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ABSTRACT. Assimilated to inertia in Newton’s law m=F a  and to en-

ergy in Einstein’s formula 2E mc= , mass becomes a frequency with de 

Broglie’s relation 2hν mc= . These very different aspects of mass can be 
reconciled if one comes back to the (Maupertuis) concept of action and asks 
for its physical meaning. We show that in the simple case of free colliding 
particles, action and mass are both related to the general notion of non iner-
tial motion. In special relativity, this approach strongly suggests that the 
mass of a particle measures the frequency of non inertia of its internal proc-
esses. This idea, which is a reversal of the Newtonian conception, is sup-
ported at the quantum level by a simple analysis of the Dirac equation.  

 

1 Introduction: What is inertial mass? 

What is mass? This question has often been discussed in pedagogical pa-
pers (see e.g. [1]) or in historical reviews (see e.g. [2]), with the principal 
aim of distinguishing inertial mass, which enters for example Newton’s law 

m=F a  where it characterizes the response (acceleration) of a body to a 
given external force, and gravitational masses, which are associated either to 
weight or to the source of gravitation. This distinction is important, but one 
must acknowledge that the fundamental question addressed to physicists in 
this field is why the ratio of inertial and gravitational masses is universal, 
suggesting that these masses are identical. Although we have it in mind, the 
subject of our paper is more restricted. We re-examine the notion of inertia 
and simply ask: is inertial mass what classical physics tells us? The Newto-
nian definition, which is still true in special relativity (SR) if one specifies 
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that all quantities are measured in the instantaneous rest frame of the body, 
has survived for ages in the physics community. Of course it has been en-
riched by Einstein’s discovery that the inertial mass of a body is connected 
to its rest energy by the famous relation 2E mc= . As emphasized in most 
textbooks on relativity this relation tells that mass and energy at rest are 
identical concepts and allows to precise what mass is made of: the mass of a 
particle has different contributions among which the masses of its constitu-
ents and their kinetic and potential energies (divided by 2c ). 

But is this equivalence between inertia and energy the end of the story of 
inertial mass? Certainly not, because the quantum revolution forces us to 
think of energy in another way. Indeed Quantum Mechanics (QM) involves 
in a fundamental way the Planck constant h (or h 2π=h ). Similarly to 

2E mc= , the Einstein relation E hν=  between the energy and the fre-
quency of the light quanta, which is generalized1 by the Schrödinger equa-
tion (SE) i tHψ ψ= ∂h , tells us that energy and frequency must also be 
considered as two identical concepts. Then, since mass is energy, mass must 
be a frequency. At a dimensional level, this frequency is well known; it is 
nothing but the inverse of the Compton time cτ  associated with the Comp-
ton length c cc h mcλ τ= =  which Compton introduced in his analysis of 
the diffusion of X – rays by electrons. More generally, in relativistic quan-
tum field theory (RQFT), h  like c being considered as dimensionless, mass 
and frequency have the same dimension. In the standard model, which ac-
counts for most present particle interactions, masses are generated by the 

vacuum values of boson fields whose dimension is also [ ] 1T −
 (like the 

electromagnetic potential vector). 
However the above identification of the concepts of mass and frequency 

based on a dimensional argument is unsatisfactory. One would like to have a 
more intuitive and why not naïve way of talking of mass as frequency. For 
                                                                 

1 Let { }αψ  be an arbitrary fixed orthonormal basis, the decomposition of any quan-
tum state (even non stationary) satisfying the SE leads to the relation 

( ) ( )2
α α

α
c t ψ,Hψϕ =∑ &h  which one can write whatever the basis h ν H= . 
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this, one must remember that h  is a natural unit of action, as Planck already 
noted in 1900 long before the mathematical development of QM. Therefore 
a new look on inertial mass, even within classical physics (or better prequan-
tum physics), can emerge from a physical insight about the concept of ac-
tion. This implies than one stops to consider it as a pure mathematical quan-
tity, and that (even in teaching) one gives to this notion in mechanics a cen-
tral role (like that of entropy in thermodynamics). Restricting ourselves to 
the simple but not trivial case of free particles, for which the action is pro-
portional to the mass, we shall show that there is a link between action and 
non inertial phenomena. Within Galilean relativity this link agrees with the 
traditional Newtonian idea of mass as inertia, but within SR (Einsteinian 
relativity), another interpretation emerges. According to it, the mass of a 
point like particle is a screen variable which is related to the non inertial 
processes which are internal to the particle: in the rest frame of the particle, 
the mass can be interpreted as the frequency of non inertia of these proc-
esses. This identification agrees with the idea that the mass of a particle is 
determined by its internal structure, independently of any precise model. 
From an epistemological point of view, we shall see that it also formulates in 
a new way the connection between time (frequency) and non inertial phe-
nomena, as well as the question of what is inertial and what is not. 

Let us emphasize that the idea of a relation between mass and action is 
not new. Up to our knowledge, it has occurred in the reflexion of physicists 
at least at two historical occasions. The first one was at the very birth of the 
idea of action. After having defined in 1744 the quantity of action by the 
product lv  of the speed of a body times the distance which it travels (in 
order to reconcile mechanical and optical laws of nature), Maupertuis added 
in 1746 that, when several bodies are present, one must take into account 
their mass (i.e. consider the product m lv ). He then recovered in a simple 
case the conservation law (CL) of momentum in collisions from a minimum 
principle (“Nature saves the quantity of action”). The second one occurred at 
the beginning of the 20th century when physicists worked on an electromag-
netic origin of mass [2,3]. In 1906, Poincaré [4] deduced the relativistic 

lagrangian 21m− −v (he took 1c = ) from the invariance of the electro-
magnetic action of an extended charge under Lorentz transformations (LT) 
(see e.g. [5,6]). As Poincaré accompanied these transformations with dilata-
tions 't lt= , 'r lr= , and discovered that they also leave the action invari-
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ant, all quantities in his paper transform in the way prescribed by RQFT 
(where [ ] [ ] 1c= =h )2. If one has in mind that physics is born with Galilee’s 
discovery of inertial frames and that most fundamental processes are de-
scribed through least action principles (LAP), our proposition that action is 
related to the non inertia of these processes is not surprising from an histori-
cal point of view. 

In section 2 we briefly recall how mass, inertia and energy occur in New-
tonian and Einsteinian physics. Section 3 is concerned with the LAP for free 
classical particles. We show how the notions of action and mass are linked to 
that of non inertial motion and allow to derive in a simple way the CL of 
momentum and energy in elastic and inelastic collisions. It puts forward the 
importance of the proper time τ  and provides a better understanding of the 
“non relativistic” lagrangian (kinetic – potential energies). The connection 
between action, or rather its opposite mc²τ  which we call “activity”, and the 
non inertia of the internal dynamics of a particle, is introduced in section 4 
within the historical context of prequantum physics and discussed in the 
light of present physics. Mass appears as a frequency of internal non inertia 
and is the inverse of Compton time. This image is justified by a simple 
analysis of the Dirac equation (DE) in Section 5.  

2 Mass, inertia and energy in classical physics 

Before briefly comparing Newtonian and Einsteinian physics it is impor-
tant to recall that both need the introduction of inertial frames (solid bodies 
in inertial motion) and both are relativistic. The importance of these frames 
as reference frames in relation with symmetry properties and the invariance 
of physical laws was first noticed by Galilee. Galilean relativity simply dif-
fers from SR by the transformations laws of the spacetime interval ( ),T R  

between two events ( )2 1 2 1, R r rT t t= − = −  when a frame R’ moves with 
respect to R with velocity V . They read 'T T=  and T= −R' R V  in the 
former, and lead to = −' Vv v  for the change of velocity; they keep 

                                                                 

2 Without knowing QM, he obtained for example 1A' Al−=  for the potential vector 

and 1'W l W−=  for the energy. But although he gave a prominent role to the least 
action principle in physics, Poincaré proposed no physical meaning to the concept of 
action. 
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2 2 2T c−− R  invariant in the latter and imply that c is an invariant velocity 
(we shall not need the explicit form of the LT). It is well known that Gali-
lean relativity is a particular (limit) case of SR ( c,V c<< <<v ), but we 
insist that this remark implies that the understanding of Newtonian “every-
day” physics must benefit from the knowledge of Einsteinian physics. 

In Newtonian physics the inertial mass is often introduced through the re-
lation m =a F  between the acceleration of a body and the external force. 
F  being fixed, the greater the mass is, the less the inertial motion of the 
body is modified, i.e. the less its velocity changes (in a given time interval). 
Another introduction which leads to the same picture of mass as inertia is the 
relation 

 1 1 2 2m mΔ = − Δv v  (1) 

for an isolated system of two particles. Its advantage is that it avoids to 
speak of the notion of force (a concept whose interest is the description of 
interactions), and that it introduces a more fundamental quantity, the mo-
mentum m=p v  and its CL. In the following we restrict ourselves to the 
study of collisions of (approximately) point like particles. If the indexes i 
and f denote the initial and final particles in the collision, the CL of momen-
tum reads: 

 p p pf iΔ = − =∑ ∑ 0 . (2) 

It is invariant (frame independent) provided that mass is also conserved 
(Lavoisier’s law) 

 0f im m mΔ = − =∑ ∑ . (3) 

As a consequence of these CL, the variation 0f iK K KΔ = − =∑ ∑  of 

the kinetic energy in a collision (with 22vmK =  for each particle) is also 
invariant. It is zero for elastic collisions but non zero for inelastic ones, as 
for example those involved in chemical reactions. One recovers (and verifies 
experimentally) a CL for energy by attributing to each i or f particle a proper 
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(internal) energy ,i fU which up to an additive constant is its binding energy. 

Writing , , ,i f i f i fE K U= + , the CL of energy reads: 

 0f iE E EΔ = − =∑ ∑    or    K UΔ = −Δ . (4) 

(The change in kinetic energy comes from that of the binding energies). U 
is like m frame independent, but in Newtonian physics there is no relation 
between them. 

In Einsteinian physics the energy and the momentum of a particle are  

 2 ,E mc mγ γ= =p v ,        
1/ 22

21
c

γ
−

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

v
, (5) 

and the invariance of their CL is ensured by the property that (E,cp) trans-
forms linearly like a quadrivector (i.e. like (cT,R)). Inertial mass is generally 
introduced, not directly from the idea of inertia, but by the remark that one 
recovers p=mv in the Galilean limit. A new picture of the inertial mass 
comes from the relation 2E mc=  for 0=v  which allows to define the 

kinetic energy by 2K E mc= −  ( 22vm=  in the Galilean limit). Then the 

CL of energy reads ( ) 2K m cΔ = − Δ : the released kinetic energy in a reac-
tion corresponds to a mass defect ( 0KΔ >  if 0mΔ < ). If the binding en-
ergy of a particle is defined by the difference 

 2 2U mc m c∗= −  (6) 

where m∗  is the total mass of its constituents ( for example 

H p em m m∗ = +  for the H atom), one recovers the relation K UΔ = −Δ  
provided the constituents are preserved in the reaction. This brief summary 
shows that in Einsteinian physics “mass is rest energy”, and therefore the 
mass of a particle is intimately related to its internal structure. Is mass 
equivalent with inertia? Some physicists define inertia by the factor in front 
of v  in the expression of the momentum p , a definition which goes back 
to the electromagnetic theory of the electron before 1905. Nowadays this 
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definition has less interest (excepted for special pedagogical purposes [7]) 
since in SR the difference between mass m and inertia mγ  amounts to that 
between rest energy and energy. In section 4 we will be more interested by 
the interpretation of the factor 1mγ −  which is proportional to the lagrangian 
(action per unit time) of a relativistic particle. 

3 Mass, action and non inertial motions 

Most physicists are convinced that the concept of action is a very funda-
mental one. LAP enter many domains of physics; the CL of energy and 
momentum are consequences of the symmetries of the action; action, assimi-
lated to a phase is at the basis of Feynman’s path approach to quantum phys-
ics... But their comments on this concept are generally more mathematical 
comments than physical ones. This section and the next one aim at giving a 
physical meaning to the notion of action in the most simple case, that of free 
particles, but in a non trivial situation since we consider the possibility of 
elastic or non elastic collisions. 

We begin our discussion with the familiar action for a free particle in 
Galilean relativity [8]: 

 21 d
2

B

A
S m t m I= = ×∫ v . (7) 

( ),A AA t r  and ( ),B BB t r  are respectively the initial and final events, at 
the beginning and the end of the considered motion. S contains a kinematical 
term I and a dynamical one m. I possesses two important properties: A and B 
being fixed, the difference 2 1I I−  for two motions is invariant, and I is 
minimum for an inertial motion. The first property 2 1 2 1I' - I' I - I=  is an 
immediate consequence of the Galilean law of transformation of the veloc-
ity. The second one is obtained in the particular frame 0R  where 0 0A B=r r , 
i.e. where the positions of A and B coincide; in this frame one has 0 0I ≥  
and 0 0I =  if the particle is at rest. These two properties make I the right 
quantity to characterize an inertial motion and the natural one to compare 
non inertial ones for a given mass m: for A and B fixed, the greater I is, the 
more non inertial the motion is. The role of the dynamical factor m with 
respect to non inertia is illustrated by the study of the elastic collisions of 
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two particles n =1,2 (cf. figure 1 ). nA are initial events (before the colli-
sion), 'nA  are final events (after it) and C (with coordinates ,t r ) is the 
collision event. The total action can be written 

 1 1 1 2 2 2( ' ) ( ' )tS m I I m I I= + + +  (8) 

where n nm I  (resp. 'n nm I ) are the actions between nA  and C (resp. C and 
'nA ) for particle n. Under this form it appears as a combination with differ-

ent “weights” nm , of those quantities n nI I'+  which would have been 

minimized if the particles were independent. tS  looks like a cost function in 
economy and can serve as a natural starting point to introduce masses. Al-
though non familiar, this introduction is in perfect accordance with the intui-
tive Newtonian idea of inertia: if for instance 1m  is much larger than 2m , 
the minimization will lead to a result which is close to that of 1 1'I I+ , i.e. to 
an almost inertial motion for particle 1.  
 

 
Figure 1 

 
It remains to verify that the LAP effectively leads to the CL of momen-

tum and energy in the same simple way as Fermat’s principle leads to 
Snell’s laws [9]. C  being fixed, the minimization of tS  is obtained by iner-
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tial motions of the particles before and after C. Then tS  reads (since the 
velocities are constant) 

 
2 2 2 2

1 2 1 2
1 2 1 2

1 2 1 2

1 1 1 1
2 2 2 2

R R R R
t

' 'S m m m m
T T T' T'

= + + +  (9) 

where , , ' ' , ' 'n n n n n n n nT t t T t t= − = − = − = −R r r R r r  are the 
travelled distances and travelling times before and after collision. (We do not 
need to suppose 1 2t t=  and 1 2' 't t= ). The extremalization of this new ex-

pression of tS  with respect to the coordinates ( ),t r of C uses the easily 
verified relations 

 
21d d .

2
m E T

T
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

R p Rd  (10) 

where  22vmE =  and m=p v  and the obvious ones: 

 d d ' d ; d d 'n n n nT T t= − = = − =R R rd . (11) 

From the expression of d tS  

 1 2 1 2 1 2 1 2d ( ' ' )d ( ' ' ).tS E E E E t= − + − − + + − −p p p p rd , (12) 

one deduces that the extremal condition 0tdS =  is equivalent to the CL of 
energy and momentum ( dt and rd are arbitrary). The generalisation to 
inelastic collisions involves for each particle the proper energy U which is a 
constant and the action, which will be physically justified below 

 21 d
2

B

A
S m U t⎛ ⎞= −⎜ ⎟

⎝ ⎠∫ v . (13) 
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Since it simply adds ( )1 1 2 2 1 1 2 2- U T U T U' T' U' T'+ + +  to the expression 

of tS  and ( )1 2 1 2' 'U U U U dt− + − −  to that of d tS , it leads to the conser-
vation of the total (kinetic + internal) energy. 

In SR the standard action for a free particle is [10]: 

 
2

2 2
21 d

B

A
S mc t mc

c
τ= − − = −∫

v
. (14) 

Its kinematical part τ  is the elapsed proper time of the particle between A 

and B. τ  is an invariant quantity (like d 2 2 2t c−− rd ) and possesses the 
remarkable property, popularized by the Langevin’s  twins paradox, that it is 
maximum for an inertial motion. (This result is obvious in the frame 0R  
where 0 0A B=r r  since the inertial motion then corresponds to 0 = 0v ). 
Therefore, because of the minus sign, S is minimum for such a motion. The 
factor 2c  gives to S the dimension of an action. Collisions and their CL can 
be treated like in Galilean relativity by demanding the minimization of the 
total action [11]: 

 2
t i i f f

i f
S c m mτ τ

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ . (15) 

Here also tS  plays the role of a cost function with weights ,i fm m  and 
elastic collisions can be used to define masses in SR, but it will be important 
for the following to remark that we now allow different initial and final 
particles. Let iA  and fA  be respectively the initial and final events associ-

ated with them, and let C ( , )t r  be the collision event. C being fixed, the 
minimization of tS  imposes an inertial motion for all particles (before and 
after C). Then for each one τ  reads (since v  is constant) 

 

1 2 1 22 2
2

2 21T T
c c

τ
⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Rv
 (16) 
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where T  and R  denote as before the travelling time and distance, and one 
has 

 2d d .mc E Tτ = − p Rd  (17) 

where now E  and p  are the relativistic energy and momentum 

( 2E mcγ=  and mγ=p v ). With these relations, the stationary condition 
with respect to the coordinates of the collision event simply becomes  

 ( ) ( )d d . 0t i f i fS E E t⎡ ⎤= − − − − =⎣ ⎦∑ ∑ ∑ ∑p p rd  (18) 

and yields the CL of energy and momentum. The case of zero masses can be 
taken into account by considering the limit case of very small masses in the 
usual relation 2 2 2 2 4E p c m c− = obtained after minimization3. The fact 
that the extremum is indeed a minimum is proved in appendix A. Finally, in 
the Galilean limit, taking into account the approximation 

22221 vmmcmc −=−γ  and the definition 2( )U m m c∗= −  of the bind-

ing energy ( 2U mc<< ), one recovers the action of a free particle [11]:  

 2 21( ) d
2

B

B A
A

S m c t t t m U∗ ∗⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠∫ v . (19) 

This taking into account of U which unfortunately is unusual in the litera-
ture is important not only because it allows to consider the case of inelastic 
collisions, but also because it answers (in part) a question which any student 
has asked himself before adopting the opinion that action is a pure mathe-
matical entity, namely: why is the lagrangian of a non relativistic particle in 

                                                                 

3 An other possibility is to replace in tS  the term mτ  by λτ  (or 2λτ ) where λ  is a 
Lagrange multiplier associated with the condition τ = 0.  
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an external potential equal to the difference )(22 rUm −v ? (We recall that 
the source of a potential is considered as a non dynamical system and that 
the proper energy of the whole “source + particle”, which depends on r , is 
attributed to the particle). Therefore not only as concerns the notion of en-
ergy, but also as concerns that of action does Einsteinian physics provide a 
better understanding of Newtonian physics. This leads us to examine in more 
details the relativistic action.   

 

4 Mass and internal non-inertia; a reversal of the Newtonian concep-
tion 

We come back to the question of the minus sign in the definition of the 
relativistic action S, which has been historically introduced only to recover 
the Galilean limit. If one starts directly with SR, forgetting Galilean relativ-
ity (and Newtonian physics), the first important notion, as Einstein told us in 
1905, is the proper time τ. Having noted that τ is maximum for an inertial 
motion, and having observed that in an elastic collision the greater the mass 
of a body is, the more inertial its motion is, the quantity mτ appears to be the 
natural one to describe inertial motions and collisions. Then one discovers 
that the principle of maximization of the sum of the quantities mτ  for all 
particles, not only leads to the CL of energy and momentum, but noticeably 
also applies to inelastic collisions where the particles appear and disappear 
“miraculously”, i.e. it applies to cases where matter “changes its form or 
content”. Paraphrasing Maupertuis, one would conclude from these observa-
tions that “nature spends the quantity mτ”. So the question “what is action?” 
must be replaced by: 

“what is 2A mc τ= ?”. 
(We introduce arbitrarily c to keep contact with the previous sections and 

continue to speak of the principle of maximization of A as LAP). To answer 
this question, we recall that one main result of the LAP is that the mass of 
the particle is its rest energy and depends on its internal structure. Therefore 
instead of considering mτ as linked to the motion of the particle, it is natural 
to consider that mτ  is in relation with this structure, i.e. with the dynamics 
of the constituents of the particle. This point of view is also strongly sug-
gested by the observation that mτ keeps to be non zero when the particle is at 
rest and by the above remark that the LAP continues to apply even when 
particles are not conserved. Since the internal dynamics is certainly non 

inertial, the quantity 2mc τ  is the natural candidate to measure the non iner-
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tia of this dynamics. Since one needs a short word and a symbol for this 
“internal non-inertia”, we propose to call it also “activity” and denote it A. 
Of course these considerations do not pretend to bring new information on 
(or a new modelling of) the internal structure of particles, but are only an-
other way to speak (or think) of well known physics. 

Let us begin with general remarks which could have been formulated a 
century ago, just before the development of QM. The first one deals with the 
proportionality of the “activity” of a particle at rest in a given frame to the 
time variable of this frame. If “activity”, which now plays the same role as 
action, is a major concept of physics, mass appears as a “rate of activity” 
(activity per unit of time). If activity can be measured (it becomes a phase in 
quantum mechanics), a conventional unit mass can serve to define time, i.e. 
this mass provides a unit of frequency. From an epistemological point of 
view, this implies that time is intimately related to non inertial phenomena 
[12]. From a philosophical point of view, this means that the Newtonian idea 
that “time flows” is now replaced by the idea that activity flows and time is 
the flow of activity corresponding to a unit mass. These considerations can 
be made more precise if physics provides a privileged unit of “activity” (or 
of action since A and S have the same dimension). This unit is of course the 
constant h which Planck introduced in 1900 before realizing from 1905’s 
Einstein paper on relativity that it is frame invariant, and discovering in 1912 
that it is the natural unit of area in phase space. If a physicist of this prequan-
tum period had introduced h in the above discussion, he would certainly 
have related the proper time τ, the Compton time cτ  and the activity of a 
particle of mass m by:  

 2c
c

A τ hτ
h τ mc

⎛ ⎞= =⎜ ⎟
⎝ ⎠

. (20) 

He would then have interpreted cτ  as a typical time interval during which 
the internal motion can be considered as inertial. More precisely he might 
have imagined that the above internal non inertia is a kind of random (Pois-
son) process whose frequency  1

c cν τ −=  of occurrence of non inertial events 
is given by the relation 

 2
ch mcν = . (21) 
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Then the probability for the internal dynamics of a particle at rest to be 
inertial up to time t  would be related to the “activity” by  

 exp exp
c

τ A- -
τ h

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. (22) 

Finally for two non interacting (i.e. independent) particles at rest, this 
probability would become  

 
1 2

exp .exp exp
c c c

t t t- - -
τ τ τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, (23) 

allowing to interpret the addition of masses 21 mmm +=  as that of the 
frequencies of the two processes. Of course, quantum physicists today do not 
adhere to this image of discrete random processes. Following de Broglie, the 
frequency cν is interpreted as that of a continuous (still confined) harmonic 
process, and the above real exponential is replaced by an imaginary one: 

 ( ) i iexp i2 exp expc
A Sπν τ ⎛ ⎞ ⎛ ⎞− = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠h h
. (24) 

“Activity” (i.e. internal non inertia) has now become the quantum phase. 
Differences of activities are measured for example in Young interferences 
with massive particles4.  

 

                                                                 

4 Let us note also that the frequencies 1h nε−  which occur in the bounded states of 
the non relativistic SE are nothing but the differences of Compton frequencies since 

( ) 2ε m m cn n
∗

= − (where mn  is the mass of the atom in the state nψ  associated 

with nε ). 
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Figure 2 

 
Our second remark concerns the presence of the proper time τ in the “ac-

tivity” A and leads us to revisit Langevin’s twins paradox. If a particle makes 
a round trip during a time t (starting at t=0 and finishing at t at the same 
fixed place O of a given frame), then τ is inferior to t which is the proper 
time of a particle at rest at O. To understand why the “activity” is greater for 
the particle at rest, let us consider that each twin uses as a clock the bouncing 
of a light ray on two (confining) mirrors separated by a distance d. If 
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0
ctN
d

=  is the number of bouncing (non inertial events) for the clock at 

rest, this number for a moving clock is  

 
2

0 21cN N
d c
τ

= = −
v

 (25) 

(by definition of the proper time) and therefore N is inferior to 0N . On figure 
2  we have represented the spacetime trajectories of the two twins and of the 
light pulses. In order to construct the spacetime trajectory of light for the 
moving mirrors, we have simply used the property that LT preserve the 
velocity c and the areas. Therefore without even knowing the explicit rela-
tion between t and τ, figure 2 clearly shows that τ is inferior to t because τ  is 
measured by N whereas t is measured by 0N . Although this illustration is 
not a model for particles, mass can be introduced from the relation 

2h/mcτc =  where cτ  is a typical time of non inertia. In the above pre-

quantum approach, one could take for cτ  the period of the motion between 

mirrors, or more generally rc τcdτ += 2  where rτ  is a delay introduced 

by the reflexion on the mirrors. This introduction of rτ  is made here to 
recall that even from a naïve point of view, the size of a particle may be 
quite different from its Compton length ccτ . In the waves approach cν  
would be the frequency of a stationary wave and would depend both on the 
distance between the mirrors and on their reflexion coefficients.  

After these remarks it remains to discuss more precisely what the “activ-
ity” of a particle is made of. Generally, the energy of the particle at rest is 
written 

 2 2
potwithi i

i i
mc m c U U K E= + = +∑ ∑  (26) 

where im  and iK  are the masses and kinetic energies of its constituents 

and potE  is a potential energy. But here it is natural to introduce the proper 
activity of each constituent i during the time dt  
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 2d d .i i im c τ E t= − i ip rd ,  (27) 

where 2=i i iE K + m c  and ip are the energy and momentum of the con-
stituent. Then the “activity” of the particle at rest can be rewritten as a sum 
of three contributions:  

 2 2
potd d d di ipi i

i i
mc t m c τ t E t= + +∑ ∑ .v . (28) 

The first one corresponds to the internal dynamics of the constituents. It 
disappears if all masses im  are zero. The second one is associated with the 
motion of the constituents; it is very similar to a pressure contribution. In-
deed if the constituents are considered as free particles occupying a volume 
V like in some bag models, one has for time averaged quantities (according 
to the virial theorem) 

 
i i

P 3PV< >= − < >= =∑ ∑ ∫∫�i i i ip f r r. Sd.v .  (29) 

where P is the kinetic pressure. This contribution is present even if the con-
stituents are massless and then is equal to di

i
E t∑ . The potential contribu-

tion potdE t  depends on the interactions.  
More generally, the distribution of non inertia inside the particle depends 

on the model we have for it, which in turn depends on the experiments made 

on the particles. For example, in the diffusion Xepe -- +→+ of high 
energy electrons by a proton (deep inelastic scattering (DIS) experiments), 
where X  is any set of produced particles, very short scales are implied and 
the proton is seen as an infinity of quasi free and quasi massless punctual 
constituents called the partons (quarks, antiquarks and gluons) [13], whereas 
at lower energies it is seen as a continuous distribution of charges. In DIS 
only the second contribution is present. More precisely the relation 

2
i

i
mc E= ∑  is replaced by 

12 2

0
( ) ( )αα

mc mc x q x dx= ∑ ∫  where ( )αq x dx  

may be interpreted as the number of partons of type α  with energy between 
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2mc x  and ( )2mc x dx+  5. Experiments show that the αq also depend on 
the scale at which the proton is seen. 

5 Mass and the Dirac equation 

In this section we do not consider the question of giving a physical mean-
ing to the variational approach in QM, but we simply examine how the Dirac 
equation (DE) enlightens the above link between mass and non inertia. This 
equation, initially written (with 1== hc ) as ( )ψβmψt +=∂ α.pi  where 

here ∇= i-p  is the momentum operator and iα  and β  are 4x4 matrices, 
has been introduced in order to be both first order in time like the SE and to 

lead to the Klein-Gordon equation (KGE) ( )2 2Δt m ψ 0∂ − + = . n = 4 is 

the smallest dimension of the matrices such that these requirements may be 
satisfied. The interpretation of the mass m is more clear if one looks before 
for the simplest relativistic equations involving t∂ . The lowest dimension is 
reduced to n = 2 and the equations only call for the Pauli matrices 

zyx σ,σ,σ  (see appendix B): 

 ( ) ( )0 0t L t Rψ ψ∂ − ∇ = ∂ + ∇ =;σ. σ. . (30) 

                                                                 

5 In full rigor the parameter x is defined from the relation, analogous to Compton 

formula,  ( )1
1 cosλ' λ θ

mx
− = −  where λ and λ’ are the wavelengths of the incom-

ing and outgoing electron. The usual interpretation of x (justified by kinematics) is 
that in an infinite momentum frame where the proton has almost velocity 1 and a 
large momentum P, xP is the fraction of P taken by a parton. ( )dq x xα  is interpreted 

as the number of partons of type α  with momentum between xP and (x+dx)P and it 

therefore verifies ( )
1

0
d 1xq x xα

α
=∑ ∫ . 
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For a plane wave solution ( )p.r−−= Etaψ iexp  the condition of solv-

ability ( ) 0det =± σ.pE  gives 02 =2p-E  and leads to:  

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−=−=

pRRLL
pppσ.pσ. ˆ;ˆ;ˆ ψψψψ .(31) 

Therefore Lψ  (“left” spinor) and Rψ  (“right” spinor) describe zero mass 
particles with helicities (angular momentum along the direction p̂ ) respec-

tively equal to 21-  and 21 . For a non zero mass particle, the DE is recov-
ered (in the Weyl form), by coupling Lψ  and Rψ :  

 ( ) ( )i ; iσ σt L R t R L. ψ mψ . ψ mψ∂ − ∇ = ∂ + ∇ = . (32) 

The 4-dimensional Dirac spinor ( )LR ψψ ,  satisfies the KGE since 

( )( ) Δ2 −∂=∇+∂∇−∂ ttt σ.σ. . In order to examine how the coupling 
works, let us consider waves which depend only on t and z. Using the ex-
plicit form of zσ  and calling LL 21 ,ψψ  and RR 21 ,ψψ  the two components 
of Lψ and Rψ  one immediately obtains:  

( ) ( )1 1 1 1i ; i ;t z L R t z R Lm mψ ψ ψ ψ∂ − ∂ = ∂ + ∂ =  (33) 
( ) ( )2 2 2 2i ; i .t z R L t z L Rm mψ ψ ψ ψ∂ − ∂ = ∂ + ∂ =  

For m = 0, R1ψ  and  L2ψ  propagate in the z direction and R2ψ  and 

1Lψ  propagate in the -z direction. If the particle is massive, the first set of 

equations couples L1ψ and R1ψ  and the second one couples L2ψ  and 

R2ψ . The usual interpretation in particle physics is that the presence of 
mass couples the two helicities. But noting that for example L1ψ  and R1ψ  
correspond to a same angular momentum along z (1/ 2  since they are the 
first component of Lψ  and Rψ ), one can also say that mass is the expres-
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sion of a coupling between the two opposite directions of propagation –z and 
+z. Indeed for a plane wave solution ( L1ψ  and R1ψ  behaving as 

( )pzEt −− iexp  with E > 0), the two amplitudes are related by:  

 RL pE
m

11 ψψ
+

= . (34) 

The greatest amplitude is the one which for m = 0 was associated with the 
direction of motion of the massive particle (for example LR 11 ψψ >  if p > 

0). More precisely, if 2
1Rψ  is the probability of finding the velocity 1 (c = 

1) and 2
1Lψ  the same for -1, the average velocity is given by (with 

2 2
1 1 1L Rψ ψ+ = ):  

 ( ) v==−
E
p

LR
2

1
2

1 ψψ . (35) 

It is nothing but the speed of the massive particle. These probabilistic re-
sults are identical to those one would obtain from the (naïve) bouncing of a 
zero mass particle between two mirrors moving at the velocity v (figure 2).  

This zigzag scenario associated with mass is also present in an interesting 
result due to Feynman and analysed in [14] which concerns the path integral 
formulation of the Green function ( )1212 , zzttG −−  of the one dimen-
sional DE (the above equations for RL 11 ,ψψ ). In this formulation each path 
in the (t,z) plane between events ( )11, zt  and ( )22 , zt  is a zigzag trajectory 

with velocities +1 and -1 and 1−m  appears to be a typical time during which 
the velocity keeps its value6. When they speak of this motion at velocity 

c± , the authors attribute it to the massive particle. In his guide to the laws 
                                                                 

6 When 1212 ttzz −<<−  the zigzag motion becomes a diffusion process and the 

authors recover the diffusion constant mcD h≈≈
c

λ  of the SE. 
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of the universe [15] Penrose speaks of different massless zig and zag parti-
cles with respective helicities 1/ 2−  and 1/ 2 . Another interpretation is that 
the equations for Lψ  and Rψ  without mass, whose solutions propagate at 
the velocity c, describe inertial phenomena whereas their coupling, which is 
necessary to introduce m, describes non inertial ones. Let us recall that in the 
standard model, the basic fields ψ  are those of  massless fermions which 
acquire their mass >< ϕg  from a Yukawa interaction ϕψψg , with the 

Higgs fieldϕ  whose mean value is >< ϕ . Since 2 3ψ d r  is a probability 

of presence of the “matter particles”, the product 
2ψϕ ><  may be con-

sidered as a non inertia per unit of time and volume.  

6 Conclusion; non inertia and gravitation 

In this paper, we have suggested to change our point of view on the iner-
tial mass of a body. The Newtonian one identified mass with inertia i.e. with 
the tendency of a massive body to keep an inertial motion (a constant veloc-
ity), and the LAP for free and colliding particles then appeared to be its best 
mathematical translation. In SR where the inertial motion of a body corre-
sponds to a maximum of the proper time, we have seen that the natural quan-
tity to consider is the opposite of the traditional action, namely what we have 

called the “activity” 2mc τ . As we have emphasized, this “activity” and its 
interpretation as measuring the non inertia of the internal motions present in 
a massive system (with the Compton time as a typical time of non inertia) 
could have been considered within classical physics just after physicists have 
realized that the constant h is an invariant unit of action. In quantum physics 
this activity becomes the phase and we have seen that whenever mass is 
present (Young’s experiment, DE, particle physics), it can naturally be asso-
ciated with a frequency. Of course, mass in physics is first of all a phenome-
nological quantity, and we have not pretended to provide a model of parti-
cles. 

The reader will have noted that our change of point of view on inertial 
mass is a reversal of what is inertial and what is not. It raises the question of 
which references one must take in order to claim that a motion is inertial. In 
the standard approach the reference motions are those of the “inertial 
frames” whose importance for the description of phenomena has been re-
vealed by Galilee. For Galilee, an inertial motion is a motion at constant 
velocity and a modification of it involves the acceleration; then mass mani-
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fests itself through Newton’s law or the study of collisions. Let us note how-
ever that mass was already implicitly present in the definition of inertial 
frames since in practice these frames can be realized only by massive sys-
tems. In the new approach, reference motions are those at velocity c as the 
DE seems to suggest (or more simply motions which corresponds to zero 
“activity”). A modification of such a motion does not imply the acceleration 
but the velocity; if the velocity v of a system is different from c (v<c), there 
is some non inertia in it, to which one can associate a frequency, the mass of 
the system. As we have seen, the idea that zero mass particles are more fun-
damental than massive ones seems also to be a lesson of particle physics.  

Finally, although this was not the theme of our paper, let us say a few 
words on the (unavoidable) question of the identity of inertial and gravita-
tional masses. This identity which has led Einstein to connect matter and 
space time properties, seems miraculous if one thinks of gravitation as an 
interaction. On the contrary in the approach of section 4, the concepts of 
inertial mass and time are intimately related from the beginning: mass is a 
frequency of “activity” (non inertia) and time is the flow of activity of a unit 
mass at rest. In this approach the addition 21 mm +  of the masses of two 
bodies at rest results from a hypothesis of independence of the correspond-
ing non inertial phenomena. But such phenomena are not punctual; they 
have a spatial extension. Therefore this independence hypothesis can be 
rigorously satisfied only if the bodies are infinitely distant. One may imagine 
that there is a length scale, Planck’s scale G , at which it is impossible to 

separate non inertial phenomena, or a time scale G  at which non inertia 
has no meaning. From this point of view gravitation is a correction to the 
previous addition of inertial masses and involves them (besides G and the 
distance r between the bodies). Consequently gravitational masses and iner-
tial ones must be equal simply because they deal with the same problem of 
how to evaluate non inertia7. 
                                                                 

7 When the correction is a small one, physics tells us that it is simply the Newtonian 

gravitational energy 1
1 2-Gm m r−  (c = 1). If 2m  is a test mass, this energy is attrib-

uted to it, and the activity of 2m  becomes 2m τ  with ( )1
11t Gm rτ −= − . One re-

covers Einstein’s interpretation that the proper time of mass 2m  is modified by the 

presence of mass 1m . 
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7 Appendix A. Extrema and minima of action 

In this appendix we prove that the extremum of the total action tS  intro-
duced in section 3 for the description of collisions is a minimum. We recall 
that an extremum of a function ( )f x  is a minimum if the second term of its 
Taylor series near the extremum is positive: 

 
2

2 1 1d d d d 0
2 2α β α
α,β αα β α

f fδ f x x x
x x x

⎛ ⎞∂ ∂
= = >⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑ . (36) 

In our case the variables αx  are the travelling times αT  and distances 

αR of each initial or final particle α  and the function f which we consider 

is ( )t α
α

S s T , α= ∑ R  with:  

 ( )
21

2
s T, m

T
=

RR  or ( )
2

2 2
2s T, mc T

c
= − −

RR  (37) 

Since in both cases, one has ds . EdT= −p dR , the second variation of s 
reads: 

 2 1 d d
2

p Rδ s ( . E T)= −d d . (38) 

Using the relation dE .= pdv  (also valid in both relativities) 2δ s  be-
comes: 

 
1
2

2δ s T( . )= pd dv                      
T

⎛ ⎞=⎜ ⎟
⎝ ⎠

Rv  (39) 

It is then a simple task to verify that for m=p v  or mγ=p v  one has 

02δ s >  and therefore 2
tδ S 0> . The inequality becomes 2sδ 0≥  if m 

goes to zero. 
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8 Appendix B. Pauli matrices and the Dirac Equation. 

 The Pauli matrices defined by  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

10
01

0i
i0

01
10

zyx σσσ  (40) 

allow to write a general 2x2 hermitian matrix X in the form:  

 
i

i
σ.R

T Z X - Y
X T

X Y T - Z
+⎛ ⎞

= + = ⎜ ⎟+⎝ ⎠
. (41) 

Using 2R−= 2det TX  and interpreting T,R as a space-time interval, 

one deduces that the transformations defined by 1det == + M,MXMX'  

conserve 2R−2T  and therefore correspond for (T,R) to Lorentz Transfor-
mations. Since ( )∇−∂

r
,i t  is like (T,R) a quadrivector (for example it leads to 

(ω,k) when applied to a plane wave), one is naturally led to introduce the 
equation: 

 ( )i 0t Lψ∂ − ∇ =
r

σ. . (42) 

Since ( ) ( )'' ∇−∂=∇−∂ + rr
σ.σ. tt MM  one deduces that it is invariant 

(equivalent to ( ) 0''' =∇−∂ Lt ψ
r

σ. ) provided that Lψ  transforms as 
1'L LMψ ψ+ −= . The same can be shown for the equation  

 ( )i 0+ σ.t Rψ∂ ∇ =
r

 (43) 

with RR Mψψ ='  (the demonstration lies on the remark that 

( )2 1X T T X −= − = −% 2σ.R R  transforms as 11 ~'~ −−+= MXMX ). The sets 

of matrices 1M + −  and M are the two n=2 inequivalent representations of 
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the Lorentz group. The above equations describe zero mass particles (see 
section 5). If one wants to introduce a mass parameter, one could think of 
equations such as ( )i t mψ ψ∂ ± ∇ =σ.  but they are not invariant. One must 

couple the spinors Lψ and Rψ : 

 ( ) ( )i ; it L R t R Lm mψ ψ ψ ψ∂ − ∇ = ∂ + ∇ =σ. σ. . (44) 

The invariance of the first equation for example follows from:  

 ( ) ( ) 1
'i ' ' i i i 't L t L R RM M M mM mψ ψ ψ ψ+ + −∂ − ∇ = ∂ − ∇ = =σ. σ. .(45) 
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