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Twisted space, chiral gauge and magnetism 

 

GEORGES LOCHAK 
 

Fondation Louis de Broglie,  
23, rue Marsoulan, F-75012 Paris 

 

RÉSUMÉ. L’article commence par une brève revue d’ensemble des espaces 
affines avec torsion avec des applications mathématiques aux équations 
d’onde spinorielles. On montre ensuite comment cette théorie s’accorde 
avec la théorie de la jauge chirale et d’un monopôle leptonique magnétique 
indépendamment développée par l’auteur.  
ABSTRACT. The paper begins with a brief survey on twisted spaces with 
mathematical applications to spinorial wave equations. Then, it is shown 
how this theory is in accordance with the theory of chiral gauge and of a 
leptonic magnetic monopole independently developed by the author.     

 

I. A  SHORT SURVEY ON  TWISTED SPACES  

1. Definitions and first results.  

a) In a space with rectilinear coordinates : 
  
x
i

= a
j
i
x
j', the gradients 

  
T;k

i
= !kT

i  and 
  
Ti;k = !kTi ,  of  a vector  T

i  or a covector 
 
Ti , are both 

tensors. 

b)  In  the case of curved coordinates 
  
xj

= xj x1'
, x2'

,…,xn'( ) , 

 
!kT

i  and 
 
!kTi  are not tensors. The corresponding tensors are the covariant 

derivatives : 

 
!kT

i
= "kT

i
+ #rk

i Ti  ; 
 
!kTi = "kTi # $ik

r Tr   (1) 

 
!rk

i  are the connection coefficients. Their transformation formula is : 
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!k 'j'

i'
= !kj

i "xi'

"xi

"xk

"xk'

"xj

"xj'
+

"xi'

"xi

"
2xi

"xk'
"xj'

  (2) 

Definition : A space with an affine connection is a manifold  Mn  where 

 
!k   and  

 
!kj

i  are defined. 

Not any metric  
 
gij  is supposed to exist, and even if there is a metric, it is 

not – a priori – linked to 
 
!kj

i . A connection coefficient 
 
!kj

i  is not a tensor 

by itself, but it defines two  tensors : 

A curvature : 
 
!Rqkl

i
=

"#ql

i

"xk
!

"#qk

i

"xl
+ #pk

i
#ql

p
! #pl

i
#qk

p  (3) 

A torsion : 
 
S

kj[ ]
i

= !kj

i
" !jk

i      (4) 

They are related by the equality : 

 
!k!l " !l!k( ) Ti

= "Rqkl

i Tq
+ S

kl[ ]
p #Ti

#xp
   (5) 

If 
  
S

kj[ ]
p

! 0 , we have a twisted space.. If
  
Rqkl

i
= S

kj[ ]
p

= 0 , the space is 

euclidean and (5) entails the commutation of covariant derivatives. 

2. Geometrical interpretation. 

a) The parallel transport of a tensor  T  along a direction 
 
!k =

dxk

dt
 is 

defined as : 

 
!"T = "k!kT         (6) 

Therefore, the transported vector depends on the curve along which it has 
been transported. 

b) Definition : A geodesic line is a line enveloped by the parallel trans-
port of its tangent. 

c) It follows, from a) and b), that generally a geodesic rectangle is not 

closed (Fig.1) because in an infinitesimal rectangle, one finds a gap, the 
principal part of which is due to the torsion and it is of the order of the area 
of the rectangle : 

  

xP

k ! xT

k
= Sij

k dxi

dt

"
#$

%
&'
P

dxj

dt

"
#$

%
&'
T

dt2
+ 0 dt

3( )     (7) 

The  terms  
  
0 dt

3( )    are due to the curvature. 
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Fig. 1 

Note : Now, we enter into the frame of Quantum Mechanics and we shall 
make use of the space-time coordinates with an imaginary time and the usual 
von Neumann  !  matrices. 

3. The case of a flat twisted space. 

Definition : A flat twisted space is a space with torsion 
 
!

µ"[ ]
#

$ O( )  and 

rectilinear geodesics.  
Let us consider with Rodichev [2] a spinor equation with an affine con-

nection defined by an antisymmetric tensor !
"µ#[ ] : 

!
" µ#[ ] = $

"µ#[ ]       (8) 

Thus we have the following covarariant derivative, where ! "  are the 

Dirac matrices 
 
! µ! " + ! "! µ = 0( )  : 

  
!µ = "µ# $

i

4
%

&µ'[ ] ( µ( '#      (9) 

Now, Rodichev introduces the lagrangian : 

  
L =

1

2
! " µ #µ!( ) $ #µ!( ) " µ!{ } % L =

1

2
! " µ #µ

&' () ! (10) 

The form of L  may be simplified by introducing the pseudovector !µ  

conjugated to !
"µ#[ ]  :  

  
!µ =

i

3!
"µ#$%& $µ#[ ]

       (11) 

So we have : 

 
  

L =
1

2
! " µ #µ

$% &' ! (
1

2
)µ! " µ" 5!

*
+
,

-
.
/

   (12) 

from which we can derive the equation : 
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! µ "µ #
1

2
$µ! 5

%
&'

(
)*
+ = 0      (13) 

This equation is a geometrical construction. But actually we already know 
it from physics because the same equation was found in a quite different 
way, [3], [4], We shall see it later, but let us first follow Rodichev a little 
farther. 

4. The curvature of a flat twisted space. 

Despite it is « flat », such a space has a curvature.  In the particular case 
of Rodichev, if we introduce (11) in (3), we find the following curvature : 

  
R = Rlil

i
= !

µ"#[ ]! µ"#[ ] = $6% µ% µ   (14)  

Now Rodichev considers the Einstein-Like Lagrangian : 

  
L =

1

2
! " µ #µ!( ) $ #µ!( ) " µ!{ } + 6b% µ% µ   (15) 

where b  is a Lagrange parameter. The variation of ! µ  yields : 

  
!µ =

1

24b
" # µ# 5"       (16) 

and the variation of ! gives the Weyl equation [8] (see also  [4], [5]). 

  
! µ"µ# +

1

48b
# ! µ! 5#( )! µ! 5# = 0     (17)  

But owing to the algebraic properties of bilinear spinorial forms [9] : 

  

J µ = i! " µ!; #µ = i! " µ" 5!;$1 = !!;$2 = i!" 5!

%J µJ µ = #µ#µ = $1

2
+ $2

2
 (18) 

we can write (17) equivalently : 

  
! µ"µ# +

1

48b
$1 % i$2! 5( )# = 0     (19) 

A consequence of (14) and (18) is :  

  
R =

!1

2b
"1

2
+ "2

2( )       (20) 

This equality will find its signification later because the total curvature 

 
!1

2
+ !2

2( )  is a chiral invariant and  it plays a role in the harmony of the 

whole system. 
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II CHIRAL GAUGE AND MAGNETIC MONOPOLE 

Now, we shall follow a different way, starting from the notion of chiral 

gauge (in quantum mechanics and electromagnetism). It is, in principle, 
independent from the preceding one but they concur to the same geometrical 
conclusions. 

1. Chiral gauge and linear equation of a leptonic monopole. 

We start from the massless Dirac equation : 

 
! µ"µ# = 0        (21) 

This equation has two gauge invariances : 

a) The classical phase invariance :  ! " e
i#

! , which defines a co-

variant derivative with the Lorentz potential 
 
A
µ

, from  which one can find 

the Dirac theory of the electron (adding a mass term) . The covariant de-
rivative and the transformations are :    

   

!µ = "µ – i
e

!c
Aµ;

# $ e
i
e
!c

%
#, Aµ $ Aµ + "µ%

   (22) 

and the Dirac equation of the electron is : 

   

! µ "µ – i
e

!c
Aµ

#
$%

&
'(
) +

m0c

!
= 0     (23) 

b) The second invariance law is the chiral invariance [3], [4], [5] : 

   ! " e
i
e

!c
#5$

! , ( ! 5 = ! 1! 2! 3! 4 )    (24) 

This second invariance can be developed only for the massless equation 
(21) because, contrary to the ordinary phase invariance, the second is based, 
not on the commutation of the unit matrix I with ! µ  matrices, but on the 
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anticommutation of 
 
! 5  with the four matrices ! µ . A second covariant 

derivative is so defined,with a pseudo potential 
 
Bµ

1 :  

   

!µ = "µ –
g

!c
#5 Bµ ; #5# µ + # µ #5 = 0;

$ % e
i e
!c

#5&
$ ; Bµ % Bµ + i"µ&

  (25)   

Just as the first covariant derivative (22) leads to the Dirac electron, the 
second derivative (25) leads to the theory of a leptonic monopole which is in 
accordance with the electromagnetic theories of Maxwell and Pierre Curie. 
We cannot develop here all the results, but the reader can find the theory in 
the references ([3],…,[7]) and the main experimental results in ([7],…,[14]).  

We shall only give some theoretical results, at first, the linear equation 
invariant with respect to (25) : 

   

! µ "µ #
g

!c
!5 Bµ

$
%&

'
()
* = 0      (26)  

The main differences between (26) and (23) are : 1) The pseudoscalar 

magnetic charge operator 
   

g

!c
!5which appears in (26). 2) The absence of 

mass term in (26), because it should commute with ! µ  and so, it would 

brake the chiral symmetry (25) which is based on the anticommutation of 

the exponant of    e
i
e

!c
!5"

 and of the charge operator 
   

g

!c
!5  with the four 

matrices ! µ .  

An important point is that, if we apply to the spinor !  the Weyl trans-

formation (where  ! ,!  are two component spinors) : 

                                                                    

1 Don’t forget ! 
 
B
µ

 is not an  induction but a pseudovector. These pseu-

dopotentials are often named « Cabibbo & Ferrari potentials » (Nuovo Ci-

mento, 23, p. 1147, 1962). They were already defined by Louis de Broglie 
in : Une nouvelle théorie de la lumière, Hermann, Paris, 1942. 



Twisted space, chiral gauge and magnetism 131 

  

U! =
1

2
"
4

+ "
5( ) ! =

#
$
%
&'

(
)*

    (27) 

the equation (25) splits in two separate equations with 
   
iBµ = B,iW{ } : 

    

1

c

!
! t

" s .# " i
g

!c
W + s .B( )

$
%&

'
()
* = 0

1

c

!
! t

+ s .# + i
g

!c
W " s .B( )

$
%&

'
()
+ = 0

   (28) 

They correspond respectively to the left and to the right monopole, which 
have respectively a positive and a negative charge, in conformity with the 
symmetry laws emitted one century before by Pierre Curie. Here, it is a 
simple consequence of the chiral gauge invariance. 

1) In the domain of beta radioactivity, the influence of a monopole beam 
and the possibility of an emission of monopoles instead of neutrinos with  
! electrons were predicted by theory and then observed [12]. 

2) Owing to the preceding equations, several laws and effects were pre-
dicted and some were experimentally confirmed. Several problems of mo-
tion of a monopole in an electromagnetic field, already solved in different 
ways, were solved by our equations :  it is the case, for instance, for the 
Poincaré problem [5], [7] of a monopole in a coulombian field (Birkeland 

effect), or  the Dirac quantization of the product 
   
eg =

n!c

2
 in the same 

problem [4]. 
On the contrary, some effects in nuclear physics and biology enter in the 

same frame but they were not predicted by theory ([10], [11], [13],[14]).  

2. Chiral invariant equation of a monopole and twisted space.. 

The analogy between the Rodichev equation (13) and my equation (26) is 
evident, despite their different premises, and we deduce the equality : 

  
!µ =

g

!c
Bµ        (29) 

which gives an electromagnetic sense to the geometrical tensor of Rodi-
chev. 

We can thus assert that : 
When a monopole is plunged in an external electromagnetic field, he 

« sees » the surrounding space as a twisted space with a non symmetric 

affine connection defined by the pseudopotential of the field. 
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2. Chiral gauge and nonlinear equations. 

It is imposible to speak of chirality without introducing a rotation angle. 
In order to find it, we shall slightly modify the chiral transformation (24) : 

  
!" = e

i# 5 $ /2( )"         (30)  

and examine the 16 quadratic tensorial quantities obtained from the Dirac 
spinor, on the basis of a Clifford algebra : 

  

!1 = "" , J µ = i"# µ" , $µ = i"# µ# 5",

Mµ% = "#[µ# %]" ,!2 = &"# 5"
   (31) 

Denoting by primes the quantities (31) transformed by (29), we find : 

  
!J µ = J µ ; !"µ = "µ  (32)     

  

!'1

!'2

"
#$

%
&'

= R
!1

!2

"
#$

%
&'
;

M 'µ(

M 'µ(

"

#
$

%

&
' = R

M µ(

Mµ(

"

#
$

%

&
' ;R =

cos ) * sin )
sin ) cos )
"
#$

%
&'

        (33) 
Owing some algebra, it is easy to prove that finally, all the scalars that 

can be built with the tensors (30), are functions of only one of them : 

 
! = "1

2
+ "2

2( )
1/2

      (34) 

Here appears the second sense of the Rodichev total curvature [20] : 

this curvature is at the same time the principal chiral invariant which 

gives an electromagnetic sense to the total curvature of the space.  

According to the first relation (32), !  is the radius of a circle in the plane, 

called « chiral plane » [4], [5], [6], with the coordinates : 

  
!1 = " cos A ,

  
!2 = " sin A      (35) 

where  A  is a polar angle. The chiral transformation (29) is thus a rotation 
of an arbitrary angle !  in the chiral plane and the transformation (24) takes 
the elementary form :  

  A' = A + !         (36) 
Now, if we look for a nonlinear chiral invariant equation, we find only 

one possible Lagrangian density, up to an arbitrary function
  
M !2( ) which 

has the dimension of a mass : 

   
L =

1

2
!" µ #µ

$% &' ! (
g

!c
!" µ" 5Bµ! +

1

4

M )2( ) c
!

    (37) 

The corresponding field equation is : 



Twisted space, chiral gauge and magnetism 133 

   

! µ "µ# $
g

!c
! 5Bµ

%
&'

(
)*
# +

m +2( ) c
2!

,1 $ i,2! 5( ) # = 0  (38) 

where 

  

m !2( ) =
"M

" !2( )
. So we have a general nonlinear equation of a 

massive nonlinear monopole which includes as particular cases all the 
known nonlinear spinorial equations (which were all written without exter-
nal field ) [4]. One can show that this equation is CPT and chiral invariant 
[6]. 

3. Another kind of nonlinear chiral invariant equation. 

We have found a manner to find a nonlinear chiral invariant equation by 
adding an invariant term to the linear lagrangian, i.e. a function of the prin-
cipal chiral invariant (34), which is the radius of a vector in the chiral plane 

 
!1,!2{ } . Such a term does not depend on the angle A , it does not change 

the chirality - see (36) - and we have a nonlinear equation, every solution of 
which is chiral invariant. 

Now we look for an equation of another kind, which is not chiral invari-
ant, but in which we define a class of invariant solutions : a class of mo-

nopole-solutions. 
Such solutions could be characterized by a zero-vector of the chiral plane 

 
!1 = !2 = 0( )  : because the polar angle  A  of such a vector  (and the so 

defined chiral phase)  is now arbitrary ; the corresponding solutions of the 
equation do not depend on it any more and so we find the invariance again, 
but only for these solutions. 

We shall start from a lagrangian which is not chiral invariant : the most 
simple choice is the Dirac Lagrangian with its linear mass term. And shall 

add a term 
 
!1

2
+ !2

2( )  with a Lagrange parameter ! . This Lagrange pa-

rameter will select the solutions 
 
!1

2
+ !2

2
= 0 . But before going further, 

let us make a remark. The tensorial quantities (31) obey many relations, 
among which : 

  
!J µJ µ = "µ"µ = #2

= $1

2
+ $2

2      (39) 

This means that the electric current 
 
J µ  and the magnetic current !µ  have 

opposite norms : 
 
J µ   is timelike and  !µ  spacelike. If  

 
!2

= 0  , they are 

both on the light-cone  This is why I have called this problem : « The Dirac 

equation on the light-cone » [15], which means that both currents are iso-
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tropic. Now, a zero length vector has a no defined polar angle A  which is 
thus arbitrary and it may be eliminated by a choice of gauge.  

So, we start from the Lagrangian with a magnetic pseudo potential term :  

   
L =

1

2
!" µ #µ

$% &' ! (
g

!c
!" µ" 5Bµ! (

m0c

!
!! +

)
2

*1

2
+ *2

2( )    

        (40) 

A variation with respect to! gives the equation : 

   

! µ "µ# $
g

!c
! 5Bµ

%
&'

(
)*
# $

m0c

!
# + + ,1 $ i,2! 5( ) # = 0  (41) 

but a variation with respect to !  gives : 
 
!1

2
+ !2

2
= 0 , which means :

  

 
!1 = !2 = 0        (42)  

So that the term in !  is eliminated in (40). One could think that it re-
mains the Dirac equation, but it is not so  because we have the condition (42) 
which is implied by [4] : 

  
! = ei"# 2!* = ei"! c      (43) 

where 
 
! c  is the charge conjugated spinor and !  an arbitrary phase. Up 

to this phase, (42) is the condition of Majorana [15] and we can introduce 
this condition in the same manner, so that (40) takes the form : 

   

! µ "µ# $
g

!c
! 5Bµ

%
&'

(
)*
# $

m0c

!
ei+! 2#* = 0    (44) 

This is as to say the « magnetic Majorana equation » with the intcraction 
of a magnetic monopole. Of course, the equation is nonlinear. Nevertheless, 
if we introduce in (43) the Weyl transformation (27), this condition becomes 
(with the arbitrary phase ! ) : 

  
! = ei"is2# *,# = $ei"is2! *     (45) 

and, just like in the linear case (28), the equation is broken in two sepa-
rated equations in !  and !  [15] : 

 

    

1

c

!"

! t
# s.$" # i

g

!c
W + s.B( ) " # ei%im0cs2"* = 0

1

c

!&

! t
+ s.$& + i

g

!c
W # s.B( ) & + ei%im0cs2&* = 0

 (46)

   
The covariant derivatives are the same as in the equations (26) and (38) so 

that the chirality is linked once more with the torsion of the space. 



Twisted space, chiral gauge and magnetism 135 

Nevertheless, there is a great difference with the equations (28) : in the 
present case the equations are separated but, in virtue of (45), they are not 
independent. It is still more evident owing to the Weyl transformation (27), 
because the link between these equations is simply expressed by the equali-
ties : 

 
 
!1

2
+ !2

2
= 0 " #+$ = 0        (47) 

   

III A  POST SCRIPTUM ON TWISTED SPACES AND SPIN FLUIDS. 

 

We have seen in the first part of this paper that, in an affine space, a geo-
desic rectangle is not closed : if we start from an initial point, following a 
geodesic line and if we try to go back to the starting point, along an infini-
tesimal curve, we miss the point and the image of a loop is in fact an arc of 
helicoid with a certain infinitesimal « thread ». 

The interesting point is that, if the space is twisted, the gap between the 
intial and the final point (the « thread » of the helicoid) is of the second 

order with respect to the loop : the order of the area of the former ; but if the 
space has a symmetric connection, i.e. if it is not twisted, the gap is smaller, 
of the order of the curvature : at least the third order. 

What happens with a twisted space is analogous to what happens in a spin 

fluid, for instance in the fluid defined by the density of a quantum wave. A 
spin density, like  the one defined by a solution of the Dirac equation is not 
at all the angular momentum due to the curl of a fluid droplet. Because the 
spin of a droplet  dv in a fluid with a spin density is of the same order 
as dv itself, while the angular momentum of the same droplet in an ordinary 
fluid is of two orders higher.     
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