasserman, “Tensors and Manifolds”, chapters 16 and 17.
Oxford University Press, New York-N.Y. U.S.A. (1992).
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