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ABSTRACT. The role of torsion and a scalar field φ in gravitation in
the background of a particular class of the Riemann-Cartan geometry is
considered here. Some times ago, a Lagrangian density with Lagrange
multipliers has been proposed by the author which has been obtained
by picking some particular terms from the SO(4, 1) Pontryagin density,
where the scalar field φ causes the de Sitter connection to have the
proper dimension of a gauge field. Here it has been shown that the
divergence of the axial torsion gives the Newton’s constant and the
scalar field becomes a function of the Ricci scalar R. The starting
Lagrangian then reduces to a Lagrangian representing the metric f(R)
gravity theory.
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1 Introduction

Modern astrophysical and cosmological models are faced with two of
the most fundamental theoretical problems of XXI century which are,
namely, the dark energy and the dark matter problems. The galactic
rotation curves of spiral galaxies [1, 2, 3, 4], probably, indicates the pos-
sible failure of Newtonian gravity and of the general theory of relativity
on galactic and intergalactic scales. In these galaxies, neutral hydrogen
clouds, at large distances from the center and much beyond the extent of
the luminous matter, found to be moving in circular orbits with nearly
constant tangential velocity vtg. This yields an expression for the galac-
tic mass profile of the form M(r) = rv2

tg/G, with the total mass M(r)
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increasing linearly with r, even at large distances[1, 2, 3]. This bizarre
behavior of the rotation curves makes the dark matter postulate to be
meaningful.

There are many possible candidates for dark matter[5]. However,
no non-gravitational evidence for the existence of dark matter has been
reported so far. In this context, several theoretical models, based on a
modification of Newton’s law or of general relativity, at galactic scale,
have been proposed so far to explain the behavior of the galactic rotation
curves [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Dark energy models mainly rely on the implicit assumption that Ein-
stein’s GR is the correct theory of gravity indeed. Nevertheless, its va-
lidity at the larger astrophysical and cosmological scales has never been
tested [18], and it is therefore conceivable that both cosmic speed up
and dark matter represent signals of a breakdown in our understand-
ing of gravitation law so that one should consider the possibility that
the Einstein-Hilbert Lagrangian, linear in the Ricci scalar R, should be
generalized.

Following this line of thinking, the choice of a generic function f(R)
can be derived by matching the data and by the requirement that no
exotic ingredient have to be added. This is the underlying philosophy
of what is referred to as f(R) gravity [19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31]. It has been suggested that these modified grav-
ity models account for the late time acceleration of the universe [24],
thus challenging the need for dark energy. Though, severe weak field
constraints in the solar system range may rule out many of the mod-
els proposed so far [32, 33, 34, 35] but there exists some definite viable
models [36, 22, 37, 38, 39, 40, 41]. In addition to satisfy the solar sys-
tem constraints, the viable models should simultaneously account for
the four distinct cosmological phases, namely, inflation, the radiation-
dominated and matter-dominated epochs, and the late-time accelerated
expansion [42, 43, 44, 45], and be consistent with cosmological struc-
ture formation observations [46, 47, 41, 48, 49]. The issue of stabil-
ity [37, 50, 51, 52, 41] also plays an important role in the viability of
cosmological solutions [39, 53, 19, 54, 55, 56, 57, 58, 59, 60, 61, 62]. It
is interesting to note that, recently, it has been found that same f(R)
gravity models satisfying cosmological and local gravity constraints are
practically indistinguishable from the ΛCDM model, at least at the back-
ground level [40].

In the context of galactic dynamics, a version of f(R) gravity mod-
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els admitting a modified Schwarzschild-de Sitter metric has been an-
alyzed in [63]. In the weak field limit one obtains a small logarith-
mic correction to the Newtonian potential, and a test star moving in
such a spacetime acquires a constant asymptotic speed at large dis-
tances. It is interesting to note that the model has similar properties
with MOND [6, 7, 17]. A model based on a generalized action with
f(R) = R + R(R/R0 + 2/α)−1 ln(R/Rc), where α, R0 and Rc are con-
stants, was proposed in [64]. In particular, this model can describe the
Pioneer anomaly[65] and the flat rotation curves of the spiral galaxies.
In a cosmological context, the vacuum solution also results in a late time
acceleration for the universe.

It is a remarkable result of differential geometry that certain global
features of a manifold are determined by some local invariant densi-
ties. These topological invariants have an important property in com-
mon - they are total divergences and in any local theory these invariants,
when treated as Lagrangian densities, contribute nothing to the Euler-
Lagrange equations. Hence in a local theory only few parts, not the whole
part, of these invariants can be kept in a Lagrangian density. Recently, in
this direction, a gravitational Lagrangian has been proposed[66], where
a Lorentz invariant part of the de Sitter Pontryagin density has been
treated as the Einstein-Hilbert Lagrangian. By this way the role of tor-
sion in the underlying manifold has become multiplicative rather than
additive one and the Lagrangian looks like torsion⊗ curvature. In
other words - the additive torsion is decoupled from the theory but not
the multiplicative one. This indicates that torsion is uniformly nonzero
everywhere. In the geometrical sense, this implies that micro local space-
time is such that at every point there is a direction vector (vortex line)
attached to it. This effectively corresponds to the non commutative ge-
ometry having the manifold M4 × Z2, where the discrete space Z2 is
just not the two point space[67] but appears as an attached direction
vector. This has direct relevance in the quantization of a fermion where
the discrete space appears as the internal space of a particle[68]. Consid-
ering torsion and torsion-less connection as independent fields[69], it has
been found that κ of Einstein-Hilbert Lagrangian, appears as an integra-
tion constant in such a way that it has been found to be linked with the
topological Nieh-Yan density of U4 space. If we consider axial vector tor-
sion together with a scalar field φ connected to a local scale factor[70],
then the Euler-Lagrange equations not only give the constancy of the
gravitational constant but they also link, in laboratory scale, the mass
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of the scalar field with the Nieh-Yan density and, in cosmic scale of
FRW-cosmology, they predict only three kinds of the phenomenological
energy density representing mass, radiation and cosmological constant.
In a recent paper[71], it has been shown that this scalar field may also
be interpreted to be linked with the dark matter and dark radiation.

Up to some time ago, torsion did not seem to produce models with
observable effects since phenomena implying spin and gravity were con-
sidered to be significant only in the very early Universe. After, it has
been proved that spin is not the only source of torsion[72]. This means
that a wide class of torsion models could be investigated independently
of spin as their source.

In this paper, following the same philosophy, we want to show that,
starting from a Lagrangian of the type in Refs.[70, 71], how a generic
f(R) gravity theory emerges. Such that, the curvature, torsion and the
scalar field may give rise to an effective f(R) gravity theory which is
capable, in principle, to address the problem of the Dark Side of the
Universe in a very general geometric scheme.

The layout of the paper is the following. In Sec.II we briefly describe
the geometry and the starting Larangian in the background of a par-
ticular class of Riemann-Cartan geometry of the space-time manifold.
In Sec.III, we derive the generic f(R) gravity Lagrangian together with
some particular cases. Sec.IV is devoted to some discussion.

2 Axial Vector Torsion and Scalar Field

Cartan’s structural equations for a Riemann-Cartan space-time U4 are
given by [73, 74]

T a=dea + ωa
b ∧ eb (1)

Ra
b=dωa

b + ωa
c ∧ ωc

b, (2)

here ωa
b and ea represent the spin connection and the local frame re-

spectively.
In U4 there exists two invariant closed four forms. One is the well

known Pontryagin[75, 76] density P and the other is the less known
Nieh-Yan[77] density N given by

P=Rab ∧Rab (3)
and N=d(ea ∧ T a)

=T a ∧ Ta −Rab ∧ ea ∧ eb. (4)
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Here we consider a particular class of the Riemann-Cartan geometry
where only the axial vector part of the torsion is nontrivial. Then, from
(4), one naturally gets the Nieh-Yan density

N =−Rab ∧ ea ∧ eb = −∗Nη , (5)

where η:=
1
4!

εabcde
a ∧ eb ∧ ec ∧ ed (6)

is the invariant volume element. It follows that ∗N , the Hodge dual of
N , is a scalar density of dimension (length)−2.

We can combine the spin connection and the vierbeins multiplied by
a scalar field together in a connection for SO(4, 1), in the tangent space,
in the form

WAB=
[

ωab ϕea

−ϕeb 0

]
, (7)

where a, b = 1, 2, ..4; A,B = 1, 2, ..5 and ϕ is a variable parameter of
dimension (length)−1 and Weyl weight (−1), such that, ϕea has the
correct dimension and conformal weight of the de Sitter boost part of
the SO(4, 1) gauge connection. In some earlier works[78, 66, 69] ϕ has
been treated as an inverse length constant. In another earlier work[70]
ϕ has been associated, either in laboratory scale or in cosmic sale, with
a local energy scale. In laboratory scale its coupling with torsion gives
the mass term of the scalar field and in cosmic scale it exactly produces
the phenomenological energy densities of the FRW universe. In a recent
paper[71] the scalar field φ is associated with the dimension of a spinor
field Ψ and is found that φ does not interect with Ψ and thus the scalar
field may be representing the dark matter and(or) dark radiation. In
this line of approach, the gravitational Lagrangian with only a scalar
field ϕ, may be proposed to be

LG=
1
6
(∗NRη + βϕ2N) + ∗(ba ∧ ∇̄ea)(ba ∧ ∇̄ea)

−1
2
w(φ)dϕ ∧ ∗dϕ + h̃(ϕ)η, (8)

where * is Hodge duality operator, Rη = 1
2 R̄ab∧ηab, R̄b

a = dω̄b
a + ω̄b

c∧
ω̄c

a, ω̄a
b = ωa

b − T a
b, T a = eaµTµναdxν ∧ dxα, T ab = eaµebνTµναdxα,

T = 1
3!Tµναdxµ∧dxν ∧dxα, N = 6dT , ηa = 1

3!εabcde
b∧ec∧ed and ηab =

∗(ea ∧ eb). Here β is a dimensionless coupling constant, ∇̄ represents
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covariant differentiation with respect to the connection one form ω̄ab, ba

is a two form with one internal index and of dimension (length)−1 and
w(ϕ), h̃(ϕ) are unknown functions of ϕ whose forms are to be determined
subject to the geometric structure of the manifold. The geometrical
implication of the first term, i.e. the torsion⊗ curvature1 term, in the
Lagrangian LG has already been discussed in the beginning.

The Lagrangian LG is only Lorentz invariant under rotation in the
tangent space where de Sitter boosts are not permitted. As a conse-
quence T can be treated independent of ea and ω̄ab. Here we note that,
though torsion one form T ab = ωab − ω̄ab is a part of the SO(3, 1) con-
nection, it does not transform like a connection form under SO(3, 1)
rotation in the tangent space and thus it imparts no constraint on the
gauge degree of freedom of the Lagrangian.

Following Refs. [19, 79, 80] we define a new scalar field φ as

φ =
∫

dϕ
√
|w(ϕ)| , (9)

then the lagrangian (8) becomes

LG=
1
6
{∗NRη + βu(φ)N}+ ∗(ba ∧ ∇̄ea)(ba ∧ ∇̄ea)

∓1
2
dφ ∧ ∗dφ + h(φ)η, (10)

here the sign in front of the kinetic term depends on the sign of w(ϕ)
and by Eqn. (9) we can express φ as a function of ϕ, i.e., φ ≡ φ(ϕ), such
that we can also define two functions u(φ) and h(φ) by

u(φ) = u(φ(ϕ)) ≡ ϕ2 and h(φ) = h(φ(ϕ)) ≡ h̃(ϕ) (11)

3 Scalar Field and f(R) Gravity

In appendix A, by varying the independent fields except the frame field
ea in the Lagrangian LG, we obtain the Euler-Lagrange equations and
then after some simplification we get the following results

∇̄ea = 0, (A7′)
∗N = 6

κ , (A12′)

1An important advantage of this part of the Lagrangian is that - it is a quadratic
one with respect to the field derivatives and this could be valuable in relation to the
quantization program of gravity like other gauge theories of QFT.
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i.e. ∇̄ is torsion free and κ is an integration constant having dimension
of (length)22.

From equation (A8) we can write

R− βu(φ) = λ, (12)

the integration constant λ has been associated with dark energy in ref-
erences [70, 71].

Using equation (A12′), equation (A9) can be written as

±d∗dφ={ 1
κ

βu′(φ)− h′(φ)}η

or, dφ ∧ ∗dφ=d(φ∗dφ)∓ (
1
κ

βu′ − h′)φη (13)

Now the Lagrangian (8) can be written as

LG=
1
κ

(R− βu)η ∓ 1
2
{d(φ∗dφ)∓ (

1
κ

βu′ − h′)φη}+ hη

=
1
κ
{R − βu +

1
2
(βu′ − κh′)φ + κh}η ∓ 1

2
d(φ∗dφ)

=
1
κ
{R − V (φ)}η ∓ 1

2
d(φ∗dφ), (14)

where, V (φ)=(βu− κh)− 1
2
(βu′ − κh′)φ (15)

From equation (12) we can express φ as a function ofR, i.e., φ ≡ φ(R)
and then the Lagrangian (14) takes the following form

LG=
1
κ

f(R)η + (surface term) (16)

where, f(R)=R− V (φ(R)) (17)

Hence the Lagrangian (8) reduces to a f(R) gravity Lagrangian and due
to equation (A7′), this Lagrangian gives the dynamics of a metric f(R)
gravity theory.

2In (8), ∇̄ represents a SO(3, 1) covariant derivative, it is only on-shell torsion-free
through the field equation (A7′). This amounts to the emergence of the gravitational
constant κ to be only an on-shell constant and this justifies the need for the introduc-
tion of the Lagrangian multiplier ba which appears twice in the Lagrangian density
(8) such that ω̄a

b and ea become independent fields.
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Varying the action corresponding to the Lagrangian (16) with respect
to the metric gµν yields the following field equations

f ′(R)Rµν −
1
2
f(R)gµν − (∇µ∇ν − gµν�) f ′(R) = 0, (18)

where we have denoted f ′(R) = df(R)/dR. This equation can also be
written as

Gµν =
1
2
gµν(

f

f ′
−R) +

1
f ′

(∇µ∇ν −∇µ∇µ)f ′ ≡ κTµν (say) (19)

Using the results of Ref. [70] and the definition (11) of u(φ) and h(φ)
as functions of φ we see that, in the FRW background, where the metric
is given by

g00 = −1, gij = δija
2(t) where i, j = 1, 2, 3; (20)

the total energy density can be wreitten as

ρ = ρ
M

+ ρ
R

+ ρ
V AC.

(21)

where h = −γu
4
3 + λ

2κ and

a) the pressure-less mass density ρ
M

= β
κu ∝ a−3,

b) the radiation density ρ
R

= 3
2γu

4
3 ∝ a−4 where pressure p

R
= 1

3ρ
R

and

c) the constant vacuum energy density ρ
V AC.

= λ
4κ where pressure

p
V AC.

= −ρ
V AC.

.

Now, since the metric f(R) gravity Lagrangian (16) is obtained by
eliminating the non-metrical field variables of the Lagrangia (10), it will
also give us the same standard FRW cosmology with only three spe-
cific kinds of energy densities when the background FRW metric (20) is
used[70]. That is, we can write T00 = ρ

M
+ ρ

R
+ ρ

V AC.
, where T00 is

defined in (19). It is surprising that these are the only three kinds of
phenomenological cosmic energy density that we observe and consider to
be interested in. But theoretically, in standard FRW cosmology, other
forms of energy density are not ruled out[70]. And therefore to con-
sider other forms of cosmic energy density in the early universe or in
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the galactic scale, we have to adopt a non-FRW geometry where we may
have to forgo the isotropy and (or) the homogeneity of the universe. In
particular, here in the following, let us consider a non-FRW geometry in
galactic scale.

Böhmer et. al.[81], to address dark matter problem, have consid-
ered the galactic dynamics by restricting the study to the static and
spherically symmetric metric given by

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2. (22)

where dΩ2 = dθ2 + sin2 θdφ2. They have found that in the flat velocity
curves region the metric coefficients are given by

ν = 2v2
tg ln (

r

r0
) and eλ ≈ 1 + 2v2

tg, (23)

here vtg is the constant tangential velocity of the stars and gas clouds
in circular orbits in the outskirts of spiral galaxies. In the limit of large
r, the Newtonian potential is given by ΦN (r) ≈ v2

tg ln ( r
r0

), reflecting
a logarithmic dependence on the radial distance r. Therefore having a
well-defined Newtonian limit the metric (22) can be used to describe the
geometry of the space and time in the dark matter dominated regions.
They have shown that, in the f(R) gravity models, the rotational galac-
tic curves can be naturally explained without introducing any additional
hypothesis, by taking

f(R) = f0R1+v2
tg (24)

where f0 is a positive constant.
We see that if we take βu = (2αf0 ln φ0

φ )−
1
α and h = 0, where α = v2

tg

and φ0 a positive constant, then f(R) of Eqn. (17) coincides with that
of Eqn. (24).

4 Discussion

In this article, we have seen that if we introduce a scalar field φ to cause
the de Sitter connection to have the proper dimension of a gauge field
and then vary the SO(3, 1) spin connection as an entity independent of
the tetrads, we get the Newton’s constant as inversely proportional to
the topological Nieh-Yan density. Then Euler-Lagrange equations of the
axial torsion T and the scalar field φ reduce the Lagrangian to that of
the metric f(R) gravity.
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In this present analysis it is significant that if we consider our universe
to have the isotropy and the homogeneity of a FRW universe then only
three kinds of energy densities are possible. The matter energy density
∝ a−3, the radiation energy density ∝ a−4 and the vacuum energy den-
sity ∝ a0 are the only three kinds of such energy densities where a is the
cosmic scale factor. It is surprising that these are the only three kinds of
phenomenological cosmic energy density that we observe and consider to
be interested in. But theoretically, in standard FRW cosmology, other
forms of energy density are not ruled out[70]. And therefore to con-
sider other forms of cosmic energy density we have to adopt a non-FRW
geometry.

In galactic scale Böhmer et. al.[81] adopted a non-FRW metric and
obtained flat galacic rotation curves for spiral galaxies. The correspond-
ing f(R) gravity Lagrangian was found to be proportional to R1+v2

tg ,
where vtg was the constant tangential velocity in the flat rotation curves
region around spiral galaxies.

In our present formalism, the starting Lagrangian (10) reduces to
a generic f(R) gravity Lagrangian (16) which, for FRW metric, gives
standard FRW cosmology. But for non-FRW metric, in particular of
Ref.[81], with some particular choice of the functions u and h one gets
f(R) = f0R1+v2

tg . With this choice of u and h no dark matter is required
to explain flat galactic rotation curves.

In conclusion, we can say that, with certain choice of the metric and
the functions u and h, which are in conformity with themselves, one may
get some specific forms of the function f(R). This may be used to explain
some of the anomalous features of the universe. Further investigation
may be done in a future article.
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Appendix A

Following reference [82], we independently vary dT , R̄ab, φ, dφ and ba

and find
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δLG=δdT
∂LG

∂dT
+ δR̄ab ∧ ∂LG

∂R̄ab
+ δφ

∂LG

∂φ

+δdφ ∧ ∂LG

∂dφ
+ δba ∧ ∂LG

∂ba

=δT ∧ d
∂LG

∂dT
+ δω̄ab ∧ (∇̄ ∂LG

∂R̄ab
+

∂LG

∂∇̄ea
∧ eb)

+δφ(
∂LG

∂φ
− d

∂LG

∂dφ
) + δba ∧ ∂LG

∂ba

+d(δT
∂LG

∂dT
+ δω̄ab ∧ ∂LG

∂R̄ab
+ δφ

∂LG

∂dφ
) (A1)

Using the form of the Lagrangian LG, given in (8), we get

∂LG

∂(dT )
=−R+ βu(φ) (A2)

∂LG

∂R̄ab
=

1
24

∗Nεabcde
c ∧ ed =

1
12

∗Nηab (A3)

∂LG

∂φ
=

1
6
βu′(φ)N + h′(φ)η (A4)

∂LG

∂dφ
=∓∗dφ (A5)

∂LG

∂ba
=2∗(bb ∧ ∇̄eb)∇̄ea (A6)

here ′ represents derivative w.r.t. φ.
From above, Euler-Lagrange equations for ba gives us

∇̄ea=0 (A7)

i.e. ∇̄ is torsion free.
Euler-Lagrange equations corresponding to the extremum of LG from

the independent variations of T , φ and ω̄ab, using (A1), (A2) and (A3),
give us

d(R− βu(φ)) = 0 (A8)
1
6
βu′(φ)N + h′(φ)η ± d∗dφ = 0 (A9)

∇̄(∗Nηab)=0 (A10)
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Using (A7) in (A10), we get

d∗N = 0 (A11)

From this equation we can write

∗N =
6
κ

(A12)

where κ is an integration constant having (length)2 dimension.
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