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ABSTRACT. After reviewing Cartan’s first presentation of affine tor-
sion, we use differential forms and moving frames to approach in flat
spaces the concept of torsion and equations of structure. These con-
stitute the integrability conditions for the connection equations. The
integration obviously yields the affine elementary (or Klein) geometry
from which we start, namely the pair of affine group and its largest lin-
ear subgroup. Generalized (i.e. non-holonomic) affine spaces are then
defined through the breaking of those conditions, which we consider in
the bundle of frames, rather than in sections thereof. We also show
Y. H. Clifton’s definitions of affine connection and equations of struc-
ture, which allow for the development of differential geometry without
the modern distortion of Cartan’s original concepts. New avenues for
torsion research and applications are then considered.

1 Introduction

In this paper, starting immediately, we immerse ourselves in the misun-
derstood world of torsion. Affine curvature has to do with transporting
a vector along a closed curve and returning in principle with a different
vector. Similarly, affine torsion has to do with representing closed curves
of a “generalized affine space” on a flat space of equal dimension, rep-
resentation which generally fails to close. Suppose that in 1492 we were
to sail westward from Europe into the opposite shores of the Atlantic.
Not to get lost, we would follow a parallel, viewed as a line of constant
direction [1] (p. 9). We would thus have virtually defined the “Colum-
bus affine connection”, where rhumb lines play the role of straight lines.
Intersecting meridians and parallels form curvilinear rectangles, whose
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sides are represented on the plane by mutually perpendicular straight
segments. The representation on the plane of the curvilinear rectangles
are “quasi rectangles”, as they fail to close because the segments on the
parallels are of different length. That failure to close is a manifestation
of the torsion of the Columbus connection [2] (p. 709).

Consider next the surface of the earth endowed with the Levi-Civita
(LC) connection, which has zero torsion. As per this connection or rule
to navigate a manifold, only the maximum circles are lines of constant di-
rection. According to the foregoing paragraph, however, it would appear
that the representation on the plane of a curvilinear triangle obtained
from intersecting two meridians with the equator should close. It does
not, since there are at least two right angles in the triangle’s represen-
tation on the plane. What is wrong? The curves used for the foregoing
geometric interpretation of torsion have to be “infinitesimally small” [2]
(p.708), and it is difficult to see graphically whether a curve fails to close
by a small quantity of first (failure to close) or higher order. Because
the Columbus connection has the property of teleparallelism (TP, simply
put: path-independent comparison of vectors at a distance), it is math-
ematically legitimate to attribute the non-closing of the representation
of closed curves to the torsion of the Columbus connection. The same
conclusion cannot be drawn for the LC connection, however, because
there is not TP. These subtleties result from issues of integrability of the
connection equations.

2 Cartan’s Approach to Affine Torsion

Dieudonné explains Cartan’s extending of Klein ideas in geometry as re-
sulting from replacing the group G of flat space geometry with an object
called the “principal fiber space”, represented as a family of isomorphic
subgroups G0, parametrized by the different points of the flat space (see
Gardner [3]). Modernly, the pair (G, Go) is called an elementary [4] or
Klein geometry [5], characterizing flat spaces: affine, Euclidean, projec-
tive, conformal, etc. G is built from G0 and translations. In generalized
spaces, the translations act only “infinitesimally”, meaning that they
appear in differential equations which, when integrable, give G through
integration. Affine space is Euclidean space minus the dot product, like
the surface of a table extended to infinity but minus the concept of dis-
tance. It “becomes” a vector space when we choose a point and assign
to it the zero of a vector space.
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Cartan introduced torsion as the “complementary” term Ωi in

dωi =
∑

k

ωk ∧ ωki + Ωi. (1)

further stating that Ωi is the “element of double integral”

Ωi =
∑

Ars
i ωr ∧ ωs, (2)

yielding infinitesimal translations associated with arbitrary elements in
two dimensions [6]. He said “complementary” because Ωi is zero in
Euclidean spaces. The integration of Ars

i ωr∧ωs over the aforementioned
curvilinear rectangle yields the vector with which to close the open one.

Cartan explained that, in Euclidean 3-space, E3, the ωk and ωij are
linear in the differentials of the three coordinates (x), with coefficients
which depend on (x) plus three additional ones (u) that label all the or-
thonormal bases [6]. These constitute a bundle because of how they are
organized. For the moment, let us think of frame bundles as neat sheaves
of wheat (warning: the term sheaf is used in mathematics differently!),
which is a faithful picture in E2. Each stem represents a fiber, meaning
all bases at one point of E2, different points of the stem representing
different frames, labelled by u. Cut the sheaf, perpendicularly for sim-
plicity. The surface of the cut is a cross section of the bundle, meaning
one and only one basis at each point of E2. ωk depends on x, u and dx;
dωi and ωki depend on x, u, dx and du, but Ωi does not depend on du.
A cross section is a particular field of bases. On them, everything de-
pends only on the coordinates x because one has “chosen” the values for
the u’s. In two-dimensional affine space, the fiber is a four-dimensional
manifold (four-dimensional group of linear transformations).

Equations 1-2 are born in affine space, in the form

dωi =
∑

k

ωk ∧ ω.i
k + Ωi , Ωi =

∑
r,s

Ai
rsω

r ∧ ωs. (3)

In the Euclidean specialization of affine space, one raises and lowers
indices with impunity (up to minus signs in the pseudo-Euclidean case).

What are the ωk and the ωj
i? Take the 2-dimensional sphere and,

say, dr = dρêρ + ρdφêφ. Circumflex marks are used to denote that the
ê’s are orthonormal. The basis (êρ, êφ) varies from point to point. It
clearly is a basis field. dr is a vector-valued element of a line integral,
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like Ωiêi is a vector-valued element of a surface integral. We seek the
expression for dr that belongs to the whole bundle of Euclidean frames.
Since ds2 ≡ dr·dr = dρ2 + ρ2dφ2, we first think of dρ as ω1 and of ρdφ
as ω2. However, the most general ωi’s which satisfy ds2 = (ω1)2 + (ω2)2

are ω1 = cos α dρ + sin α ρdφ and ω2 = − sinα dρ + cos α ρdφ, which
result from applying the most general rotation matrix to the column

matrix
{

dρ
ρdφ

}
. Although dx and dy are not equal to dρ and ρdφ, one

however has that cos α dρ+sin α ρdφ equals cos β dx+sin β dy; both of
them are the same differential ω1under a change of coordinates (ρ, φ, α)
to (x, y, β). Technically, each of these two forms of ω1 is a “pull back”
σ of the other under a coordinate transformation. The right way of
writing x = ρ cos φ is σx = ρ cos φ, where the pull-back σ is in this case
a coordinate transformation. One usually ignores σ.

Consider now the ωi
k, again in Euclidean space. In the same way

as the set of the ωi’s depends on the parameters u of the rotation, so
does the general orthonormal basis {ei}, in order for dr (=ωiei) not to
depend on u. Suppose we refer the dei to the basis (i,j), differentiate
and, after differentiating, we replace the (i,j) in terms of {ei} itself. The
ωk

i , which are nothing but the coefficients in the equations dei=ωk
i ek,

depend on the x′s, the u’s and, linearly, on the dx′s and the du’s.
∧ is the symbol for exterior product, which is hidden in the vector

product × of E3. For n 6= 3, the direction perpendicular to the plane
of two vectors is not defined. In three dimensions, computing with ∧
replaces term for term computing with ×, except that the different terms
are no longer the components of a vector. The same product ∧ is at
work in the algebra of the integrands. We shall refer to an element of
line integral, of double integral, ... of r−integral as a differential 1−form,
2−form, ... r−form. Because one unfortunately writes double integrands
as dxdy, dρdφ, etc., instead of dx ∧ dy, dρ ∧ dφ, etc., one cannot just
substitute the differentials of the coordinates in dxdy, dρdφ, etc., in
order to change coordinates in integrands. One can, however, do so in
dx ∧ dy, dρ ∧ dφ, etc. Jacobians then emerge spontaneously. The same
considerations apply to r-forms.

The action of the operator d on differential forms (ωi, Ai
rsω

r ∧ ωs,
etc.) is such that ∫

∂R

α =
∫

R

dα, (4)

where ∂R is the boundary of the integration domain R. This general-
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ized theorem comprises, in particular, the usual theorems of Stokes and
Gauss. The integrands are scalar-valued, not withstanding the vector
calculus. There are, however, other types of differential forms, like ωiei,
which is vector-valued.Sabela

3 Torsion in Affine and Euclidean Spaces

We now formally define affine space and provide the concept of differ-
ential form and exterior differentiation in Cartan’s work. The torsion is
Cartan’s exterior differential of the translation 1-form.

An affine space AFF (n) is a set of elements, called points, such
that pairs (A,B) of them can be put in correspondence with the vectors,
denoted AB, of a vector space of dimension n, in such a way that (a)
AB = −BA, (b) AB = AC + CB, and (c) if O is an arbitrary point
of AFF (n) and a is an arbitrary point of the vector space, there is a
unique point A such that OA = a. If the vector space is Euclidean (i.e.
endowed with a dot product), the affine space is said to be a Euclidean
space. An affine (respectively Euclidean) frame is the pair constituted by
a point and a vector basis (respectively orthonormal basis). The affine
(respectively Euclidean) geometry is the pair constituted by the group G
of all transformations between affine (respectively Euclidean) frames and
the subgroup G0 of those transformations that leave a point fixed. The
same group G0 acts on each of all fibers in one-to-one correspondence
between members of G0 and bases. The frame bundle is thus already
present in the concept (G, G0) of Klein geometry. It is trivial to adapt
these considerations to pseudo-Euclidean cases.

The group G for the surface of the table is made of translations, linear
transformations and their products. A concept of length on the table
restricts the linear transformations to rotations (Using non-orthonormal
bases in Euclidean geometry is extending Euclidean geometry into affine
geometry; in differential geometry, one speaks of the extension of an
affine connection into a Euclidean connection).

Without attempting to be self contained, we now discuss how the
terms tangent vector, differential form and differentiation are to be un-
derstood in Cartan’s writings. Cartan does not define tangent vectors in
his papers on connections. A modern definition of tangent vector at a
point compatible with his approach to geometry would be the well known
“equivalence class of curves which go through the point and such that
they give the same dxi/dλ at the point, λ being the parameter on each
curve”. Unlike the definition of tangent vectors as differential operators
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acting on functions, this definition allows for a pictorial representation
of tangent vectors as tiny arrows associated with arbitrarily close pairs
of points on the manifold.

Differential forms are usually defined as antisymmetric covariant
tensors. But, in Cartan’s work on differential geometry, they are func-
tions of hypersurfaces, whose evaluation is their integration, as reported
in section 2. Consistently with this, ωiei (also written with the Kro-
necker delta as δj

iω
iej) is an element of vector-valued integral whose

integration on a curve gives the radius vector associated with its end
points. Needless to say that, in order to perform the integration, the
vector basis at all points of the curve has to be the same. Hence, in
affine space, one has to express δj

iω
iej in terms of rectilinear bases

In Cartan’s work, the action of d on non-scalar-valued forms is
connection-dependent, and d no longer satisfies dd = 0 unless the connec-
tion is TP. Thus d is not the operator known modernly as exterior differ-
entiation but a generalization thereof. When Cartan differentiates ωiei

he says that he is exterior differentiating. Kähler, whose work is highly
relevant in connection with the use of differential forms in quantum me-
chanics [7], also uses only the term exterior differentiation for both, ex-
terior and exterior-covariant differentiation. One can write dr =ωiei for
Euclidean spaces. In non-holonomic generalizations, one may wish to
write, however, d̃r instead of dr when operating on it with d.

For lack of space, we shall assume that readers know exterior differ-
entiation. We recall that, given an r-form αr and an s−form βs, the
following is satisfied: d(αr ∧βs) = dαr ∧βs +(−1)rαr ∧dβs. In the case
of d(ωiei), r is 1 and s is zero (ei is a scalar-valued 0−form). Hence:

d(ωiei) = dωiei−ωi ∧dei = dωiei−ωj ∧ωi
jei = (dωi−ωj ∧ωi

j)ei. (5)

In affine space, d(ωiei) = d(dxiai) = ddxiai = 0 and, therefore, dωi −
ωj∧ωi

j = 0. This still holds in En, but, whereas the ωij are independent
in the affine case, they are not independent in En since 0 = d(δij) =
d(ei.ej) = ωij +ωji. In the extension of Euclidean to affine geometry, we
use arbitrary bases. Defining then gij ≡ ei.ej , we get dgij = ωij + ωji,
which still exhibits that the Euclidean ωij are not independent.

4 Integrability and Formal Definition of Torsion

The affine group G(aff, n) (for space dimension n) is a (n + n2)-
differentiable manifold with a frame bundle structure. Its action is given
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by

P = Q + Aµaµ, eµ = Aν
µaν , detAν

µ 6= 0, (6)

where (Q,aµ) is a fixed frame (We use Greek indices for general dimen-
sion). In block matrix form, we have{

P
eµ

}
= g

{
Q
aν

}
=

[
1 Aν

0 Aν
µ

]{
Q
aν

}
(7)

where {} designates column matrices with 1+n rows, and where g is an
(n + 1) × (n + 1) matrix member of G(aff, n). This group of matrices
thus is an (n2 +n)-dimensional hypersurface in the (n+1)2-dimensional
manifold of all (n + 1) (n + 1) matrices. For the bundle of Euclidean
frames, the group G is a [n+(1/2)n(n+1)]-dimensional hypersurface in
the same (n + 1)2 -dimensional manifold. One readily gets{

dP
deµ

}
=

[
0 dAν

0 dAν
µ

]{
Q
aν

}
= dg

{
Q
aν

}
= dg · g−1

{
P
eµ

}
. (8)

Equations (8) are also written as

dP = ωµeµ, deµ = ων
µeν. (9)

With the ωµ and ων
µ implicit in dg · g−1 of Eqs. (8), this is an obviously

integrable differentiable because it was obtained by actual differentiation
of the system (6), i.e. the group G.

The ωµ and ων
µ might be chosen to be more general than those above.

dP then does not mean the differential of some vector-valued function P,
but a vector-valued integrand to be integrated on curves. On the other
hand, deµ = ων

µeν means the difference between {eµ(x + dx, u + du)}
and {eµ(x, u)} . We can pull this to a cross section. Using {eµ(x + dx} =
{eµ(x)} + ων

µeν , we can express what vector at x + dx equals a given
vector at x. We integrate ων

µeν on curves and add the result to {eµ(x)}.
We have thus parallel transported to x′ the basis at x.

Those integrations are curve-dependent in general, which is to say
that the system (9) is not integrable. The Frobenius integrability condi-
tions applied to dP−ωµeµ = 0 and deµ − ων

µeν = 0 yield [8]

dων − ωλ ∧ ων
λ = 0, dων

µ − ωλ
µ ∧ ων

λ = 0, (10)
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i.e. the vanishing of affine torsion and curvature. Equations (6)-(7) are
equations in the bundle, where the Aνand Aν

λ are coordinates. Equations
(8)-(9) may be written with the ωµ and ων

µ of the bundle or (as is almost
overwhelmingly the case in applications) on a section thereof.

There is an important difference between the two equations (10) from
the perspective of integrability. The equation dων

µ−ωλ
µ ∧ων

λ = 0 (which
contains only the ων

λ’s) is the integrability condition for the subsystem
deµ = ων

µeν . But we cannot say that dων − ωλ ∧ ων
λ = 0 is the inte-

grability condition for the subsystem dP = ωµeµ. For this subsystem to
be considered on its own, {eµ} has to be the same for all x. In other
words, the other integrability condition has to be satisfied at the same
time. Hence, either we consider the full system (9) or the subsystem
deµ = ων

µeν for purposes of integrability. Thus, if the torsion is zero, we
have not gained anything since we would also need zero affine curvature
in order to have integrability of the subsystem dP = ωµeµ. That is the
reason why, when we constructed a curvilinear triangle on the sphere
with LC connection, its representation on the plane did not close; the eµ

do not constitute vector-valued functions on the sphere (whether punc-
tured or not) if endowed with the LC connection.

We now give two more non-trivial examples of manifolds endowed
with TP. On the surface of a table drill a hole, just a point O for sim-
plicity. Define the circles centered at O and the radial lines from it as
lines of constant direction (which would make sense to inhabitants in
a flat world with O as the source of energy). Put the usual metric on
the plane. The metric-compatible affine connection so defined is a TP
connection, since the “transport” of the vectors êρ and êφ (and there-
fore any vector whatsoever) then is path independent. In fact, there is
no need to speak of transport; there is geometric equality at initio. A
curvilinear rectangle from the intersection of radial lines and circles goes
in the plane into a rectangle which fails to close. Assuming we computed
the ωµ and integrated dP = ωµeµ in terms of the now constant basis
field (êρ, êφ), we would obtain the vector that allows us to close the
rectangle.

For another example, define “parallels” on the torus by cutting it with
planes perpendicular to the axis of symmetry, and define “meridians”
by cutting with planes containing that axis. Consider those lines as
being of constant direction. We are thus defining a TP connection. The
representation in the plane of curvilinear rectangles formed with two
parallels and two meridians does not close. That connection has torsion.
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We now proceed to reproduce Clifton’s formal definition of affine con-
nection, which includes the definition of torsion [9]. An affine connection
is a 1-form (ωµ, ων

λ) on the frame bundle B(M) taking values in the Lie
algebra of the affine group and satisfying the conditions:

(1) The n2 + n real-valued 1-forms are linearly independent.
(2) The forms ωµ are the solder forms (i.e. those introduced in the

paragraph after Eq. (3)).
(3) The pull-back of ων

µ to the fibers are the left invariant forms of
the affine group (i.e. the dg · g−1 given implicitly in Eq. (8)).

(4) The forms Ων = dων − ωλ ∧ ων
λ, called torsion, and Ων

µ = dων
µ −

ωλ
µ ∧ ων

λ, called affine curvature, are quadratic exterior polynomials in
the n forms ωµ:

Ων = Rν
λµωλ ∧ ωµ, Ων

π = Rν
π λµωλ ∧ ωµ. (11)

Lack of space impedes us to explain some of the concepts involved in
this definition.

5 Finslerian, Kaluza-Klein and Quantum Torsions

(a) Finslerian torsion. Let S(M) be the bundle of directions of a dif-
ferentiable manifold M. If M is of dimension n, S(M) is of dimension
2n − 1. If we consider the total space of this bundle simply as a topo-
logical space, one can construct a frame bundle over it with the same
set of frames B(M) of n-dimensional vector spaces that we have consid-
ered so far. The fibers now are of smaller dimension than before, since
S(M) plays the role of “base space” that M played before. The sum of
the dimensions of the new base space and fiber has to be the same as
for the old bundle, namely the dimension of B(M). Let the signature be
Lorentzian. Let us use the index zero for the “odd” directions (i.e. time-
like). The role of the ωµ is now played by the ωµ and the ωi

0. We define
Finslerian torsion, within the definition of affine-Finsler connection, as
follows [9]:

An affine-Finsler connection is a 1-form (ωµ, ων
λ) on a (n2 + n)-

dimensional manifold B(M) taking values in the Lie algebra of the affine
group and satisfying the conditions:

(1) The n2 + n real-valued 1-forms are linearly independent.
(2) The forms ωµ are the soldering forms.
(3) The forms ωi

0 vanish on the fibers of B(M) over S(M).
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(4) The pullbacks of ω0
0, ω

0
i , ω

i
j into the fibers of B(M) over S(M) are

the left invariant forms of the linear (sub)group that leaves the direction
of a vector unchanged.

(5) The forms Ων = dων − ωλ ∧ ων
λ, called torsion, and Ων

µ = dων
µ −

ωλ
µ ∧ ων

λ, called affine curvature, are quadratic exterior polynomials in
the 2n− 1 forms ωµ, ωi

0:

Ων = Rν
λµωλ ∧ ωµ + Sν

λiω
λ ∧ ωi

0 (12)

Ων
π = Rν

π λµωλ ∧ ωµ + S ν
π λiω

λ ∧ ωi
0 + T ν

π ijω
i
0 ∧ ωj

0, (13)

where Rν
λµ, R ν

π λµ and T ν
π ij are antisymmetric in the last 2 subscripts.

Theory similar to that of the pre-Finslerian case can thus be devel-
oped in Finsler geometry

(b) Kaluza-Klein torsion. By Kaluza-Klein (KK) torsion we mean
standard torsion of the (KK type of) space that is motivated by an
observation Cartan made in the course of the simple computation that
follows. He did not solve the issue that he implicitly raised. Finsler
bundles provide a natural way of removing the critique present in that
observation, namely that standard differential geometry is simply a the-
ory of moving frames. It is not the method of the moving frame that
is under question but the limited use that is made of it. The critique
applies equally to those presentations of differential geometry that do
not use moving frames but which yield equivalent results.

Consider an orthonormal basis and a point not coincident with the
origin of the basis (in 3-dimensional Euclidean space, to help the imagi-
nation and as in the original work [10]). We perform an “infinitesimal”
Euclidean motion of the basis, while leaving the point fixed. Let the
translation be given by ωi, and let the rotation be given ωi

r. The coor-
dinates xi of the point with respect to that basis will change as a result.
We have:

dxi + xrωi
r + ωi = 0. (14)

Exterior differentiating, we obtain

0 + dxr ∧ ωi
r + xrdωi

r + dωi = 0. (15)

Substitution of dxr from the original equation yields

dωi − ωj ∧ ωi
j + xk(dωi

k − ωj
k ∧ ωi

j) = 0. (16)
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Since this has to be valid for all x, the equations of structure of affine
space follow. This emphasizes that these equations are about a geometry
where points remain fixed and frames move. Curves with deep geometric
significance like autoparallels (geometric equality) are not the result of
the motion of a point independently of frames, but a succession of origins
of frames. This becomes clear by pushing standard affine connections
to their Finsler bundles. The equation du = 0 defining lines of constant
direction in that push-forward become

de0 = 0. (17)

In order to deal with the motion of the point, one is tempted to use
equivalence of active and passive transformations. However, moving the
basis may not be equivalent to moving the point. In other words, that
equivalence may not always hold. There is the following elegant way of
creating new geometry. In the Finsler bundle, the ωi

0 are the coefficients
in du = de0 = ωi

0ei. We view u as independent of the frames themselves,
as reflected in the translation element

d̃℘ = dP + udτ = ωµeµ + udτ (18)

on a manifold M4 ⊕ M1 [11]. dP is the translation element on M4.
u is the unit vector on M1 manifolds, not contained in the spacetime
manifold itself. The torsion is similarly defined, Ω̌.≡ d(d̃℘),where we use
the hat in Ω̌ to emphasize that we are in KK geometry, rather than in
Finsler geometry.

In the Finsler bundle for spacetime, the torsion

Ω0 = CF, Ωi = 0, (19)

or Ω = Ω0e0 is an invariant, since the group in the fibers now is the
rotation group in three dimensions. More on this in the next section. In
the KK space, that torsion is written as

Ω4 = CF, Ωµ = 0. (20)

The fact that the fifth dimension differs from the other four even more
than time differs from space carries to the components of the KK torsion.
Integrations containing dτ and dxµ as factors in the integrand would
require specialized treatment.
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(c) Quantum torsion. The structure of spacetime is determined by
the ωµ’s and ωλ

ν ’s. One may try to obtain these differential forms via
integration of the equations of structure. In that case, each specification
of the affine torsion and curvature must satisfy the Bianchi identities.
If we require geometric equality, we have TP and, therefore, zero affine
curvature. Suppose that we then wish to specify the torsion. It has to
be such that its exterior (covariant) derivative is zero, as required by the
first Bianchi identity. Or we could simply specify the interior covariant
derivative, as it complements the specification of the exterior covariant
derivative. But that is precisely what the Kähler replacement for the
Dirac equation does [7]; it specifies both. It is then natural to postulate
that the torsion may be given by a Kähler equation, which is a quantum
mechanical equation. It takes the form

∂u = a ∨ u, (21)

where ∂ represents the sum of the exterior and interior derivatives and
a is an input differential form (like, for example, m + eA, where m is
mass, e is charge and a is electromagnetic 1-form). If a is vector-valued,
we have ∂u = a(∨,⊗)u, where ∨ is the product for the differential forms
and ⊗ is the product for the valuedness tensors [12], though Kähler does
not make explicit the sign for tensor product. Similarly, we must have
∂u = a(∨,∨)u if the differential forms are Clifford valued on tangent
Clifford spaces. We would tentatively have

∂Ω̌ = a(∨,∨)Ω̌. (22)

where a is a Clifford-valued differential form and Ω̌ is the KK torsion.
Furthermore, we shall see in the next section that the torsion appears to
be intimately connected with the electromagnetic field. Thus, m+ eA is
equally connected with the potential for the torsion. We postulate the
equation

∂Ω̌ = u∨d̃℘(∨,∨)Ω̌. (23)

where the scalar-plus-bivector-valued differential form u∨d̃℘ is insinu-
ated by the good working of the Kähler equation with a given by m+eA
(up to universal constants and the imaginary unit) [7]. Notice that only
the differential invariants ωµ’s and ωi

0 enter this equation, directly and
through their derivatives. They are present in ∂ since this operator de-
pends on the connection. They are present in d̃℘, and they are present in
Ω̌ since this is d(d̃℘). Thus, in the system of two equations of structure,
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the curvature equation retains its geometric flavor. The second one is
of the KD type, i.e. the central equation of the Kähler calculus of dif-
ferential forms, and of quantum mechanics. In that sense, spacetime is
quantized. The differential invariants that determine the space are the
solution of a system that combines classical (gravitation) and quantum
mechanical equations (the other interactions).

6 Applications of Affine Torsion

One may define affine-Finsler connections and metric-compatible affine-
Finsler connections (or “metric-Finsler connections”). Affine-Finsler
bundles exist even if a length of curves is not defined. An affine-Finsler
bundle is a refibration over S(M) of the bundle of tangent bases to M .
Metric-Finsler bundles exist even if the metric is (pseudo-)Riemannian.
They are refibrations over S(M) of the bundle of pseudo-orthonormal
tangent bases to M. In addition, the positive and Lorentzian signatures
are specially adapted to the standard Riemann-cum-torsion and Finsle-
rian connections. In this view, the spacetime of special relativity is the
flat metric-Finsler space [13].

Suppose we ask ourselves what the autoparallels look like in TP. If we
make the S terms of the torsion equal to zero, the autoparallels look like
the equations of the geodesics (i.e. as in general relativity) accompanied
by a term which looks exactly like the Lorentz force, up to physical
constants and upon labelling with E’s and B’s the coefficients of the Ro

piece of the Finslerian torsion. The Ri components of the torsion do not
contribute to the equations of the autoparallels. This suggests ab initio
geometric unification of gravitation and electromagnetism at the level of
equations of the motion

0 = −l,i dt + dl.i + C[Ei + (Bkuj −Bju
k)]dt

[14]. One must not ask what torsion will get us the equations of motion
of relativity, but rather how does one avoid obtaining them, and what
does it mean doing so. One can, of course, single out the electromagnetic
interaction by choosing the torsion to be Roe0, where Ro is the negative
of the electromagnetic form F (up to physical constants).

Assume further TP in order to have equality of vectors at a distance
and to be able to perform integrations of vector-valued differential forms,
like the so called energy-momentum “tensors”. The first Bianchi iden-
tity then states that the exterior covariant derivative of the torsion is
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zero. If one linearizes and chooses torsions with Ri = 0, one obtains the
homogeneous pair of Maxwell’s equations, always up to multiplicative
constants [15].

The affine connection, ων
µ, can be written as the sum of the LC

connection, αν
µ, and the contorsion, βν

µ, whose components are linear
combinations of the components of the torsion. The equation dων

µ −
ωλ

µ ∧ ων
λ = 0 expressing that the affine curvature is zero can be written

as
d(αν

µ + βν
µ)− (αλ

µ + βλ
µ) ∧ (αν

λ + βν
λ) = 0. (24)

It is clear that by leaving dαν
µ − αλ

µ ∧ αν
λ on the left and everything else

on the right and contracting with the Einstein contraction one obtains
a geometric version of Einstein’s equations, but with a richer right hand
side. One can specialize this to the pure electromagnetic torsion, −Fe0,
if one so wishes. But this can also be carried out in the KK space, where
the pure electromagnetic torsion is given as −Fu and Sabelawhere u
spans the fifth dimension.

It is clear that the O(3) symmetry (or SU(2) in quantum mechanical
equations) is implicit in the Ri piece of the torsion that accompanies F
but does not appear in the equations of motion. One can hardly think of
a better candidate for a classical representation of the weak interaction.

Viewing the specification of the torsion from the quantum perspective
of the previous section leads one to replace with advantage the Dirac
equation with the Kähler equation, where fermions are represented by
inhomogeneous differential forms. Even in the case that the form is
scalar-valued, it has in principle 32 real components, which decomposes
into four eight component solutions in the presence of rotational and
time translation symmetries. In the absence of one or two of those
symmetries, the solutions must, however, have 16 or 32 components.
We have shown elsewhere the possibility for viewing strongly interacting
particles as composites of virtual solutions (quarks) that depend on only
eight real components, like Dirac fermions [16].

There is finally the issue of Maxwell’s second pair. It is our view that
the second pair of Maxwell’s equations (and the first one also, except that
the absence of source makes the need less apparent) is to be obtained
from a degeneration of the information in a collective quantum system.
Clearly this is emerging as a formidable undertahing where torsion plays
the central role.
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