
Annales de la Fondation Louis de Broglie, Volume 32 no 2-3, 2007 281

Macroscopic and Microscopic Paradigms for the

Torsion Field: from the Test-Particle Motion to a

Lorentz Gauge Theory

Nakia Carlevaro a,b, Orchidea Maria Lecian a,c

and Giovanni Montani a,c,d,e

aICRA – International Center for Relativistic Astrophysics
c/o Dep. of Physics - “Sapienza” Università di Roma
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Abstract: Torsion represents the most natural extension of General
Relativity and it attracted interest over the years in view of its link with
fundamental properties of particle motion. The bulk of the approaches
concerning the torsion dynamics focus their attention on their geomet-
rical nature and they are naturally led to formulate a non-propagating
theory.

Here we review two different paradigms to describe the role of the
torsion field, as far as a propagating feature of the resulting dynamics is
concerned. However, these two proposals deal with different pictures,
i.e., a macroscopic approach, based on the construction of suitable
potentials for the torsion field, and a microscopic approach, which relies
on the identification of torsion with the gauge field associated with the
local Lorentz symmetry. We analyze in some detail both points of view
and their implications on the coupling between torsion and matter will
be investigated. In particular, in the macroscopic case, we analyze
the test-particle motion to fix the physical trajectory, while, in the
microscopic approach, a natural coupling between torsion and the spin
momentum of matter fields arises.
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1 Introduction

Completely neglected in the first formulation of the General Relativity
(GR), torsion was later taken into consideration principally by É. Car-
tan [1]. The usual version of Einstain-Cartan theory [2, 3] is based on
the standard Einstein action, where the scalar curvature is a function
of both metric and torsion. From variational principles, field equations
are obtained in presence of matter, and it can be pointed out that, in
such a theory, torsion is not really a dynamical field in the same sense
as the metric field. From a microscopic point of view, recent studies on
the coupling of torsion with spinor matter are those in [2, 3, 4, 5, 6, 7]
and [8, 9]. In the U4 theory [2, 3, 4, 5, 6, 7], torsion corresponds to the
rotation gauge potential, and it is related to the intrinsic angular mo-
mentum of matter. In Poincaré Guage Theory (PGT) [8, 9], torsion and
bein vectors are the gauge fields that account for local Poincaré transfor-
mations. These two descriptions predict a non-propagating torsion field,
so that only a contact interaction is expected, because the equations of
motion are algebraic rather than differential.
Contrastingly, in this paper, we will propose microscopic and macro-
scopic approaches, which predict a propagating torsion field. In both
these schemes, the dynamics of torsion will acquire particular features
that imply interesting perspectives about it detection.
The paper is organized as follows.
In Sec. 2, the macroscopic approach is developed by some assumptions
about the form of the torsion tensor [10]: the completely antisymmet-
ric and trace part of the tensor are considered derived from two local
torsion potential. Then, by the action principle, we determine the field
equations for these potentials, which are wave equations ideed. The mo-
tion equation of test particles are determined as autoparallels and the
non-relativistic limit of these trajectories and of the tidal effects show
that the torsion trace potential φ enters all the equations in the same
way as the gravitational potential. In Sec. 3, propagating torsion will
be also derived form a microscopic point of view [11, 12]. In fact, the
introduction of a Lorentz gauge field on flat space-time will allow us to
identify the Lorentz gauge field with torsion, and, on curved space-time,
all the geometric features of this interaction will be investigated. The
comparison of first- and second-order approaches will be explained in the
linearized regime, where the role of the gravitational field as a source for
torsion will be compared with the spin-current term of the second-order
formalism. Concluding remarks follow.
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2 Macroscopic paradigm: test-particle motion

2.1 Lagrangian geometric theory with propagating torsion

In non-flat spaces, the concept of parallel transport of vector fields needs
the introduction of connections, which also define the covariant deriva-
tive. The usual contruction of such a derivative (denoted by ∇µ)1 is
performed by means of the affine-connection coefficients Γρµν , which are,
in general, non-tensor quantities. On the other hand, their pure anti-
symmetric part, called torsion T ρµν = Γρ[µν], transforms like a tensor,
as fas as the most general metric-compatible form of connections are
concerned. The introduction of torsion was due principally by É. Car-
tan [1], according to whom torsion was connected with intrinsic angular
momentum. Later, this idea was extended by F. Hehl et al. [2], which
identified torsion to the rotation gauge potential.

We now introduce a metric gµν in an Einstein-Cartan space U4 and
require that the non-metricity Qµνρ = −∇µgνρ be vanishing. In this
picture, connection coefficients write as

Γµνρ = Γ̃µνρ +Kµνρ , Kµνρ = 1/2[Tµνρ − Tνρµ + Tρµν ] , (1)

where Γ̃µνρ are the usual Christoffel symbols (the symbol (∼) stands for
Riemannian) and Kµνρ identifies the contortion tensor.

The torsion tensor Torsion is a three-index tensor, antisymmetric
in the first two indices; according to group theory, it can be decomposed
in a completely antisymmetric part, a trace part and a third part with no
special symmetry properties. In our analysis, we consider only the first
two terms and we assume they to be derived from the exterior derivative
of two potentials,

Bµνρ ≡ T[µνρ] = ∇̃[µAνρ] , T r[Tµνρ ] = 1/3(gνρ∂µφ− gµρ∂νφ) , (2)

where Aµν(x) is an antisymmetric tensor, while φ(x) is a scalar. This
way contortion writes as Kµνρ = Bµνρ + 2Tr[Tµνρ ]. The introduction of
potentials for the antisymmetric part of torsion [13, 14, 15] has its main
motivation just in obtaining a propagating field in vacuum.

Field equations To calculate field equations, we now introduce the
usual Hilbert-Einstein action, which can be split up in its Riemannian

1Greek indices µ = 0, 1, 2, 3 transform under general coordinate transformations,
while Latin indices from the middle of the alphabet takes the values i = 1, 2, 3.
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part plus torsion-depending terms:

SHE = −1/2k
∫
dx
√
−g(R̃−BµνρBµνρ − 2/3(∂µφ)2) . (3)

We obtain field equations by variational principles: variations with re-
spect to gµν , Aµν and φ yield, respectively,

−G̃µν − 1/2 gµνBρσεBρσε + 3BµσεBνσε+

− 8/3 (1/2 gµν(∂ρφ)2 − gµρgνσ(∂ρφ)(∂σφ)) = 0
(4)

∇̃µBµνρ = 0 (5)

∇̃µgµν∂νφ = 0. (6)

Eq. (4) consists of the (Riemannian) Einstein tensor, as in GR, plus
four terms all quadratic in the torsion potentials. As for eqs. (5) and
(6), the goal of a propagating description for torsion has been achieved:
two second-order PDE ’s for both potentials have been obtained. To con-
clude, we write down the gauge transformations for the tensor potential

Aµν → A′µν = Aµν + ∇̃µYν − ∇̃µYn , (7)

by which, setting Y such that ∇̃µA′µν = 0, it’s easy to see that eq.
(5) rewrites as ∆DR(A′) = 0, where ∆DR is the de Rham operator. It is
worth noting that, as far as eq. (6) is concerned, a massless Klein-Gordon
field equation is recovered, so that the potential φ can be considered as
a geometrical manifestation of this field.

2.2 Test-particle motion

The problem of determining the equations of motion of a test particle
is approached by several points of view [16, 17]. Since torsion enters
the expression of the covariant derivative of a vector, it affects motion:
therefore the correct method is to perform the minimal substitution
(d/dτ) → (∇/dτ).

According to this rule, the motion equation in curved space is derived
from that of special relativity duµ

/dτ = 0 (uµ being the 4-velocity), for
which ∇uα

/dτ = 0 is obtained: this expression can be rewritten as

∇uρ

dτ = −Γ̃ρµνu
µuν − 2/3 gρσ(gµν∂σφ− gµσ∂νφ)uµuν . (8)

This is the autoparallel equation, which defines special curves in non-flat
spaces, together with the geodesic equation: the latter is the shortest
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curve joining two points and autoparallels are those curves whose tan-
gent vector is parallelly transported along it. The autoparallel curve is
the simplest generalization of the flat-space motion equation, which is
suitable to take into account torsion or other non-Riemannian quantities.

New action principle and non-holonomic map This approach
is proposed in [18, 19] and is based on the idea that it is possible to
introduce a new action principle such that, starting from a modified
action, autoparallels are obtained as the right trajectories. The key
point is that a space-time with torsion, which can be obtained by a
non-holonomic mapping from a flat space-time, is characterized by open
(non-close) parallelograms; as a consequence, variations of test-particle
trajectories cannot be performed keeping δxa(τ) vanishing at endpoints.
In fact, the variation images of δxa(τ) under a non-holonomic mapping
are generally not closed; this way, they can be chosen to be zero at the
initial point but then they are non-vanishing at the final point. This
behavior is due to torsion.

Autoparallels from a modified action Since the autoparallel
motion can be derived from the energy-momentum-tensor (Tµν) con-
servation law, we now give a possible modification of the test-particle
action, such that this result could be partially obtained. To this end, we
assume the test-particle action of the form

SM =
∫
dτ gµνu

µuν e−φ/4 . (9)

Taking into account the identification

δS =
∫
d4x

√
−g (gT µν δgµν + φT δφ) , (10)

we now calculate the action variations with respect to gµν and φ, respec-
tively:

gT µν = δSM

δgµν
=

∫
dτ/

√
−g uµuνe−φ/4 δ(x− x0) ,

φT = δSM

δφ = −1/4
∫
dτ/

√
−g gµν u

µuνe−φ/4 δ(x− x0) .
(11)

Following [13], we consider the motion of a test particle, which negli-
gibly perturbs the background geometry in which it lives, and start from
the identity

(
√
−g gT µν), ν =

√
−g gT µν; ν −

√
−g Γ̃µρσ

gT ρσ . (12)
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Let us now integrate the last expression over a volume dV , where the test-
particle energy-momentum tensor is the only non-negligible one. Taking
into account the conservation law

gT µν; ν = 8/3 ∂µφ φT , (13)

and discarding all surface terms, we get

d
u0dτ

∫
dV
√
−g gT µ0 =

= 8/3 ∂µφ
∫
dV
√
−g φT − Γ̃µρσ

∫
dV
√
−g gT ρσ . (14)

By (11), this identity can be rewritten in the following form

duρ

dτ = −Γ̃ρµνu
µuν − 2/3 gρσ(∂σφ)gµνuµuν , (15)

and, if we multiply the lhs and the rhs of this equation by uρ, we obtain
the identity

0 = uρ ∂
ρφ . (16)

Taking into account the autoparallel equation (8), we immediate recog-
nize that it matches the results (15) and (16), and Papapetrou motion
is included as a special case.

2.3 Non-relativistic limit and the role of the torsion potential

On the basis of the minimal-substitution rule we have introduced, test
particles follow autoparallel trajectories (8). It is easy to see that the an-
tisymmetric part of the torsion contribution vanishes; it only contributes
as a source for the metric through (4). In what follows, we will study
the non-relativistic limit of autoparallels and in addition we will calcu-
late the analogous of the geodesic deviation and we will see the role of
torsion in the tidal forces.

Non-relativistic limit of autoparallels To calculate the non-
relativistic limit, the following hypotheses can be stated:
(i) the 3 -velocity is much smaller than c, so we can assume ui ' vi;
(ii) the gravitational field and torsion potential φ are static and weak.

Since we want to keep only first order terms, by virtue of these as-
sumptions, we will neglect all second-order terms in the quantities above.
After some calculations, we obtain the autoparallel equation

dvi

dt = −κ/2 ∂ih00 − 2/3 ∂iφ. (17)



Torsion Field: Macroscopic and Microscopic Paradigms. . . 287

where we have introduced the metric perturbation hµν = gµν − ηµν (ηµν
being the Minkovsky metric). Now we recall that, in General Relativity
(GR), we get the expression

dvi

dt = −κ/2 ∂ih00, (18)

allowed us to identify h00 with the gravitational potential Φ,

κ/2 h00 = Φ. (19)

As one can see from eq. (17), the “force” due to the torsion potential
is present in the same form of the gravitational field h00; in addition, as
for the order we are interested in, and reminding of the supposed field’s
static nature, eq. (6) for the field φ reduces to

∆φ(x) = 0, (20)

which recasts the gravitational field one

∆h00(x) = 4πρ. (21)

Deviation of autoparallels Since test particles move along au-
toparallels, we are able to calculate the relative acceleration between
two such objects. Assuming two particles initially very close to each
other, we obtain the expression

∇̃2sρ

dτ2 =− R̃ρµνσ s
µuνuσ+

−Kρ
σν(

dsν

dτ u
σ + dsσ

dτ u
ν)− (∇̃µKρ

σν) s
µuσuν .

(22)

Here sµ is an infinitesimal vector representing the relative displacement
between the two particles. This equation represents the generalization
of the geodesic deviation of standard GR to a theory with torsion. Once
again, we note that the completely antisymmetric part of torsion con-
tributes to the field equation only as a source.

In order to perform the non-relativistic analysis, we still keep the
hypotheses (i) and (ii) above assuming now that velocity can be written
as dxµ

/dτ ∼ (1, 0, 0, 0) and that particles accelerations are compared at
the same time, i.e., s0 = ds0/dτ = 0.

Within this scheme, only terms containing hαβ or φ as factors mul-
tiplied times si are non-negligible. Substituting the expression of the
contortion tensor, eq. (22) reduces to

d2si

dt2 ' −R̃ij00 sj − 2/3 ηij sk ∂kjφ , (23)
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this way, the tidal field becomes

Gi = −R̃ij00 sj − 2/3 ηij sk ∂k∂jφ . (24)

From the non-relativistic limit of GR, we can identify

R̃j00i = ∂j∂iΦ , (25)

where Φ is the gravitational potential. The final expression for the tidal
field writes as follows:

Gi = −sj ∂i∂jΦ− 2/3 sj ∂i∂jφ . (26)

We can conclude that, in the non-relativistic limit, torsion produces a
tidal-force effect analogous to that produced by the gravitational field.

It is worth noting that, since the fields h00 and φ (in the non-
relativistic limit) obey the Poisson PDE ’s (20) and (21) and enter eqs.
(17) and (26) in the same way, it is impossible to distinguish the effect of
the torsion field from that of the gravitational one, unless the source and
the initial condition for the latter are know exactly; this fact, together
with the small intensity of torsion forces, makes them even more difficult
to be detected.

3 Microscopic paradigm: Lorentz gauge theory

Let M4 be a 4 -dimensional pseudo-Riemannian manifold, with a metric
tensor gµν , and e a one-to-one map on it, e : M4 → TM4

x , which sends
tensor fields on M4 in tensor fields in the Minkowskian tangent space
TM4

x : the fields e a
µ (tetrads or vierbein) are an orthonormal basis for

the local Minkowskian space-time2. Given {e a
µ }, the metric tensor gµν

is uniquely determined, and all metric properties of the space-time are
expressed by the tetrad field, accordingly, but the converse is not true:
there are infinitely many choices of the local basis that reproduce the
same metric tensor, because of the local Lorentz gauge invariance3.

2Latin indices from the beginning of the alphabet (a = 0, 1, 2, 3) transform under
local Lorentz transformations.

3In fact, in the coordinate formalism, an infinitesimal diffeomorphism and an
infinitesimal Lorentz (isometric) rotation read

xµ → x′µ = xµ + ξµ (x) , xµ → x′µ = xµ + εµ
νxν , (27)

respectively, where ξµ (x) are four C∞ functions and εµ
ν are the six infinitesimal

rotational parameters. For local Lorentz transformations, where εµ
ν → εµ

ν(x), the
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3.1 LGT on flat space-time

In flat space-time, the Riemann curvature tensor vanishes and, conse-
quently, the usual spin connections ωab vanish too: this allows us to
introduce Lorentz-valued connections as the gauge fields of pure local
Lorentz transformations for spinors, and to define the tangent bundle4,

second of eq. (27) can be easily reabsorbed into the first. In the non-coordinate
formalism, it is possible to project the tensor field from the 4-dimensional manifold
to the Minkowskian space-time, thus emphasizing the local Lorentz invariance of the
scheme. Moreover, to assure that the derivative of a tensor field be invariant under
local Lorentz transformations, the connection 1-forms ωa

b must be introduced: they

defines the covariant exterior derivative operator d(ω).
The connection 1-forms lead to the usual definition of the curvature 2-form Ra

b,

Ra
b = dωa

b + ωa
c ∧ ωc

b, (28)

which is the first Cartan structure equation. In this formalism, the action for GR
consists of the lowest-order non-trivial scalar combination of the Riemann curvature
2-form and the tetrad fields, that is the Hilbert-Einstein action:

S(e, ω) = 1/4
R

εabcd ea ∧ eb ∧Rcd. (29)

Variation with respect to the connections leads to the second Cartan structure equa-
tion in the torsion-less case,

dea + ωa
b ∧ eb = 0, (30)

while variation with respect to the tetrad leads to the following equations:

εabcd eb ∧Rcd = 0, (31)

which, once the solution of the second Cartan structure equation (30) is considered,
give the dynamical Einstein field equations.

4Let M4 be a 4 -dimensional flat manifold: the metric tensor gµν reads

gµν = ηαβ
∂xα

∂yµ
∂xβ

∂yν = ηαβeα
µeβ

ν , (32)

where eα
µ are bein vectors, xα are Minkowskian coordinates, and yµ are generalized

coordinates. For an infinitesimal generic diffeomorphism and for an infinitesimal
local Lorentz transformation the behavior of a vector field must be the same: from
the comparison of the two transformation laws, the identification ε β

α ≡ ∂ξα(xγ)/∂xβ is
possible, where the isometry condition ∂βξα+∂αξβ = 0 has to be taken into account in
order to restore the proper number of degrees of freedom of Lorentz transformations,
10, out of that of generic diffeomorphisms, 16. The coordinate transformation that
induces vanishing Christoffel symbols in the point P is

yα
P = xα

tb + 1
2

h
Γα

βδ

i
P

xβ
tbx

δ
tb, (33)

where tb refers to the tangent bundle: the comparison with a generic diffeomorphism
leads to the identification in the point P

xα
P = xα

tb + 1
2

h
Γα

βδ

i
P

xβ
tbx

δ
tb − ξα, (34)
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where these transformations take place. Invariance under infinitesimal
local Lorentz transformations

S (Λ) = 1− i/4 εab(x)Σab , (35)

is assured by the definition of covariant derivatives,

Daψ = eµaDµψ = eµa
(
∂µψ − i/4 Abcµ Σbcψ

)
, (36)

provided that the γ matrices transform locally as vectors, and that the
Lorentz gauge fields Abcµ transform as in the Yang-Mills scheme, for which
a proper gauge-invariant Lagrangian has to be introduced. As a result,
the interaction Lagrangian

Lint = 1
8 e

µ
a ψ {γa,Σbc}ψAbcµ = −SµbcA

bc
µ , Sabµ = −1/4 εabcde

c
µ j

d
A (37)

illustrates that the spinor axial current jdA = ψγ5γ
dψ both interacts

with the gauge field and is the source of the gauge field itself. Field
equations point up that the dynamics for a spinor field in an accelerated
frame differs from the standard Dirac dynamics for the spinor-gauge field
interaction term, i.e., spinor fields are not free fields any more.

3.2 LGT on curved space-time

Second-order approach Generalizing the previous considerations on
curved space-time, if anti-symmetric connections are hypothesized, the
Lorentz gauge field can be identified with a suitable bein projection of
the contortion field, i.e., Aabµ ≡ −Kρσµe

ρ
ae
σ
b .

The comparison between local Lorentz transformations and gauge trans-
formations allows one to obtain the expression for conserved quantities.
This way, since the current density Jµab ≡ ψ̄rγ

µΣrsabψs admits the conser-
vation law DµJ

µ
ab = 0, a conserved (gauge) charge5 can be defined

Qab =
∫
d3xJ0ab = const. ; (38)

on the other hand, the bein projection of the spin term of the angular
momentum tensor Mµν , the conserved quantity for Lorentz transforma-
tions in flat space-time, reads

Mab =
∫
d3xπrΣabrsψs = const. , (39)

i.e., the coordinates of the tangent bundle are linked point by point to those of the
Minkowskian space through the relation (33), and they differ for the presence of the
infinitesimal displacement ξ. From now on, these coordinates will be referred to as
xa (lower-case latin labels).

5This quantity is a conserved one if one assumes that the fluxes through the
boundaries of the space integration vanish.
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which coincides with (38), provided that πr is the density of momen-
tum conjugate to the field ψr, i.e., πr = ∂L/∂ψ̇r. This identification is
possible because of the definition of the parameter εab, which points up
the remarkable features of local Lorentz transformations on the tangent
bundle.

First-order approach If one relaxes the torsion-less assumption,
the second Cartan structure rewrites

dea + ωab ∧ eb = T a , (40)

where T a is the torsion 2-form; this equation is solved by the connections

ωab = ω̃ab +Ka
b , (41)

where Ka
b is the contortion 1-form, such that T a = Ka

b ∧ eb, while
ω̃ab are the usual Ricci spin connections. As a result, new 1-forms ap-
pear in the dynamics, which reestablish the proper degrees of freedom
for the connections of the Lorentz group. In GR, nevertheless, these
connections do not describe any physical field: after substituting the
solution (41) of the structure equation into the Hilbert-Palatini action6,
one finds that connections Ka

b appear only in a non-dynamical term,
unless spinors are taken into account: in this case, the connections Ka

b

become proportional to the spin density of the matter, thus giving rise
to the Einstein-Cartan model, where the usual four-fermion term arises.
For our purposes, we write the total connections as

Cab = ωab +Aab, (42)

where ωab are the standard connections of GR, and Aab are the con-
nection 1-forms for local Lorentz transformations, whose appearence is
connected with the presence of torsion, as it can be inferred from the
comparison of (41) and (42). If the proper geometrical interpretation
has to be attributed to the field A, the interaction term between the
spin connections ω and the fields A

Sint = 2
∫
εabcd e

a ∧ eb ∧ ω[c
f ∧Afd] (43)

6Let S (qi, Qj) be an action depending on two sets of dynamical variables, qi and
Qj . The solutions of the dynamical equations are extrema of the action with respect
to both the two sets of variables: if the dynamical equations ∂S/∂qi = 0 have a

unique solution, q
(0)
i (Qj) for each choice of Qj , then the extrema of the pullback

S (qi (Qj) , Qj) of the action to the set of solution are precisely the extrema of the
total total action S (qi, Qj).
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has to be postulated.

If fermion matter is absent, variation with respect to the connections
ω gives, after standard calculations,

d(ω)ea = Aab ∧ eb, (44)

which admits the solution

ωab = ω̃ab +Aab, (45)

were ω̃ab are the usual Ricci connections: because of the analogy with the
solution of the second Cartan structure equation (41), the connections
A can be identified with the 1-forms K. Since solution (45) is unique,
the total action can be pulled back to the given solution to obtain the
reduced action for the system7.

If fermion matter is taken into account, variation of the total action
with respect to the connections w leads to

d(ω)ea = Aab ∧ eb − 1
4ε
a
bcde

b ∧ ecjd(A), (47)

where the spinor axial current deeply modifies eq. (44). Eq. (47) admits
the unique solution

ωab = ω̃ab +Aab + 1
4ε
a
bcde

cjd(A), (48)

which can be inserted in the total action8.
7Variation with respect to the gravitational field and connections of the Lorentz

group leads to

εa
bcd eb ∧ eRcd = Ma + εa

bcd eb ∧
“eωc

f + Ac
f

”
∧Afd, (46a)

d(A) ? F fd = ε
[d

abc ea ∧ eb ∧
“
ωcf ] + 2Acf ]

”
, (46b)

where Ma is the energy-momentum 3-form of the field A, which can be explicitly
obtained after variation of the Yang-Mills-like action with respect the gravitational
1-form.

8Variation with respect to the remaining fields leads a generalization of the dy-
namical equations (46). Consequently, the density of spin of the fermion matter is
present in the source term of the Yang-Mills equations for the Lorentz connection
field, and the Einstein equations contain in the rhs not only the energy-momentum
tensor of the matter, but also a four-fermion interacting term. The dynamical equa-
tions of spinors are formally the same as those of the Einstein-Cartan model with the
adjoint of the interaction with the connections of the Lorentz group A.



Torsion Field: Macroscopic and Microscopic Paradigms. . . 293

Comparison Since, in the first-order approach, the gravitational
field plays the role of source for torsion, it should be compared with
the “current” term of the second-order formalism. We will restrict our
analysis to the linearized regime9 in the transverse-traceless (TT) gauge.

Because of the interaction term (43) postulated in the first-order
approach, it is possible to solve the structure equation and to express
connections as a sum of pure gravitational (Ricci) connections plus other
contributions, both in absence and in presence of spinor matter. From
the Einstein Lagrangian density for gµν in the TT gauge,

L = (∂ρhµν) (∂ρhµν) , (51)

the spin-current density associated with the spin angular momentum op-
erator Mτ

αβ can be evaluated for a Lorentz transformation of the metric.
In fact, if we consider the transformation

gµν → ∂xρ′

∂xµ
∂xσ′

∂xν gρ′σ′ , (52)

where x′ρ = xρ + ερ τx
τ , then the current reads

Mτ
αβ = ∂L

∂hµν,τ
Σραβσµν hρσ = (ηcµζν,τc + ηcνζµ,τc ) Σραβσµν

(
ηfρζ

f
σ + ηfσζ

f
ρ

)
,

(53)
where Σραβσµν = ηγ[α

(
δργδ

β]
µ δσν + δρµδ

σ
γ δ

β]
ν

)
.

The two quantities (50) and (53) do not coincide: in fact, (50) is linear in
the ζ terms, because the interaction term (43) is linear itself, while (53)
is second order in ζ by construction. As suggested by the comparison
with gauge theories, and with (53) in particular, the interaction term
should be quadratic. In this case, however, it would be very difficult to
split up the solution of the structure equation as the sum of the pure
gravitational connections plus other contributions.

9For small perturbations hµν of a flat-Minkowskian metric ηµν , gµν = ηµν + hµν ,
the tetrad field rewrites as the sum of the Minkowskian bein projection δa

µ and the
infinitesimal perturbation ζa

µ, ea
µ = δa

µ + ζa
µ: the following identifications hold

ηµν = δa
µδaν , hµν = δaµζa

ν + δaνζa
µ. (49)

and the linearized Ricci connections ωab
µ = ebν∇µea

ν rewrite

ωab
µ = δbν

“
∂νζa

ν − Γ̃(ζ)ρ
µνδb

ρ

”
, (50)

where Γ̃(ζ)ρ
µν are the linearized Christoffel symbols.
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4 Concluding remarks

This paper is aimed at investigating the possibility to describe torsion
as a propagating field, from both a macroscopic and microscopic point
of view.

In the fist case, we have exposed the formulation of a geometrical
theory, which is able to predict propagating torsion. Starting from the
Einstain-Cartan static theory, we introduce here two torsion potentials,
by which we construct both the completely antisymmetric part of torsion
field and the trace part. To determine the equation of motion of a test
particle in presence of this new geometric quantity, we have established
a principle of minimal substitution which implies that autoparallels are
the right trajectories. Finally, we have analyzed the analogue of the
geodesic equation for autoparallels and studied the non-relativistic limit
of this deviation. Within this scheme, autoparallel deviation illustrates
that the torsion potential φ enters the dynamics just the same way as the
gravitational field h00, thus letting us envisage an arduous experimental
detection.

According to the different behaviors of vectors and spinors under lo-
cal Lorentz transformations, a metric-independent Lorentz gauge field
has been postulated, and its interaction with spinors has been analyzed.
The mathematical identification of such a gauge field with a suitable
bein projection of the contorsion field is possible through the structure
equation, if a unique linear interaction term between gauge fields and
spin connections is postulated. As a result, a Riemannian source for
the Yang-Mills equations is induced. The real vacuum dynamics of the
Lorentz gauge connection takes place on a Minkowski space only, when
the Riemannian curvature and the spin currents provide negligible ef-
fects. In fact, it is the geometrical interpretation of the torsion field as
a gauge field that generates the non-vanishing part of the Lorentz con-
nection on flat space-time. The predictions of first- and second-order
approaches are compared in the linearized regime. The two result do
not match in this approximation, thus suggesting one to introduce a
quadratic interaction term. Despite many formal differences from PGT,
a pure contact interaction for spinor fields is recovered for vanishing
Lorentz connections, for which the Cartan structure equation provides
non-zero torsion even when gauge bosons are absent. From this point of
view, PGT can be qualitatively interpreted as the first-order approxima-
tion of our scheme, when the carrier of the interaction is not observable,
because of its feeble interaction [20, 21].
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