
Annales de la Fondation Louis de Broglie, Volume 32 no 2-3, 2007 137

On the torsion of the intrinsic spacetime

Claude Daviau

Le Moulin de la Lande, 44522 Pouillé-les-coteaux, France
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ABSTRACT. We start from the relativistic invariance of the Dirac
equation. That invariance necessarily implies to use the Clifford space
algebra. That algebra allows to express the wave equation, to see more
tensors, particularly four spacetime vectors forming an orthogonal ba-
sis of the spacetime. We can associate to the wave, in each point, a
Lorentz dilation applying the spacetime tangent to an intrinsic space-
time manifold Sw into the observer’s spacetime manifold Sobs. We
calculate the torsion of the intrinsic spacetime manifold in the case of
the plane wave. Contrarily to Sobs, Sw is not isotropic.

Résumé : Nous partons de l’invariance relativiste de l’équation de Di-
rac. Cette invariance relativiste implique nécessairement l’usage de
l’algèbre de Clifford de l’espace physique. Celle-ci permet aussi d’écrire
l’équation d’onde, de voir plus de tenseurs, particulièrement quatre vec-
teurs formant une base de l’espace-temps. On peut associer à l’onde, en
chaque point de l’espace-temps, une dilatation de Lorentz appliquant
l’espace tangent à une variété intrinsèque d’espace-temps Sw, sur la
variété d’espace-temps de l’observateur Sobs. On calcule la torsion de
la variété d’espace-temps intrinsèque. Cette variété, contrairement à
notre espace-temps usuel, n’est pas isotrope.

1 - The Dirac equation

The special relativity was the main tool used by Louis de Broglie
to get the idea of the wave linked to the motion of a particle [1]. The
first attempt to give a relativistic wave equation for the electron, only
with first order derivatives, was made by P. A. M. Dirac [2] and gave
a lot of good results. The main ones were in the case of the H atom.
More, the electron’s spin was implicated by the wave equation, linking
spin to relativity. It has been early understood, for geometrical reasons,
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that spin and torsion must also be linked. 1 As we want to study the
relativistic invariance, we shall use here the Weyl’s representation for the
Dirac equation :

0 = [γµ(∂µ + iqAµ) + im]ψ ; q =
e

~c
; m =

m0c

~
(1)

γ0 = γ0 =
(

0 I
I 0

)
; ψ =

(
ξ
η

)
;

γj = −γj =
(

0 σj

−σj 0

)
, j = 1, 2, 3. (2)

I = σ0 = σ0 =
(

1 0
0 1

)
; σ1 = −σ1 =

(
0 1
1 0

)
(3)

σ2 = −σ2 =
(

0 −i
i 0

)
; σ3 = −σ3 =

(
1 0
0 −1

)
The Dirac equation was written so as to be relativistic invariant, but
that invariance is far from any classical physics. To get that invariance it
is necessary to associate to each event with coordinates (x0, x1, x2, x3),
x0 = ct, the matrix

x = xµσµ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (4)

Then we consider the set SL(2,C) of the 2× 2 complex matrices

M =
(
α β
γ δ

)
(5)

verifying
1 = det(M) = αδ − βγ. (6)

To each M is associated the transformation R defined by

R : x 7→ x′ = MxM† (7)

which is a Lorentz transformation because

det(x′) = (x′0)
2
− (x′1)

2
− (x′2)

2
− (x′3)

2
= det(MxM†)

= det(M) det(x) det(M†) = |det(M)|2 det(x) = det(x)

= (x0)
2 − (x1)

2 − (x2)
2 − (x3)

2
(8)

1See for instance the postscript by G. Lochak in the end of his contribution here
[3]
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But it is not trivial that, with

x′
µ = Rµ

νx
ν (9)

we also get
R0

0 > 0 ; det(Rν
µ) = 1. (10)

So R is an element of the restricted Lorentz group L↑
+. The application

f defined by
f : M 7→ R (11)

is an homomorphism from SL(2,C) into L↑
+ whose kernel is {±I}. f is

not an isomorphism : These two groups have the same Lie algebra, and
are too often identified, but they are actually different, since the kernel
is not {I}. Now we use

∂′µ =
∂

∂x′µ
; ∂ν = Rµ

ν∂
′
µ

M̂ =
(
δ∗ −γ∗
−β∗ α∗

)
; N =

(
M 0
0 M̂

)
(12)

And the reward is the general relation

Rµ
νγ

ν = N−1γµN. (13)

which is true with any M in SL(2,C) and for µ = 0, 1, 2, 3. The formal
invariance of the Dirac equation comes from the important assumption
that under the Lorentz transformation R defined by the matrix M the
wave ψ transforms as

ψ′ = Nψ. (14)

That gives

0 = [γν(∂ν + iqAν) + im]ψ

= [γνRµ
ν (∂′µ + iqA′

µ) + im]N−1ψ′

= [N−1γµN(∂′µ + iqA′
µ) + im]N−1ψ′

= N−1[γµ(∂′µ + iqA′
µ) + im]ψ′ (15)

Because one factor M is present in (14) whilst two factors M are present
in x′ = MxM†, the wave turns with half angles, a fact that never oc-
curs in classical physics, and that is verified by many experiments. It is
another reason to distinguish M and R, (7) and (14).
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2 - Space algebra

What is used in (4) is nothing but the Clifford algebra of the physical
space, Cl3. It is not possible to get the relativistic invariance of the Dirac
theory without that mathematical tool. Moreover, anything in the Dirac
theory may be written with just that algebra [4].

The general element of the space algebra Cl3 reads

u = s+ ~v + i ~w + ip (16)

where s is a scalar (real number), ~v is a vector, with three real compo-
nents, i ~w is a pseudo-vector, ~w is an axial vector, and ip is a pseudo-
scalar. As i2 = −1, Cl3 is a generalization of the complex field. If
(σ1, σ2, σ3) is an orthonormal basis of the physical space, that is

σj · σk = 0 , j 6= k ; σ2
j = 1 (17)

we can write any vector ~v as

~v = v1σ1 + v2σ2 + v3σ3 (18)

If we use the Pauli representation (3) for the σj , and if we identify scalars
and scalar matrices, the sum and the product of two terms in the space
algebra is exactly the sum and the matrix product : Cl3 may be identified
to the M2(C) algebra, set of the 2× 2 complex matrices. With

u = s+ ~v + i ~w + ip =
(
α β
γ δ

)
(19)

and z∗ being the complex conjugate of z, we shall need

u† = s+ ~v − i ~w − ip =
(
α∗ γ∗

β∗ δ∗

)
(20)

û = s− ~v + i ~w − ip =
(
δ∗ −γ∗
−β∗ α∗

)
(21)

u = s− ~v − i ~w + ip =
(
δ −β
−γ α

)
(22)
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To get the Dirac equation in Cl3, we use (1) and (2) and we let

∇ = σµ∂µ =
(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)
= ∂0 − ~∂

~∂ = σ1∂1 + σ2∂2 + σ3∂3 (23)

∇̂ = ∂0 + ~∂ =
(
∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

)
(24)

~A = A1σ1 +A2σ2 +A3σ3 ; A = Aµσµ = A0 + ~A (25)

So we get

γµ∂µ =
(

0 ∇
∇̂ 0

)
; γµAµ =

(
0 A

Â 0

)
. (26)

and the Dirac equation (1) is equivalent to the system

0 = ∇η + iqAη + imξ (27)

0 = ∇̂ξ + iqÂξ + imη (28)

If we take the complex conjugate of that last equation, and if we multiply
by −iσ2 by the left, we get

0 = −iσ2∇̂∗ξ∗ + iqiσ2Â
∗ξ∗ + imiσ2η

∗ (29)

But we have
iσ2∇̂∗ = ∇iσ2 ; iσ2Â

∗ = Aiσ2. (30)

Therefore (29) reads

0 = ∇(−iσ2ξ
∗) + iqAiσ2ξ

∗ + imiσ2η
∗ (31)

Now we let

φ =
√

2
(
ξ −iσ2η

∗) =
√

2
(
ξ1 −η∗2
ξ2 η∗1

)
. (32)

φ is a function of the space-time with value into theM2(C) = Cl3 algebra
and we get

φ̂ =
√

2
(
η −iσ2ξ

∗) =
√

2
(
η1 −ξ∗2
η2 ξ∗1

)
. (33)

As the Dirac equation (1) is equivalent to the system (27)-(28), and as
(28) is equivalent to (31), the Dirac equation (1) is equivalent to

∇
(
η −iσ2ξ

∗) + iqA
(
η iσ2ξ

∗) + im
(
ξ iσ2η

∗) = 0 (34)
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As φiσ3 = i
√

2(ξ iσ2η
∗), the Dirac equation (1) is equivalent to

∇φ̂+ qAφ̂iσ3 +mφiσ3 = 0 (35)

or, with σij = σiσj ,

∇φ̂+ qAφ̂σ12 +mφσ12 = 0. (36)

What is the form of the relativistic invariance here ? (14) gives

ψ′ =
(
ξ′

η′

)
= Nψ =

(
M 0
0 M̂

) (
ξ
η

)
=

(
Mξ

M̂η

)
. (37)

So (14) is equivalent to

ξ′ = Mξ ; η′ = M̂η. (38)

and is equivalent to

φ′ = Mφ ; φ′ =
√

2
(
ξ′ −iσ2η

′∗) (39)

And with
∇′ = σµ∂′µ (40)

we get, for any M :

∇ = M−1∇′M̂ ; A = M−1A′M̂. (41)

So the Dirac equation (36) gives

0 = ∇φ̂+ qAφ̂σ12 +mφσ12

= M−1∇′M̂φ̂+ qM−1A′M̂φ̂σ12 +mφσ12

= M−1
(
∇′φ′ + qA′φ′σ12 +mφ′σ12

)
(42)

That assures the invariance of the Dirac equation (36) under SL(2,C).

3 - More tensors

As the wave ψ is a non-classical object, the tensorial densities linked
to that wave have been early recognized and studied, particularly by
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O. Costa de Beauregard [5] and Y. Takabayasi [6]. The main tensors,
without derivatives, are

Ω1 = ψψ ; ψ = ψ†γ0

Jµ = ψγµψ

Sµν = iψγµγνψ (43)

Kµ = ψγµγ5ψ ; γ5 = −iγ0γ1γ2γ3 =
(
I 0
0 −I

)
Ω2 = −iψγ5ψ

With 1+4+6+4+1=16 densities, that list is considered as complete, be-
cause the algebra generated by the Dirac matrices is 16-dimensionnal
over C. But the preceding densities are all real, and the dimension of the
algebra, over R, is 32. So it is just a coincidence, and we will see that
there are more tensors, using the space algebra where we get

Ω1 + iΩ2 = det(φ) = φφ = φφ = 2η†ξ (44)

J = Jµσµ = φφ† (45)

S = S23σ1 + S31σ2 + S12σ3 + S10iσ1 + S20iσ2 + S30iσ3 = φσ3φ (46)

K = Kµσµ = φσ3φ
† (47)

The relativistic behaviour of those tensors are straightforward : Ω1 and
Ω2 are invariant since

Ω′
1 + iΩ′

2 = det(φ′) = det(Mφ) = det(M) det(φ) = det(φ) = Ω1 + iΩ2.
(48)

J and K are vectors transforming as x :

J ′ = φ′φ′
† = Mφ(Mφ)† = Mφφ†M† = MJM† (49)

K ′ = φ′σ3φ
′† = Mφσ3(Mφ)† = Mφσ3φ

†M† = MKM† (50)

S is a spacetime bivector, transforming as

S′ = φ′σ3φ
′
= Mφσ3Mφ = Mφσ3φ M = MSM (51)

But the form itself of S and K, where only σ3 is used, implies that there
are in fact three vectors Dk and three bivectors Sk, defined by

Dk = φσkφ
† (52)

Sk = φσkφ, (53)
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verifying, under a Lorentz transformation R = f(M) :

D′
k = MDkM

† (54)

S′k = MSkM. (55)

With Ω1, Ω2, J , three Dk and three Sk, we have actually 1+1+4+(3×
4) + (3 × 6) = 36 tensorial densities without derivative : The complex
formalism is, by far, incomplete.

Evidently, anything in the Dirac theory may also be read with the
Dirac matrices : ψt being the transposed matrix, and with

ψ̃ = ψtγ0γ2 ; ψ̌ = ψtγ1γ3 (56)

we get

ψ̃γµψ = Dµ
2 − iDµ

1 (57)

ψ̌γµγνψ = Sµν
2 − iSµν

1 (58)

But the tensoriality is not straighforward. It results from the fact that
for any N in (12) we have

γ0γ2N
−1 = N tγ0γ2 ; γ1γ3N

−1 = N tγ1γ3 (59)

ψ̃′ = ψ̃N−1 ; ψ̌′ = ψ̌N−1 (60)

so we get

ψ̃′γµψ′ = Rµ
ν ψ̃γ

νψ (61)

ψ̌′γµγνψ′ = Rµ
ρR

ν
τ ψ̌γ

ργτψ (62)

We must also remark that K = D3 and J = D0. So we get four
space-time vectors Dµ. These vectors form an orthogonal basis of the
space-time, because we get :

2Dµ ·Dν = DµD̂ν +DνD̂µ

= φσµφ
†φ̂σνφ† + φσνφ

†φ̂σµφ† (63)

= φσµφ
†φ̂σ̂ν φ̂

† + φσνφ
†φ̂σ̂µφ̂

†

But φ̂† = φ and φφ = Ω1 + iΩ2 commutes with any element in Cl3. It is
the same for φ†φ̂ = Ω1 − iΩ2, and we get

2Dµ ·Dν = (Ω1 − iΩ2)φ(σµσ̂ν + σν σ̂µ)φ (64)
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So we get

D0 ·D0 = (Ω1 − iΩ2)φφ = (Ω1 − iΩ2)(Ω1 + iΩ2) = Ω2
1 + Ω2

2 (65)

The Dirac theory calls ρ the invariant

ρ =
√

Ω2
1 + Ω2

2 = |det(φ)| (66)

And the argument of the determinant is the Yvon-Takabayasi angle β :

det(φ) = Ω1 + iΩ2 = ρeiβ . (67)

So we get
D0 ·D0 = ρ2 (68)

We have σ̂0 = σ0 = 1 and σ̂k = −σk, and with k = 1, 2, 3 we get

D0 ·Dk = (Ω1 − iΩ2)φ(−σk + σk)φ = 0 (69)

and we have σkσ̂k = −σ2
k = −1, so we get

Dk ·Dk = −ρ2 (70)

With j = 1, 2, 3, k = 1, 2, 3, j 6= k we have σj σ̂k + σkσ̂j = 0, and we
get

Dj ·Dk = 0 (71)

With the Minkowski metric :

g00 = 1 ; g11 = g22 = g33 = −1 ; gµν = 0 , µ 6= ν (72)

We get
Dµ ·Dν = gµνρ

2 (73)

Try to find that result with the Dirac matrices and you will understand
why the space algebra is much simpler.

4 - Wave’s geometry

It has been seen first by G. Lochak [7], next by D. Hestenes [8],
that the ψ wave has a geometrical aspect, with a Lorentz rotation. This
Lorentz rotation exists only where the invariant ρ is not null. In that
case we can write

φ =
√
ρei β

2M. (74)



146 C. Daviau

We get then

φ =
√
ρei β

2M

ρeiβ = φφ =
√
ρei β

2M
√
ρei β

2M = ρeiβMM (75)

Therefore M = M−1, det(M) = 1 and M is an element of SL(2,C).
GenerallyM is called a Lorentz rotation, butM is not a Lorentz rotation,
it is an element of the covering group of L↑

+. We must distinguishM from
R = f(M).

The Yvon-Takabayasi angle β is the basis of the G. Lochak’s theory
of the magnetic monopole [9]. But what is ρ ? Has also ρ a geometrical
meaning ? Contrarily to the statistical interpretation of D. Hestenes, we
think that the answer is yes, ρ is a scale parameter. To see that, we
come back to (7), but now we do not restrict M with (6), we consider
any matrix M in Cl3, that is any 2 × 2 complex matrix. We consider
always the R transformation defined by (7) and f defined by (11). Now
we get

det(x′) = det(M) det(x) det(M†) = |det(M)|2 det(x) (76)

With
det(M) = reiθ (77)

we get

(x′0)2 − (x′1)2 − (x′2)2 − (x′3)2 = x′x′ = det(x′)

= r2 det(x) = r2xx = r2[(x0)2 − (x1)2 − (x2)2 − (x3)2] (78)

So R is a transformation multiplying each space-time length by r. We
call R a Lorentz dilation and r is called the ratio of the dilation. The
main results, got for any M , are [10] :

R0
0 > 0 if M 6= 0 (79)

det(Rν
µ) = r4 (80)

ker(f) = {M/M = ei θ
2 I} (81)

We note Cl∗3 the multiplicative group made of theM matrices with r 6= 0,
and D the group of the Lorentz dilations, always with r 6= 0. 2

2If r = 0, M and R are not invertible, and we do not get the group structure. But
physically that case may not be avoided : with most of the Darwin solutions for the
H atom, exist places with ρ = 0.
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The physical signification of (79) is that, except the null case, any di-
lation R conserves the time’s arrow. So the Dirac wave is compatible with
an oriented time. The physical consequence of (80) is that det(Rν

µ) > 0 if
r 6= 0, so R conserves the space-time orientation, and as R conserves the
time’s orientation, R conserves the space orientation : the Dirac wave is
compatible with an oriented space.

Now we must examine (81). When the Dirac theory looks at the re-
lativistic invariance, it is always with det(M) = 1, that is θ = 0 mod
2π and r = 1. In that case θ

2 = 0 or θ
2 = π, and ei θ

2 = ±1. There-
fore the {±I} kernel, always present in quantum mechanics, is exactly
what remains of the chiral gauge group used by G. Lochak for the mo-
nopole’s wave equation, when we impose to use only M matrices with
det(M) = 1. We can also say that the chiral gauge was hidden in all
the quantum theory. We can also see how significant it is to distinguish
the group Cl∗3, which includes the chiral gauge and is a 8-dimensionnal
Lie group, from the D group, which is independent of the chiral gauge
and is only a 7-dimensionnal Lie group. Cl∗3 appears as the main group,
even if D is the geometrical group. We must not forget that it is the
wave which propagates, which interferes, not the tensors or the Lorentz
dilation. The wave has one more parameter, the Yvon-Takabayasi angle.
It disappears from the D group, because the Lorentz dilation acts only
on the spacetime vectors, and R. Boudet has understood that the Yvon-
Takabayasi angle acts on the bivectors [11] : That can be seen with the
formulas (51) or (55).

It is possible to get invariant laws under Cl∗3, in the Dirac equation,
but also in all the electromagnetic theory, with or without monopoles,
with or without photons [12].

5 - Two spacetime manifolds.

There is no difference between the 2 × 2 complex matrix M , and
the 2 × 2 complex matrix φ of the electron’s wave. More precisely a
Dirac wave is a function from the spacetime with value into the set Cl3.
Moreover there is no difference between the product M ′M which gives
the product of two Lorentz dilations, and the product Mφ in (39), which
gives the transformation of the wave under a Lorentz dilation. Therefore
we can associate to the φ wave, in each point of the spacetime, a Lorentz
dilation. As this dilation varies with space and time, it must be seen as
local, applying the local tangent spacetime into the observer’s spacetime.
We shall name D = f(φ) this dilation and y the general element of the
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tangent spacetime :

D : y 7→ x = φyφ† (82)

The tangent spacetime varies from a point to another and may be seen
as the tangent space to a spacetime manifold Sw, linked to the wave.
So we must consider two spacetime manifolds and we note Sobs the
manifold relative to the observers. D maps Sw into Sobs. If we use a
Lorentz dilation R = f(M), that is if we change from the observer of x
to the observer of x′ = MxM†, we get

x′ = MxM† = M(φyφ†)M†

= (Mφ)y(Mφ)† = φ′yφ′
† (83)

Therefore we get x = D(y) and x′ = D′(y) with D′ = R ◦ D, and the
same y : the y term does not change, either seen by the observer of x or
the observer of x′. This y is intrinsic to the wave and independent of the
moving observer. We can call Sw the intrinsic manifold.

Now we let

x = xµσµ ; y = yµσµ ; Dµ = Dν
µσν (84)

and we get

xνσν = x = φyφ† = φyµσµφ
†

= yµφσµφ
† = yµDµ = yµDν

µσν (85)

xν = Dν
µy

µ ; ∂ν =
∂

∂yν
= Dµ

ν ∂µ. (86)

So the components of the four vectors Dµ are the components of the
matrix Dν

µ of the Lorentz dilation D. We can apply to D and Dν
µ all the

results got with R and Rν
µ : we have

D0
0 > 0 if φ 6= 0 (87)

det(Dν
µ) = ρ4 ; det(Dν

µ) > 0 if ρ 6= 0. (88)

So the spacetime manifold Sw has, at each point, the same time’s arrow
and the same space orientation.
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6 - Connection of the intrinsic manifold

To compute the connection of the intrinsic manifold [11] we shall use
the mobil orthogonal basis (D0, D1, D2, D3). We let

dx = dyνDν (89)

dDµ = Γβ
µνdy

νDβ . (90)

If ρ 6= 0 we get

dx = dxµσµ = Dµ
νσµdy

ν = Dνdy
ν

Dν = φσνφ
† = Dµ

νσµ ; σµ = (D−1)β
µDβ (91)

We shall use the Lorentz dilation D verifying

D(x) = φxφ̂ (92)

and we get
D−1(x) = ρ−2D(x) (93)

dDµ = ∂ν(Dµ)dyν = ∂ν(Dξ
µσξ)dyν = ∂ν(Dξ

µ)σξdy
ν

= ∂ν(Dξ
µ)(D−1)β

ξDβdy
ν = Γβ

µνDβdy
ν . (94)

Therefore the connection verifies

Γβ
µν = ∂ν(Dξ

µ)(D−1)β
ξ ; ∂ν = Dτ

ν∂τ . (95)

Using D we get

Γβ
µν = ρ−2∂ν(Dξ

µ)D
β

ξ ; ∂ν = Dτ
ν∂τ . (96)

As D
0

0 = D0
0 and D

0

j = −Dj
0 we get

Γ0
0ν = Γ1

1ν = Γ2
2ν = Γ3

3ν = ∂ν [ln(ρ)] = Dµ
ν ∂µ[ln(ρ)]. (97)

As D
j

0 = −D0
j and D

k

j = Dj
k we get

Γj
0ν = Γ0

jν , j = 1, 2, 3. (98)

Γj
kν = −Γk

jν , j = 1, 2, 3 , k = 1, 2, 3, k 6= j. (99)
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To compute the connection we need

S(k) + iS ′
(k) =

∇S†k
det(φ)†

(100)

A(k) + iA′
(k) =

AS†k
det(φ)†

(101)

τ =
1
2
[(∇̂φ)φ− ˙̂∇φφ̇] (102)

T + iT ′ =
τ

det(φ)
(103)

where the points in (102) indicate on what acts the differential operator.
Using the linear Dirac equation we get

Γ0
1ν = Dν · [S(1) − 2qA(2)] + 2mΩ1δ

2
ν (104)

Γ2
3ν = −Dν · [S ′

(1) − 2qA′
(2)]− 2mΩ2δ

2
ν (105)

Γ0
2ν = Dν · [S(2) + 2qA(1)]− 2mΩ1δ

1
ν (106)

Γ3
1ν = −Dν · [S ′

(2) + 2qA′
(1)]− 2mΩ2δ

1
ν (107)

Γ0
3ν = Dν · S(3) − 2mΩ2δ

0
ν (108)

Γ1
2ν = −Dν · [S ′

(3) + 2qA]− 2mΩ1δ
0
ν (109)

Γ0
0ν = Dν · [−2T + 2qA′

(3)]− 2mΩ2δ
3
ν (110)

As this connection is not symmetric, the intrinsic manifold has a non
vanishing torsion, and this torsion includes mass terms.

Another important aspect is the fact that the third axis plays a privi-
leged role. That can be seen with the wave equation (36) : The intrinsic
manifold is not isotropic. All that we know from mechanics and astro-
nomy indicates that the spacetime Sobs is isotropic, presents no privileged
direction. But the intrinsic manifold Sw is not identical to the observer’s
manifold and may have different properties. One may be isotropic and
the other not. We suppose that the existence of a privileged direction
in the manifold linked to the wave of an electron is the reason of the
existence of three kinds of wave equation : (36) is one of three similar
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equations

∇φ̂+ qAφ̂σ23 +mφσ23 = 0

∇φ̂+ qAφ̂σ31 +m′φσ31 = 0 (111)

∇φ̂+ qAφ̂σ12 +m′′φσ12 = 0

With the first equation, the first axis in Sw is privileged, with the second
equation, the second axis in Sw is privileged, and with the third equation,
which is the Dirac equation, the third axis is privileged. We can suppose
that the three kinds of leptons, electrons, muons, tauons, come from
that. But we lack a good theory to understand how two Dirac waves,
with or without the same privileged direction, interact.

7 - Torsion in the case of a plane wave

The simpler case to solve the Dirac equation is the plane wave without
electromagnetic interaction (A = 0). The Dirac equation reads now

∇φ̂+mφσ12 = 0 (112)

We use a plane wave verifying

φ = φ0e
−ϕσ12 ; ϕ = mvµx

µ ; v = σµvµ. (113)

where the velocity v and φ0 are fixed terms. We get

∇φ̂ = σµ∂µ(φ̂0e
−ϕσ12) = −mvφ̂σ12. (114)

Therefore (112) is equivalent to

φ0 = vφ̂0 (115)

which is equivalent to
φ̂0 = v̂φ0 (116)

and implies
φ0 = v(v̂φ0) = vv̂φ0 = v · vφ0. (117)

Therefore if φ0 is invertible we must take

1 = v · v = v2
0 − ~v

2 (118)

v2
0 = 1 + ~v 2 ; v0 = ±

√
1 + ~v 2. (119)
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which is the relativistic relation for the velocity of the particle. We get
also

D0 = φφ† = φ0φ
†
0 (120)

Therefore D0 is fixed and ∂µ(Dν
0 ) = 0. It is the same for D3

D3 = φ0σ3φ
†
0 (121)

D1 and D2, on the contrary, are variable. We let

d1 = φ0σ1φ
†
0 ; d2 = φ0σ2φ

†
0 (122)

which gives

D1 = cos(2ϕ)d1 + sin(2ϕ)d2

D2 = − sin(2ϕ)d1 + cos(2ϕ)d2 (123)

We also have
D0 = φ0φ

†
0 = vφ̂0φ

†
0 = v(Ω1 − iΩ2) (124)

But D0 is a vector, so we get

Ω2 = 0 ; D0 = vΩ1. (125)

And D0
0 > 0, so we have two cases, one with positive energy

Ω1 > 0 ; v0 =
√

1 + ~v2 (126)

the other with negative energy

Ω1 < 0 ; v0 = −
√

1 + ~v2 (127)

In any case as D0 and D3 are fixed we get

∂∂∂ν(Dξ
0) = ∂∂∂ν(Dξ

3) = 0 (128)

Γβ
0ν = Γβ

3ν = 0. (129)

With D1 and D2 we get

∂τ (Dξ
1) = ∂τ [cos(2ϕ)dξ

1 + sin(2ϕ)dξ
2] = 2mvτD

ξ
2

∂τ (Dξ
2) = ∂τ [− sin(2ϕ)dξ

1 + cos(2ϕ)dξ
2] = −2mvτD

ξ
1

∂∂∂ν(Dξ
1) = Dτ

ν∂τ (Dξ
1) = 2mDτ

νvτD
ξ
2 = 2m(Dν · v)Dξ

2 (130)

∂∂∂ν(Dξ
2) = Dτ

ν∂τ (Dξ
2) = −2mDτ

νvτD
ξ
1 = −2m(Dν · v)Dξ

1 (131)
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But (125) implies

Dν · v =
1

Ω1
Dν ·D0 = Ω1δ

0
ν . (132)

Therefore we get

Γβ
11 = Γβ

12 = Γβ
13 = Γβ

21 = Γβ
22 = Γβ

23 = 0. (133)

With (130) we get

Γβ
10 =

2m
Ω1

Dξ
2D

β

ξ ; Γβ
20 = −2m

Ω1
Dξ

1D
β

ξ (134)

which gives

Γ2
10 =

2m
Ω1

Dξ
2D

2

ξ =
2m
Ω1

(D0
2D

2

0 +D1
2D

2

1 +D2
2D

2

2 +D3
2D

2

3)

=
2m
Ω1

(−D0
2D

0
2 +D1

2D
1
2 +D2

2D
2
2 +D3

2D
3
2)

=
2m
Ω1

(−D2 ·D2) = 2mΩ1. (135)

We get also

Γ0
10 =

2m
Ω1

(D2 ·D0) = 0

Γ3
10 =

2m
Ω1

(−D2 ·D3) = 0

Γ1
10 =

2m
Ω1

(−D2 ·D1) = 0 (136)

Similarly for the Γβ
20 we get

Γ1
20 = −2mΩ1 ; Γ0

20 = Γ2
20 = Γ3

20 = 0. (137)

To resume, amongst the 64 Γβ
µν terms, 62 terms are zero. Two terms are

not zero :
Γ2

10 = −Γ1
20 = 2mΩ1. (138)

Therefore the torsion has two interesting components :

1
2
(Γ2

10 − Γ2
01) = mΩ1 (139)

1
2
(Γ1

20 − Γ1
02) = −mΩ1 (140)
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As the non vanishing Γβ
µν terms are fixed, the curvature tensor cancels.

So we can see that the intrinsic manifold Sw linked to a plane wave of
the Dirac equation is without curvature, but with a fixed torsion linked
to the mass term. It is easy to predict the torsion coming with a plane
wave in the case of the first equation (111) :

1
2
(Γ2

20 − Γ2
02) = mΩ1 (141)

1
2
(Γ1

30 − Γ1
03) = −mΩ1 (142)

and in the case of the second equation (111) :

1
2
(Γ2

30 − Γ2
03) = mΩ1 (143)

1
2
(Γ1

10 − Γ1
01) = −mΩ1 (144)

In the three cases, the torsion is in the spin plane.

Concluding remarks.

The Dirac theory may be read with two frames. We have used here
the Cl3 frame. Nearly eighty years ago, Dirac used a more complicated
frame, with both the Pauli algebra Cl3 and new 4×4 complex matrices.
We have presented these two frames so as to legitimate the use of our
Cl3 frame.

But we think that these two frames are not at all equivalent. The
classical frame extends the L↑

+ invariance to the total Lorentz group,
with the P and T transformations, forgetting completely that the theory
is not invariant under the restricted Lorentz group L↑

+, but under its co-
vering group SL(2,C). The Cl3 frame extends the true invariance under
SL(2,C) to an invariance under Cl∗3, which conserves the time’s arrow
and the space’s orientation. The P and T transformations are unknown
here, and that is appropriate with the experimental facts concerning the
P and T violations by weak interactions.

The difference between the two frames may also be seen with the
tensors of the theory. K = D3 is here a vector which transforms as the
three other Dµ. With the Dirac matrices, the same K is seen as the dual
vector of an antisymmetric tensor. If we do not restrict the invariance
group to r = 1, (7) and (9) imply that Rν

µ contains a r2 factor. So an
antisymmetric tensor with rank 3 has a r6 factor. It is the same with
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the bivectors which have a r4 factor with the old formalism, and only
a r2 factor with (53). The old formalism was not able to see J and K
as two vectors of an orthogonal basis 3 , and so was not able to see all
the geometry linked to the wave, the intrinsic spacetime manifold and
its torsion.

The ”internal symetries” developed to understand modern physics
may be linked to the symetries of that intrinsic spacetime. If it is true,
then the gravitation, which is linked to the geometry of Sobs, is necessa-
rily outside of those internal symetries.
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Louis de Broglie, 22 n◦ 1 1997.

C. Daviau : Sur les tenseurs de la théorie de Dirac en algèbre d’espace,
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réelle d’espace-temps. Ann. Fond. Louis de Broglie, 13 n◦1 1988.

[12] C. Daviau : On the electromagnetism’s invariance, Ann. Fond. Louis de
Broglie, to be published.
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