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ABSTRACT. In this paper after recalling some essential tools concern-
ing the theory of differential forms in the Cartan, Hodge and Clifford
bundles over a Riemannian or Riemann-Cartan space or a Lorentzian
or Riemann-Cartan spacetime we solve with details several exercises
involving different grades of difficult. One of the problems is to show
that a recent formula given in [10] for the exterior covariant deriva-
tive of the Hodge dual of the torsion 2-forms is simply wrong. We
believe that the paper will be useful for students (and eventually for
some experts) on applications of differential geometry to some physi-
cal problems. A detailed account of the issues discussed in the paper
appears in the table of contents.
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1 Introduction

In this paper we first recall some essential tools concerning the theory
of differential forms in the Cartan, Hodge and Clifford bundles over a n-
dimensional manifold M equipped with a metric tensor g ∈ sec T 0

2 M of
arbitrary signature (p, q), p+q = n and also equipped with metric com-
patible connections, the Levi-Civita (D̊) and a general Riemann-Cartan
(D) one1. After that we solved with details some exercises involving
different grades of difficult, ranging depending on the readers knowledge
from kindergarten, intermediate to advanced levels. In particular we
show how to express the derivative ( d) and coderivative (δ) operators as
functions of operators related to the Levi-Civita or a Riemann-Cartan
connection defined on a manifold, namely the standard Dirac operator
(∂|) and general Dirac operator (∂). Those operators are then used to
express Maxwell equations in both a Lorentzian and a Riemann-Cartan
spacetime. We recall also important formulas (not well known as they
deserve to be) for the square of the general Dirac and standard Dirac
operators showing their relation with the Hodge D’Alembertian (♦), the
covariant D’ Alembertian (�̊) and the Ricci operators (R̊a, Ra) and
Einstein operator (�̊) and the use of these operators in the Einstein-
Hilbert gravitational theory. Finally, we study the Bianchi identities.
Recalling that the first Bianchi identity is DT a = Ra

b ∧ θb, where T a

and Ra
b are respectively the torsion and the curvature 2-forms and {θb}

is a cotetrad we ask the question: Who is D ? T a? We find the correct
answer (Eq.(218)) using the tools introduced in previous sections of the
paper. Our result shows explicitly that the formula “D?T a = ?Ra

b∧θb”
recently found in [10] and claimed to imply a contradiction in Einstein-
Hilbert gravitational theory is wrong. Two very simple counterexamples
contradicting the wrong formula for D ? T a are presented. A detailed
account of the issues discussed in the paper appears in the table of con-
tents2. We call also the reader attention that in the physical applications
we use natural units for which the numerical values of c,h and the grav-
itational constant k (appearing in Einstein equations) are equal to 1.

1A spacetime is a special structure where the manifold is 4-dimensional, the metric
has signature (1, 3) and which is equipped with a Levi-Civita or a Riemann-Cartan
connection, orientability and time orientation. See below and, e.g., [22, 26] for more
details, if needed.

2More on the subject may be found in, e.g., [22] and recent advanced material
may be found in several papers of the author posted on the arXiv.
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2 Classification of Metric Compatible Structures (M,g, D)

Let M denotes a n-dimensional manifold3. We denote as usual by TxM
and T ∗

x M respectively the tangent and the cotangent spaces at x ∈
M . By TM =

⋃
x∈M

TxM and T ∗M =
⋃

x∈M
T x

x M respectively
the tangent and cotangent bundles. By T r

s M we denote the bundle
of r-contravariant and s-covariant tensors and by TM =

⊕∞
r,s=0 T r

s M

the tensor bundle. By
∧r

TM and
∧r

T ∗M denote respectively the

bundles of r-multivector fields and of r-form fields. We call
∧

TM =⊕r=n

r=0

∧r
TM the bundle of (non homogeneous) multivector fields and

call
∧

T ∗M =
⊕r=n

r=0

∧r
T ∗M the exterior algebra (Cartan) bundle. Of

course, it is the bundle of (non homogeneous) form fields. Recall that
the real vector spaces are such that dim

∧r
TxM = dim

∧r
T ∗

x M =
(
n
r

)
and dim

∧
T ∗M = 2n. Some additional structures will be introduced or

mentioned below when needed. Let4 g ∈ sec T 0
2 M a metric of signature

(p, q) and D an arbitrary metric compatible connection on M , i.e., Dg =
0. We denote by R and T respectively the (Riemann) curvature and
torsion tensors5 of the connection D, and recall that in general a given
manifold given some additional conditions may admit many different
metrics and many different connections.

Given a triple (M,g, D):

(a) it is called a Riemann-Cartan space if and only if

Dg = 0 and T 6= 0. (1)

(b) it is called Weyl space if and only if

Dg 6= 0 and T = 0. (2)

(c) it is called a Riemann space if and only if

Dg = 0 and T = 0, (3)

3We left the toplogy of M unspecified for a while.
4We denote by sec(X(M)) the space of the sections of a bundle X(M). Note that

all functions and differential forms are supposed smooth, unless we explicitly say the
contrary.

5The precise definitions of those objects will be recalled below.
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and in that case the pair (D,g) is called Riemannian structure.
(d) it is called Riemann-Cartan-Weyl space if and only if

Dg 6= 0 and T 6= 0. (4)

(e) it is called (Riemann) flat if and only if

Dg = 0 and R = 0,

(f) it is called teleparallel if and only if

Dg = 0, T 6= 0 and R =0. (5)

2.1 Levi-Civita and Riemann-Cartan Connections

For each metric tensor defined on the manifold M there exists one and
only one connection in the conditions of Eq.(3). It is is called Levi-Civita
connection of the metric considered, and is denoted in what follows by D̊.
A connection satisfying the properties in (a) above is called a Riemann-
Cartan connection. In general both connections may be defined in a
given manifold and they are related by well established formulas re-
called below. A connection defines a rule for the parallel transport of
vectors (more generally tensor fields) in a manifold, something which is
conventional [20], and so the question concerning which one is more im-
portant is according to our view meaningless6. The author knows that
this assertion may surprise some readers, but he is sure that they will
be convinced of its correctness after studying Section 15. More on the
subject in [22]. For implementations of these ideas for the theory of
gravitation see [18]

2.2 Spacetime Structures

Remark 1 When dim M = 4 and the metric g has signature (1, 3)
we sometimes substitute Riemann by Lorentz in the previous definitions
(c),(e) and (f).

Remark 2 In order to represent a spacetime structure a Lorentzian
or a Riemann-Cartan structure (M,g, D) need be such that M is con-
nected and paracompact [11] and equipped with an orientation defined by

6Even if it is the case, that a particular one may be more convenient than others
for some purposes. See the example of the Nunes connections in Section 15.
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the volume element τg ∈ sec
∧4

T ∗M and a time orientation denoted
by ↑. We omit here the details and ask to the interested reader to con-
sult, e.g., [22]. A general spacetime will be represented by a pentuple
(M,g, D, τg, ↑).

3 Absolute Differential and Covariant Derivatives

Given a differentiable manifold M , let X, Y ∈ sec TM be any vector
fields and α ∈ sec T ∗M any covector field . Let TM =

⊕∞
r,s=0 T r

s M be
the tensor bundle of M and P ∈ sec TM any general tensor field.

We now describe the main properties of a general connection D (also
called absolute differential operator). We have

D : sec TM × sec TM → sec TM,

(X,P) 7→ DXP, (6)

where DX the covariant derivative in the direction of the vector field
X satisfy the following properties: Given, differentiable functions f, g :
M → R, vector fields X, Y ∈ sec TM and P,Q ∈ sec TM we have

DfX+gY P = fDXP+gDY P,

DX(P + Q) = DXP + DXQ,

DX(fP) = fDX(P)+X(f)P,

DX(P⊗Q) = DXP⊗Q + P⊗DXQ. (7)

Given Q ∈ sec T r
s M the relation between DQ, the absolute differen-

tial of Q and DXQ the covariant derivative of Q in the direction of the
vector filed X is given by

D: sec T r
s M → sec T r

s+1M,

DQ(X,X1, ..., Xs, α1, ..., αr)
= DXQ(X1, ..., Xs, α1, ..., αr),

X1, ..., Xs ∈ sec TM,α1, ...αr ∈ sec T ∗M. (8)

Let U ⊂ M and consider a chart of the maximal atlas of M covering
U coordinate functions7 {xµ}. Let g ∈ sec T 0

2 M be a metric field for
7If e ∈ M , then xµ(e) = xµ is the µ coordinate of e in the given chart.
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M . Let {∂µ} be a basis for TU , U ⊂ M and let {θµ = dxµ} be the
dual basis of {∂µ}. The reciprocal basis of {θµ} is denoted {θµ}, and
g(θµ, θν) := θµ · θν = δµ

ν . Introduce next a set of differentiable functions
qa
µ, qν

b : U → R such that :

qµ
aqb

µ = δb
a , qµ

aqa
ν = δµ

ν . (9)

It is trivial to verify the formulas

gµν = qa
µqb

ν ηab , gµν = qµ
aqν

bηab,

ηab = qµ
aqν

bgµν , ηab = qa
µqb

ν gµν , (10)

with
ηab = diag(1, ..., 1︸ ︷︷ ︸−1, ...− 1︸ ︷︷ ︸)

p times q times
. (11)

Moreover, defining
eb = qν

b∂ν

the set {ea} with ea ∈ sec TM is an orthonormal basis for TU . The
dual basis of TU is {θa}, with θa = qa

µdxµ. Also, {θb} is the reciprocal
basis of {θa}, i.e. θa · θb = δa

b.

Remark 3 When dim M = 4 the basis {ea} of TU is called a tetrad
and the (dual) basis {θa} of T ∗U is called a cotetrad. The names are
appropriate ones if we recall the Greek origin of the word.

The connection coefficients associated to the respective covariant
derivatives in the respective basis will be denoted as:

D∂µ
∂ν = Γρ

µν∂ρ, D∂σ
∂µ = −Γµ

σα∂α, (12)

D ea eb = ωc
ab ec, D ea eb = −ωb

ac ec, D∂µ
eb = ωc

µb ec,

D∂µ
dxν = −Γν

µαdxα, D∂µ
θν = Γρ

µνθρ, (13)

D eaθ
b = −ωb

acθ
c, D∂µ

θb = −ωb
µaθ

a (14)

D eaθ
b = −ωcabθc,

ωabc = ηadωd
bc = −ωcba, ωbc

a = ηbkωkalη
cl, ωbc

a = −ωcb
a

etc... (15)
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Remark 4 The connection coefficients of the Levi-Civita Connection
in a coordinate basis are called Christoffel symbols. We write in what
follows

D̊∂µ
∂ν = Γ̊ρ

µν∂ρ, D̊∂µ
dxν = −Γ̊ν

µρdxρ . (16)

To understood how D works, consider its action, e.g., on the sections
of T 1

1 M = TM ⊗ T ∗M .

D(X ⊗ α) = (DX)⊗ α + X ⊗Dα. (17)

For every vector field V ∈ sec TU and a covector field C ∈ sec T ∗U
we have

D∂µ
V = D∂µ

(V α∂α), D∂µ
C = D∂µ

(Cαθα) (18)

and using the properties of a covariant derivative operator introduced
above, D∂µ

V can be written as:

D∂µ
V = D∂µ

(V α∂α) = (D∂µ
V )α∂α

= (∂µV α)∂α + V αD∂µ
∂α

=
(

∂V α

∂xµ
+ V ρΓα

µρ

)
∂α := (D+

µ V α)∂α, (19)

where it is to be kept in mind that the symbol D+
µ V α is a short notation

for
D+

µ V α := (D∂µ
V )α (20)

Also, we have

D∂µ
C = D∂µ

(Cαθα) = (D∂µ
C)αθα

=
(

∂Cα

∂xµ
− CβΓβ

µα

)
θα,

:= (D−
µ Cα)θα (21)

where it is to be kept in mind that 8 that the symbol D−
µ Cα is a short

notation for
D−

µ Cα := (D∂µ
C)α. (22)

8Recall that other authors prefer the notations (D∂µ
V )α := V α

:µ and (D∂µ
C)α :=

Cα:µ. What is important is always to have in mind the meaning of the symbols.
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Remark 5 The necessity of precise notation becomes obvious when we
calculate

D−
µ qa

ν := (D∂µ
θa)ν = (D∂µ

qa
νdxν)ν = ∂µqa

ν − Γρ
µνqa

ρ = ωa
µbqb

ν ,

D+
µ qa

ν := (D∂µ
qa
νea)a = ∂µqa

ν + ωρ
µνqa

ρ = Γρ
µνqa

ρ ,

thus verifying that D−
µ qa

ν 6= D+
µ qa

ν 6= 0 and that

∂µqa
ν + ωa

µbqb
ν − Γa

µbqb
ν = 0. (23)

Moreover, if we define the object

q = ea ⊗ θa = qa
µ ea ⊗ dxµ ∈ sec T 1

1 U ⊂ sec T 1
1 M, (24)

which is clearly the identity endormorphism acting on sections of TU ,
we find

Dµqa
ν := (D∂µ

q)aν = ∂µqa
ν + ωa

µbqb
ν − Γa

µbqb
ν = 0. (25)

Remark 6 Some authors call q ∈ sec T 1
1 U (a single object) a tetrad,

thus forgetting the Greek meaning of that word. We shall avoid this
nomenclature. Moreover, Eq.(25) is presented in many textbooks (see,
e.g., [4, 13, 24]) and articles under the name ‘tetrad postulate’ and it is
said that the covariant derivative of the “tetrad” vanish. It is obvious
that Eq.(25) it is not a postulate, it is a trivial (freshman) identity.
In those books, since authors do not distinguish clearly the derivative
operators D+, D− and D, Eq.(25) becomes sometimes misunderstood as
meaning D−

µ qa
ν or D+

µ qa
ν , thus generating a big confusion and producing

errors (see below).

4 Calculus on the Hodge Bundle (
∧

T ∗M, ·, τg)

We call in what follows Hodge bundle the quadruple (
∧

T ∗M,∧, ·, τg).
We now recall the meaning of the above symbols.

4.1 Exterior Product

We suppose in what follows that any reader of this paper knows the
meaning of the exterior product of form fields and its main properties9.
We simply recall here that if Ar ∈ sec

∧r
T ∗M , Bs ∈ sec

∧s
T ∗M then

Ar ∧ Bs = (−1)rsBs ∧ Ar. (26)
9We use the conventions of [22].
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4.2 Scalar Product and Contractions

Let be Ar = a1 ∧ ... ∧ ar ∈ sec
∧r

T ∗M , Br = b1 ∧ ... ∧ br ∈ sec
∧r

T ∗M

where ai, bj ∈ sec
∧1

T ∗M (i, j = 1, 2, ..., r).
(i) The scalar product Ar · Br is defined by

Ar · Br = (a1 ∧ ... ∧ ar) · (b1 ∧ ... ∧ br)

=

∣∣∣∣∣∣
a1 · b1 ....a1 · br

........................
ar · b1 ....ar · br

∣∣∣∣∣∣ . (27)

where ai · bj := g(ai, bj).
We agree that if r = s = 0, the scalar product is simple the ordinary

product in the real field.
Also, if r 6= s, thenAr ·Bs = 0. Finally, the scalar product is extended

by linearity for all sections of
∧

T ∗M .

For r ≤ s, Ar = a1 ∧ ... ∧ ar, Bs = b1 ∧ ... ∧ bs we define the left
contraction by

y : (Ar,Bs) 7→ AryBs =
X

i1 <... <ir

εi1....is(a1∧...∧ar)·(bi1
∧...∧bir )∼bir+1∧...∧bis

(28)

where ∼ is the reverse mapping (reversion) defined by

∼: sec
∧p

T ∗M 3 a1 ∧ ... ∧ ap 7→ ap ∧ ... ∧ a1 (29)

and extended by linearity to all sections of
∧

T ∗M . We agree that for

α, β ∈ sec
∧0

T ∗M the contraction is the ordinary (pointwise) product
in the real field and that if α ∈ sec

∧0
T ∗M , Ar ∈ sec

∧r
T ∗M , Bs ∈

sec
∧s

T ∗M then (αAr)yBs = Ary(αBs). Left contraction is extended
by linearity to all pairs of elements of sections of

∧
T ∗M , i.e., for A,B ∈

sec
∧

T ∗M

AyB =
∑
r,s

〈A〉ry〈B〉s, r ≤ s, (30)

where 〈A〉r means the projection of A in
∧r

T ∗M .

It is also necessary to introduce the operator of right contraction
denoted by x. The definition is obtained from the one presenting the
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left contraction with the imposition that r ≥ s and taking into ac-
count that now if Ar ∈ sec

∧r
T ∗M , Bs ∈ sec

∧s
T ∗M then BsyAr =

(−1)s(r−s)ArxBs.

4.3 Hodge Star Operator ?

The Hodge star operator is the mapping

? : sec
∧k

T ∗M → sec
∧n−k

T ∗M, Ak 7→ ?Ak

where for Ak ∈ sec
∧k

T ∗M

[Bk · Ak]τg = Bk ∧ ?Ak, ∀Bk ∈ sec
∧k

T ∗M (31)

τg ∈
∧n

T ∗M is the metric volume element. Of course, the Hodge
star operator is naturally extended to an isomorphism ? : sec

∧
T ∗M →

sec
∧

T ∗M by linearity. The inverse ?−1 : sec
∧n−r

T ∗M → sec
∧r

T ∗M
of the Hodge star operator is given by:

?−1 = (−1)r(n−r)sgng?, (32)

where sgn g = detg/|detg| denotes the sign of the determinant of the
matrix (gαβ = g(eα, eβ)), where {eα} is an arbitrary basis of TU .

We can show that (see, e.g., [22]) that

?Ak = Ãkyτg, (33)

where as noted before, in this paper Ãk denotes the reverse of Ak.
Let {ϑα} be the dual basis of {eα} (i.e., it is a basis for T ∗U ≡∧1
T ∗U) then g(ϑα, ϑβ) = gαβ , with gαβgαρ = δβ

ρ . Writing ϑµ1...µp =
ϑµ1 ∧ ... ∧ ϑµp , ϑνp+1...νn = ϑνp+1 ∧ ... ∧ ϑνn we have from Eq.(33)

? θµ1...µp =
1

(n− p)!

√
|detg|gµ1ν1 ...gµpνpεν1...νn

ϑνp+1...νn . (34)

Some identities (used below) involving the Hodge star operator, the ex-
terior product and contractions are10:

Ar ∧ ?Bs = Bs ∧ ?Ar; r = s
Ar · ?Bs = Bs · ?Ar; r + s = n

Ar ∧ ?Bs = (−1)r(s−1) ? (ÃryBs); r ≤ s

Ary ? Bs = (−1)rs ? (Ãr ∧Bs); r + s ≤ n
?τg = sign g; ?1 = τg.

(35)

10See also the last formula in Eq.(45) which uses the Clifford product.
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4.4 Exterior derivative d and Hodge coderivative δ

The exterior derivative is a mapping

d : sec
∧

T ∗M → sec
∧

T ∗M,

satisfying:
(i) d(A + B) = dA + dB;
(ii) d(A ∧B) = dA ∧B + Ā ∧ dB;
(iii) df(v) = v(f);
(iv) d2 = 0,

(36)

for every A,B ∈ sec
∧

T ∗M , f ∈ sec
∧0

T ∗M and v ∈ sec TM .
The Hodge codifferential operator in the Hodge bundle is the mapping

δ : sec
∧r

T ∗M → sec
∧r−1

T ∗M , given for homogeneous multiforms, by:

δ = (−1)r ?−1 d?, (37)

where ? is the Hodge star operator. The operator δ extends by linearity
to all

∧
T ∗M

The Hodge Laplacian (or Hodge D’Alembertian) operator is the map-
ping

♦ : sec
∧

T ∗M → sec
∧

T ∗M

given by:
♦ = −(dδ + δd). (38)

The exterior derivative, the Hodge codifferential and the Hodge D’
Alembertian satisfy the relations:

dd = δδ = 0; ♦ = (d− δ)2

d♦ = ♦d; δ♦ = ♦δ
δ? = (−1)r+1 ? d; ?δ = (−1)rd?
dδ? = ?δd; ?dδ = δd?; ?♦ = ♦ ? .

(39)

5 Clifford Bundles

Let (M,g,∇) be a Riemannian, Lorentzian or Riemann-Cartan struc-
ture11. As before let g ∈ sec T 2

0 M be the metric on the cotangent
bundle associated with g ∈ sec T 0

2 M . Then T ∗
x M ' Rp,q, where Rp,q

11∇ may be the Levi-Civita connection D̊ of g or an arbitrary Riemann-Cartan
connection D.
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is a vector space equipped with a scalar product • ≡ g|x of signa-
ture (p, q). The Clifford bundle of differential forms C̀ (M, g) is the
bundle of algebras, i.e., C`(M, g) = ∪x∈MC`(T ∗

x M, •), where ∀x ∈ M ,
C̀ (T ∗

x M, •) = Rp,q, a real Clifford algebra. When the structure (M,g,∇)
is part of a Lorentzian or Riemann-Cartan spacetime C`(T ∗

x M, •) = R1,3

the so called spacetime algebra. Recall also that C`(M, g) is a vector bun-
dle associated with the g-orthonormal coframe bundle PSOe

(p,q)
(M, g),

i.e., C`(M, g) = PSOe
(p,q)

(M, g)×adR1,3 (see more details in, e.g., [16, 22]).
For any x ∈ M , C`(T ∗

x M, •) is a linear space over the real field R. More-
over, C`(T ∗

x M) is isomorphic as a real vector space to the Cartan alge-
bra

∧
T ∗

x M of the cotangent space. Then, sections of C`(M, g) can be
represented as a sum of non homogeneous differential forms. Let now
{ea} be an orthonormal basis for TU and {θa} its dual basis. Then,
g(θa, θb) = ηab.

5.1 Clifford Product

The fundamental Clifford product (in what follows to be denoted by
juxtaposition of symbols) is generated by

θaθb + θbθa = 2ηab (40)

and if C ∈ C`(M, g) we have

C = s + vaθ
a +

1
2!

babθaθb +
1
3!

aabcθ
aθbθc + pθn+1 , (41)

where τg := θn+1 = θ0θ1θ2θ3...θn is the volume element and s, va, bab,
aabc, p ∈ sec

∧0
T ∗M ↪→ sec C`(M, g).

LetAr,∈ sec
∧r

T ∗M ↪→ sec C̀ (M, g),Bs ∈ sec
∧s

T ∗M ↪→ sec C`(M, g).
For r = s = 1, we define the scalar product as follows:

For a, b ∈ sec
∧1

T ∗M ↪→ sec C`(M, g),

a · b =
1
2
(ab + ba) = g(a, b). (42)

We identify the exterior product ((∀r, s = 0, 1, 2, 3, ..., n) of homogeneous
forms (already introduced above) by

Ar ∧ Bs = 〈ArBs〉r+s, (43)

where 〈〉k is the component in
∧k

T ∗M (projection) of the Clifford field.
The exterior product is extended by linearity to all sections of C`(M, g).
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The scalar product, the left and the right are defined for homogeneous
form fields that are sections of the Clifford bundle in exactly the same
way as in the Hodge bundle and they are extended by linearity for all
sections of C`(M, g).

In particular, for A,B ∈ sec C`(M, g) we have

AyB =
∑
r,s

〈A〉ry〈B〉s, r ≤ s. (44)

The main formulas used in the present paper can be obtained (details
may be found in [22]) from the following ones (where a ∈ sec

∧1
T ∗M ↪→

sec C̀ (M, g)):

aBs = ayBs + a ∧ Bs, Bsa = Bsxa + Bs ∧ a,

ayBs =
1
2
(aBs − (−1)sBsa),

AryBs = (−1)r(s−r)BsxAr,

a ∧ Bs =
1
2
(aBs + (−1)sBsa),

ArBs = 〈ArBs〉|r−s| + 〈ArBs〉|r−s|+2 + ... + 〈ArBs〉|r+s|

=
m∑

k=0

〈ArBs〉|r−s|+2k

Ar · Br = Br · Ar = Ãr yBr = ArxB̃r = 〈ÃrBr〉0 = 〈ArB̃r〉0,

?Ak = Ãkyτg = Ãkτg. (45)

Two other important identities to be used below are:

ay(X ∧ Y) = (ayX ) ∧ Y + X̂ ∧ (ayY), (46)

for any a ∈ sec
∧1

T ∗M and X ,Y ∈ sec
∧

T ∗M , and

Ay(ByC) = (A ∧B)yC, (47)

for any A,B,C ∈ sec
∧

T ∗M ↪→ C`(M, g)
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5.2 Dirac Operators Acting on Sections of a Clifford Bundle C`(M,g)

5.2.1 The Dirac Operator ∂ Associated to D

The Dirac operator associated to a general Riemann-Cartan structure
(M,g, D) acting on sections of C̀ (M, g) is the invariant first order dif-
ferential operator

∂ = θaDea = ϑαDeα
. (48)

For any A ∈ sec
∧

T ∗M ↪→ sec C̀ (M, g) we define

∂A = ∂ ∧ A+ ∂yA
∂ ∧ A = θa ∧ (DeaA), ∂yA = θay(DeaA). (49)

5.2.2 Clifford Bundle Calculation of DeaA

Recall that the reciprocal basis of {θb} is denoted {θa} with θa ·θb = ηab

(ηab = diag(1, ..., 1,−1, ...,−1)) and that

Deaθ
b = −ωb

acθ
c = −ωbc

a θc, (50)

with ωbc
a = −ωcb

a , and ωbc
a = ηbkωkalη

cl, ωabc = ηadωd
bc = −ωcba.

Defining

ωa =
1
2
ωbc

a θb ∧ θc ∈ sec
∧2

T ∗M ↪→ sec C`(M, g), (51)

we have (by linearity) that [16] for any A ∈ sec
∧

T ∗M ↪→ sec C`(M, g)

DeaA = ∂eaA+
1
2
[ωa,A], (52)

where ∂ea is the Pfaff derivative, i.e., for any A = 1
p!Ai1...ipθi1 ...θ.ip ∈

sec
∧p

T ∗M ↪→ sec C`(M, g) it is:

∂eaA =
1
p!

[ea(Ai1...ip)]θi1 ...θ.ip . (53)
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5.2.3 The Dirac Operator ∂| Associated to D̊

Using Eq.(52) we can show that for the case of a Riemannian or
Lorentzian structure (M,g, D̊) the standard Dirac operator defined by:

∂| = θaD̊ea = ϑαD̊eα ,

∂| A = ∂| ∧A+ ∂|yA (54)

for any A ∈ sec
∧

T ∗M ↪→ sec C`(M, g) is such that

∂| ∧A = dA , ∂|yA = −δA (55)

i.e.,
∂| = d− δ (56)

6 Torsion, Curvature and Cartan Structure Equations

As we said in the beginning of Section 1 a given structure (M,g) may
admit many different metric compatible connections. Let then D̊ be the
Levi-Civita connection of g and D a Riemann-Cartan connection acting
on the tensor fields defined on M .

Let U ⊂ M and consider a chart of the maximal atlas of M covering
U with arbitrary coordinates {xµ}. Let {∂µ} be a basis for TU , U ⊂ M
and let {θµ = dxµ} be the dual basis of {∂µ}. The reciprocal basis of
{θµ} is denoted {θµ}, and g(θµ, θν) := θµ · θν = δµ

ν .

Let also {ea} be an orthonormal basis for TU ⊂ TM with eb =
qν
b∂ν . The dual basis of TU is {θa}, with θa = qa

µdxµ. Also, {θb} is
the reciprocal basis of {θa}, i.e. θa · θb = δa

b. An arbitrary frame on
TU ⊂ TM , coordinate or orthonormal will be denote by {eα}. Its dual
frame will be denoted by {ϑρ} (i.e., ϑρ(eα) = δρ

α ).

6.1 Torsion and Curvature Operators

Definition 7 The torsion and curvature operators τ and ρ of a connec-
tion D, are respectively the mappings:

τ(u,v) = Duv −Dvu− [u,v], (57)
ρ(u,v) = DuDv −DvDu −D[u,v], (58)

for every u,v ∈ sec TM .



442 W. A. Rodrigues Jr.

6.2 Torsion and Curvature Tensors

Definition 8 The torsion andcurvature tensors of a connection D, are
respectively the mappings:

T(α,u,v) = α (τ(u,v)) , (59)
R(w, α,u,v) = α(ρ(u,v)w), (60)

for every u,v,w ∈ sec TM and α ∈ sec
∧1

T ∗M .

We recall that for any differentiable functions f, g and h we have

τ(gu,hv) = ghτ(u,v),
ρ(gu,hv)fw=ghfρ(u,v)w (61)

6.2.1 Properties of the Riemann Tensor for a Metric Com-
patible Connection

Note that it is quite obvious that

R(w, α,u,v) = R(w, α,v,u). (62)

Define the tensor field R′ as the mapping such that for every a,u,v,w ∈
sec TM and α ∈ sec

∧1
T ∗M .

R′(w,a,u,v) = R(w, α,v,u). (63)

It is quite ovious that

R′(w,a,u,v) = a·(ρ(u,v)w), (64)

where
α = g(a, ) , a = g(α, ) (65)

We now show that for any structure (M,g, D) such that Dg = 0 we have
for c,u,v ∈ sec TM ,

R′(c, c,u,v) = c·(ρ(u,v)c) = 0. (66)
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We start recalling that for every metric compatible connection it
holds:

u(v(c · c)= u(Dvc · c + c·Dvc) =2u(Dvc · c)
= 2(DuDvc) · c + 2(Duc) ·Dvc, (67)

Exachanging u ↔ v in the last equation we get

v(u(c · c) =2(DvDuc) · c + 2(Dvc) ·Duc. (68)

Subtracting Eq.(67) from Eq.(68) we have

[u,v](c · c) =2([Du, Dv]c) · c (69)

But since
[u,v](c · c) =D[u,v](c · c) = 2(D[u,v]c) · c, (70)

we have from Eq.(69) that

([Du, Dv]c−D[u,v]c) · c = 0 , (71)

and it follows that R′(c, c,u,v) = 0 as we wanted to show.

Exercise 9 Prove that for any metric compatible connection,

R′(c,d,u,v) = R′(d, c,u,v). (72)

Given an arbitrary frame {eα} on TU ⊂ TM , let {ϑρ} be the dual
frame. We write:

[eα,eβ ]=cρ
αβeρ

Deα
eβ=Lρ

αβeρ,
(73)

where cρ
αβ are the structure coefficientsof the frame {eα} and Lρ

αβ are
the connection coefficientsin this frame. Then, the components of the
torsion and curvature tensors are given, respectively, by:

T(ϑρ, eα,eβ) = T ρ
αβ = Lρ

αβ − Lρ
βα − cρ

αβ

R(eµ, ϑρ, eα,eβ) = Rµ
ρ
αβ

= eα(Lρ
βµ)− eβ(Lρ

αµ) + Lρ
ασLσ

βµ − Lρ
βσLσ

αµ − cσ
αβLρ

σµ.

(74)
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It is important for what follows to keep in mind the definition of the
(symmetric) Ricci tensor, here denoted Ric ∈ sec T 0

2 M and which in an
arbitrary basis is written as

Ric =Rµνϑµ ⊗ ϑν :=Rµ
ρ
ρνϑµ ⊗ ϑν (75)

It is crucial here to take into account the place where the contraction in
the Riemann tensor takes place according to our conventions.

We also have:
dϑρ = − 1

2cρ
αβϑα ∧ ϑβ

Deα
ϑρ = −Lρ

αβϑβ (76)

where ωρ
β ∈ sec

∧1
T ∗M are the connection 1-forms, Lρ

αβ are said to be
the connection coefficients in the given basis, and the T ρ ∈ sec

∧2
T ∗M

are the torsion 2-forms and the Rρ
β ∈ sec

∧2
T ∗M are the curvature

2-forms, given by:

ωρ
β = Lρ

αβϑα,

T ρ =
1
2
T ρ

αβϑα ∧ θβ (77)

Rρ
µ =

1
2
Rµ

ρ
αβϑα ∧ ϑβ .

Multiplying Eqs.(74) by 1
2ϑα ∧ ϑβ and using Eqs.(76) and (77), we

get:

6.3 Cartan Structure Equations

dϑρ + ωρ
β ∧ ϑβ = T ρ,

dωρ
µ + ωρ

β ∧ ωβ
µ = Rρ

µ.
(78)

We can show that the torsion and (Riemann) curvature tensors can
be written as

T = eα ⊗ T α, (79)
R = eρ ⊗ eµ ⊗Rρ

µ. (80)
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7 Exterior Covariant Derivative D

Sometimes, Eqs.(78) are written by some authors [27] as:

Dϑρ = T ρ, (81)
“ Dωρ

µ = Rρ
µ. ” (82)

and D : sec
∧

T ∗M → sec
∧

T ∗M is said to be the exterior covariant
derivativerelated to the connection D. Now, Eq.(82) has been printed
with quotation marks due to the fact that it is an incorrect equation.
Indeed, a legitimate exterior covariant derivative operator12 is a concept
that can be defined for (p+q)-indexed r-form fields13 as follows. Suppose
that X ∈ sec T r+q

p M and let

Xµ1....µp
ν1....νq

∈ sec
∧r

T ∗M, (83)

such that for vi ∈ sec TM, i = 0, 1, 2, .., r,

Xµ1....µp
ν1....νq

(v1, ..., vr) = X(v1, ..., vr, eν1 , ..., eνq
, ϑµ1 , ..., ϑµp). (84)

The exterior covariant differential D of X
µ1....µp
ν1....νq on a manifold with

a general connection D is the mapping:

D : sec
∧r

T ∗M → sec
∧r+1

T ∗M , 0 ≤ r ≤ 4, (85)

such that14

(r + 1)DX
µ1....µp
ν1....νq (v0, v1, ..., vr)

=

rX
ν=0

(−1)νDeν X(v0, v1, ..., v̌ν , ...vr, eν1 , ..., eνq , ϑµ1 , ..., ϑµp)

−
X

0≤λ,ς≤r

(−1)ν+ςX(T(vλ, vς), v0, v1, ..., v̌λ, ..., v̌ς , ..., vr, eν1 , ..., eνq , ϑµ1 , ..., ϑµp).

(86)

12Sometimes also called exterior covariant differential.
13Which is not the case of the connection 1-forms ωα

β , despite the name. More

precisely, the ωα
β are not true indexed forms, i.e., there does not exist a tensor field

ω such that ω(ei, eβ , ϑα) = ωα
β (ei).

14As usual the inverted hat over a symbol (in Eq.(86)) means that the corresponding
symbol is missing in the expression.



446 W. A. Rodrigues Jr.

Then, we may verify that

DXµ1....µp
ν1....νq

= dXµ1....µp
ν1....νq

+ ωµ1
µs
∧Xµs....µp

ν1....νq
+ ... + ωµ1

µs
∧Xµ1....µp

ν1....νq
(87)

− ωνs
ν1
∧Xµ1....µp

νs....νq
− ...− ωµ1

µs
∧Xµ1....µp

ν1....νs
.

Remark 10 Note that if Eq.(87) is applied on any one of the connection
1-forms ωµ

ν we would get Dωµ
ν = dωµ

ν +ωµ
α∧ωα

ν −ωα
ν ∧ωµ

α. So, we see that
the symbol Dωµ

ν in Eq.(82), supposedly defining the curvature 2-forms
is simply wrong despite this being an equation printed in many Physics
textbooks and many professional articles15! .

7.1 Properties of D

The exterior covariant derivative D satisfy the following properties:
(a) For any XJ ∈ sec

∧r
T ∗M and Y K ∈ sec

∧s
T ∗M are sets of

indexed forms16, then

D(XJ ∧ Y K) = DXJ ∧ Y K + (−1)rsXJ ∧DY K . (88)

(b) For any Xµ1....µp ∈ sec
∧r

T ∗M then

DDXµ1....µp = dXµ1....µp +Rµ1
µs
∧Xµs....µp + ...Rµp

µs
∧Xµ1....µs . (89)

(c) For any metric-compatible connection D if g = gµνϑµ⊗ ϑν then,

Dgµν = 0. (90)

7.2 Formula for Computation of the Connection 1- Forms ωa
b

In an orthonormal cobasis {θa} we have (see, e.g., [22]) for the connection
1-forms

ωcd =
1
2

[
θdydθc − θcydθd + θcy(θdydθa)θa

]
, (91)

or taking into account that dθa = − 1
2cajkθj ∧ θk,

ωcd =
1
2
(−ccjkηdj + cdjkηcj − ηcaηbkηdjcbja)θ

k. (92)

15The authors of reference [27] knows exactly what they are doing and use “Dωρ
µ =

Rρ
µ” only as a short notation. Unfortunately this is not the case for some other

authors.
16Multi indices are here represented by J and K.
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8 Relation Between the Connections D̊ and D

As we said above a given structure (M,g) in general admits many differ-
ent connections. Let then D̊ and D be the Levi-Civita connection of g
on M and D and arbitrary Riemann-Cartan connection. Given an arbi-
trary basis {eα} on TU ⊂ TM , let {ϑρ} be the dual frame. We write for
the connection coefficients of the Riemann-Cartan and the Levi-Civita
connections in the arbitrary bases {eα},{ϑρ}:

Deαeβ = Lρ
αβeρ, Deαϑρ = −Lρ

αβϑβ ,

D̊eα
eβ = L̊ρ

αβeρ, D̊eα
ϑρ = −L̊ρ

αβϑβ . (93)

Moreover, the structure coefficients of the arbitrary basis {eα} are:

[eα,eβ ] = cρ
αβeρ. (94)

Let moreover,
bρ
αβ = −(£eρg)αβ , (95)

where £eρ is the Lie derivative in the direction of the vector field eρ.
Then, we have the noticeable formula (for a proof, see, e.g., [22]):

Lρ
αβ = L̊ρ

αβ +
1
2
T ρ

αβ +
1
2
Sρ

αβ , (96)

where the tensor Sρ
αβ is called the strain tensor of the connection and

can be decomposed as:

Sρ
αβ = S̆ρ

αβ +
2
n

sρgαβ (97)

where S̆ρ
αβ is its traceless part, is called the shear of the connection, and

sρ =
1
2
gµνSρ

µν (98)

is its trace part, is called the dilation of the connection. We also have
that connection coefficients of the Levi-Civita connection can be written
as:

L̊ρ
αβ =

1
2
(bρ

αβ + cρ
αβ). (99)

Moreover, we introduce the contorsion tensor whose components in
an arbitrary basis are defined by
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Kρ
αβ = Lρ

αβ − L̊ρ
αβ =

1
2
(T ρ

αβ + Sρ
αβ), (100)

and which can be written as

Kρ
αβ = −1

2
gρσ(gµαTµ

σβ + gµβTµ
σα − gµσTµ

αβ). (101)

We now present the relation between the Riemann curvature ten-
sor Rµ

ρ
αβ associated with the Riemann-Cartan connection D and the

Riemann curvature tensor R̊µ
ρ
αβ of the Levi-Civita connection D̊.

Rµ
ρ
αβ = R̊µ

ρ
αβ + Jµ

ρ
[αβ], (102)

where:

Jµ
ρ
αβ = D̊αKρ

βµ −Kρ
βσKσ

αµ = DαKρ
βµ −Kρ

ασKσ
βµ + Kσ

αβKρ
σµ. (103)

Multiplying both sides of Eq.(102) by 1
2θα ∧ θβ we get:

Rρ
µ = R̊ρ

µ + Jρ
µ, (104)

where
Jρ

µ =
1
2
Jµ

ρ
[αβ]θ

α ∧ θβ . (105)

From Eq.(102) we also get the relation between the Ricci tensors of
the connections D and D̊. We write for the Ricci tensor of D

Ric = Rµαdxµ ⊗ dxν

Rµα := Rµ
ρ
αρ (106)

Then, we have
Rµα = R̊µα + Jµα, (107)

with

Jµα = D̊αKρ
ρµ − D̊ρK

ρ
αµ + Kρ

ασKσ
ρµ −Kρ

ρσKσ
αµ

= DαKρ
ρµ −DρK

ρ
αµ −Kρ

σαKσ
ρµ + Kρ

ρσKσ
αµ. (108)

Observe that since the connection D is arbitrary, its Ricci tensor will be
not be symmetric in general. Then, since the Ricci tensor R̊µα of D̊ is
necessarily symmetric, we can split Eq.(107) into:

R[µα] = J[µα],

R(µα) = R̊(µα) + J(µα).
(109)
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9 Expressions for d and δ in Terms of Covariant Derivative
Operators D̊ and D

We have the following noticeable formulas whose proof can be found in,
e.g., [22]. Let Q ∈ sec

∧
T ∗M . Then as we already know

dQ = ϑα ∧ (D̊eα
Q) = ∂| ∧Q,

δQ = −ϑαy(D̊eαQ) = ∂|yQ. (110)

We have also the important formulas

dQ = ϑα ∧ (Deα
Q)− T α ∧ (ϑαyQ) =∂ ∧Q− T α ∧ (ϑαyQ),

δQ = −ϑαy(Deα
Q)− T αy(ϑα ∧Q) = −∂yQ− T αy(ϑα ∧Q). (111)

10 Square of Dirac Operators and D’ Alembertian, Ricci and
Einstein Operators

We now investigate the square of a Dirac operator. We start recalling
that the square of the standard Dirac operator can be identified with
the Hodge D’ Alembertian and that it can be separated in some inter-
esting parts that we called in [22] the D’Alembertian, Ricci and Einstein
operators of (M,g, D̊).

10.1 The Square of the Dirac Operator ∂| Associated to D̊

The square of standard Dirac operator ∂| is the operator, ∂|2 = ∂| ∂| :
sec

∧p
T ∗M ↪→ sec C`(M, g) → sec

∧p
T ∗M ↪→ sec C`(M, g) given by:

∂| 2 = (∂| ∧+ ∂|y)(∂| ∧+ ∂|y) = (d− δ)(d− δ) (112)

It is quite obvious that

∂| 2 = −(dδ + δd), (113)

and thus we recognize that ∂| 2 ≡ ♦ is the Hodge D’Alembertian of the
manifold introduced by Eq.(38)

On the other hand, remembering the standard Dirac operator is ∂| =
ϑα D̊eα

, where {ϑα} is the dual basis of an arbitrary basis {eα} on TU ⊂
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TM and D̊ is the Levi-Civita connection of the metric g, we have:

∂| 2 = (ϑαD̊eα
)(ϑβD̊eβ

) = ϑα(ϑβD̊eα
D̊eβ

+ (D̊eα
ϑβ)D̊eβ

)

= gαβ(D̊eα
D̊eβ

− L̊ρ
αβD̊eρ

) + ϑα ∧ ϑβ(D̊eα
D̊eβ

− L̊ρ
αβD̊eρ

).

Then defining the operators:

(a)
(b)

∂| · ∂|=gαβ(D̊eα
D̊eβ

− L̊ρ
αβD̊eρ

)
∂| ∧ ∂|=ϑα ∧ ϑβ(D̊eαD̊eβ

− L̊ρ
αβD̊eρ),

(114)

we can write:
♦ = ∂| 2 = ∂| · ∂|+ ∂| ∧ ∂| (115)

or,

∂| 2 = (∂|y + ∂| ∧)(∂|y + ∂| ∧)
= ∂|y ∂| ∧+ ∂| ∧ ∂|y (116)

It is important to observe that the operators ∂| · ∂| and ∂| ∧ ∂| do not
have anything analogous in the formulation of the differential geometry
in the Cartan and Hodge bundles.

The operator ∂| · ∂| can also be written as:

∂| · ∂| = 1
2
gαβ

[
D̊eα

D̊eβ
+ D̊eβ

D̊eα
− bρ

αβD̊eρ

]
. (117)

Applying this operator to the 1-forms of the frame {θα}, we get:

(∂| · ∂|)ϑµ = −1
2
gαβM̊ρ

µ
αβθρ, (118)

where:

M̊ρ
µ

αβ = eα(̊Lµ
βρ) + eβ (̊Lµ

αρ)− L̊µ
ασL̊σ

βρ − L̊µ
βσL̊σ

αρ − bσ
αβL̊µ

σρ. (119)

The proof that an object with these components is a tensor may be
found in [22]. In particular, for every r-form field ω ∈ sec

∧r
T ∗M ,

ω = 1
r!ωα1...αrθ

α1 ∧ . . . ∧ θαr , we have:

(∂| · ∂|)ω =
1
r!

gαβD̊αD̊βωα1...αr
θα1 ∧ . . . ∧ θαr , (120)
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where D̊αD̊βωα1...αr
are the components of the covariant derivative of

ω, i.e., writing D̊eβ
ω = 1

r!D̊βωα1...αr
θα1 ∧ . . . ∧ θαr , it is:

D̊βωα1...αr
= eβ(ωα1...αr

)− L̊σ
βα1

ωσα2...αr
−· · ·− L̊σ

βαr
ωα1...αr−1σ. (121)

In view of Eq.(120), we call the operator �̊ = ∂| · ∂| the covariant
D’Alembertian.

Note that the covariant D’Alembertian of the 1-forms ϑµ can also be
written as:

(∂| · ∂|)ϑµ = g̊αβD̊αD̊βδµ
ρ ϑρ =

1
2
g̊αβ(D̊αD̊βδµ

ρ + D̊βD̊αδµ
ρ )ϑρ

and therefore, taking into account the Eq.(118), we conclude that:

M̊ρ
µ

αβ = −(D̊αD̊βδµ
ρ + D̊βD̊αδµ

ρ ). (122)

By its turn, the operator ∂| ∧ ∂| can also be written as:

∂| ∧ ∂| = 1
2
ϑα ∧ ϑβ

[
D̊αD̊β − D̊βD̊α − cρ

αβD̊ρ

]
. (123)

Applying this operator to the 1-forms of the frame {ϑµ}, we get:

(∂| ∧ ∂|)ϑµ = −1
2
R̊ρ

µ
αβ(ϑα ∧ ϑβ)ϑρ = −R̊µ

ρϑρ, (124)

where R̊ρ
µ

αβ are the components of the curvature tensor of the connec-
tion D̊. Then using the second formula in the first line of Eq.(45) we
have

R̊µ
ρθρ = R̊µ

ρxθρ + R̊µ
ρ ∧ θρ. (125)

The second term in the r.h.s. of this equation is identically null because
due to the first Bianchi identity which for the particular case of the
Levi-Civita connection (T µ = 0) is R̊µ

ρ ∧ θρ = 0 . The first term in
Eq.(125) can be written

R̊µ
ρxθρ =

1
2
R̊ρ

µ
αβ(θα ∧ θβ)xθρ

=
1
2
R̊ρ

µ
αβθρy(θα ∧ θβ)

= −1
2
R̊ρ

µ
αβ (̊gραθβ − g̊ρβθα)

= −g̊ραR̊ρ
µ

αβθβ = −R̊µ
βθβ , (126)
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where R̊µ
β are the components of the Ricci tensor of the Levi-Civita

connection D̊ of g. Thus we have a really beautiful result:

(∂| ∧ ∂|)θµ = R̊µ, (127)

where R̊µ = R̊µ
βθβ are the Ricci 1-forms of the manifold. Because of

this relation, we call the operator ∂| ∧ ∂| the Ricci operatorof the manifold
associated to the Levi-Civita connection D̊ of g.

We can show [22] that the Ricci operator ∂| ∧ ∂| satisfies the relation:

∂| ∧ ∂| = R̊σ ∧ iσ + R̊ρσ ∧ iρiσ, (128)

where the curvature 2-forms are R̊ρσ = 1
2 R̊ρσ

αβϑα ∧ ϑβ and

iσω := ϑσyω. (129)

Observe that applying the operator given by the second term in the
r.h.s. of Eq.(128) to the dual of the 1-forms ϑµ, we get:

R̊ρσ ∧ iρiσ ? ϑµ = R̊ρσ ? ϑρy(ϑσy ? ϑµ))

= −R̊ρσ ∧ ?(ϑρ ∧ ϑσ ? ϑµ) (130)

= ?(R̊ρσy(ϑρ ∧ ϑσ ∧ ϑµ)),

where we have used the Eqs.(35). Then, recalling the definition of the
curvature forms and using the Eq.(28), we conclude that:

R̊ρσ ∧ (ϑρyϑσy ? ϑµ) = 2 ? (R̊µ − 1
2
R̊ϑµ) = 2 ? G̊µ, (131)

where R̊ is the scalar curvature of the manifold and the G̊µ may be
called the Einstein 1-form fields.

That observation motivate us to introduce in [22] the Einstein op-
erator of the Levi-Civita connection D̊ of g on the manifold M as the
mapping �̊ : sec C`(M, g) → sec C`(M, g) given by:

�̊ =
1
2

?−1 (R̊ρσ ∧ iρiσ) ? . (132)
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Obviously, we have:

�̊θµ = G̊µ = R̊µ − 1
2
R̊ϑµ. (133)

In addition, it is easy to verify that ?−1(∂| ∧ ∂|)? = − ∂| ∧ ∂| and ?−1(R̊σ ∧
iσ)? = R̊σyjσ. Thus we can also write the Einstein operator as:

�̊ = −1
2
(∂| ∧ ∂|+R̊σyjσ), (134)

where
jσA = ϑσ ∧ A, (135)

for any A ∈ sec
∧

T ∗M ↪→ sec C`(M, g).

We recall [22] that if ω̊µ
ρ are the Levi-Civita connection 1-forms fields

in an arbitrary moving frame {ϑµ} on (M,g, D̊) then:

(a)
(b)

(∂| · ∂|)ϑµ=−(∂| ·̊ωµ
ρ − ω̊σ

ρ · ω̊µ
σ)ϑρ

(∂| ∧ ∂|)ϑµ=−(∂| ∧ω̊µ
ρ − ω̊σ

ρ ∧ ω̊µ
σ)ϑρ,

(136)

and
∂| 2ϑµ = −(∂| ω̊µ

ρ − ω̊σ
ρ ω̊µ

σ)ϑρ. (137)

Exercise 11 Show that ϑρ ∧ ϑσR̊ρσ = −R̊, where R̊ is the curvature
scalar.

10.2 The Square of the Dirac Operator ∂ Associated to D

Consider the structure (M,g, D), where D is an arbitrary Riemann-
Cartan-Weyl connection and the Clifford algebra C`(M, g). Let us now
compute the square of the (general) Dirac operator ∂ = ϑαDeα . As in
the earlier section, we have, by one side,

∂2 = (∂y + ∂∧)(∂y + ∂∧)
= ∂y∂y + ∂y∂∧+ ∂ ∧ ∂y + ∂ ∧ ∂∧

and we write ∂y∂y ≡ ∂2y, ∂∧ ∂∧ ≡ ∂2∧ and

L+ = ∂y∂ ∧+ ∂ ∧ ∂y, (138)

so that:
∂2 = ∂2y + L+ + ∂2∧ . (139)
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The operator L+ when applied to scalar functions corresponds, for the
case of a Riemann-Cartan space, to the wave operator introduced by
Rapoport [23] in his theory of Stochastic Mechanics. Obviously, for the
case of the standard Dirac operator, L+ reduces to the usual Hodge D’
Alembertian of the manifold, which preserve graduation of forms. For
more details see [18].

On the other hand, we have also:

∂ 2 = (ϑαDeα)(ϑβDeβ
) = ϑα(ϑβDeαDeβ

+ (Deαϑβ)Deβ
)

= gαβ(DeαDeβ
− Lρ

αβDeρ) + ϑα ∧ ϑβ(DeαDeβ
− Lρ

αβDeρ)

and we can then define:

∂ · ∂ =gαβ(DeαDeβ
− Lρ

αβDeρ)
∂ ∧ ∂=θα ∧ θβ(Deα

Deβ
− Lρ

αβDeρ
) (140)

in order to have:
∂2= ∂∂ = ∂ · ∂ + ∂ ∧ ∂ . (141)

The operator ∂ · ∂ can also be written as:

∂ · ∂ =
1
2
θα · θβ(Deα

Deβ
− Lρ

αβDeρ
) +

1
2
θβ · θα(Deβ

Deα
− Lρ

βαDeρ
)

=
1
2
gαβ [Deα

Deβ
+ Deβ

Deα
− (Lρ

αβ + Lρ
βα)Deρ

] (142)

or,

∂ · ∂ =
1
2
gαβ(Deα

Deβ
+ Deβ

Deα
− bρ

αβDeρ
)− sρDeρ

, (143)

where sρ has been defined in Eq.(98).
By its turn, the operator ∂ ∧ ∂ can also be written as:

∂ ∧ ∂ =
1
2
ϑα ∧ ϑβ(DeαDeβ

− Lρ
αβDeρ) +

1
2
ϑβ ∧ ϑα(Deβ

Deα − Lρ
βαDeρ)

=
1
2
ϑα ∧ ϑβ [Deα

Deβ
−Deβ

Deα
− (Lρ

αβ − Lρ
βα)Deρ

]

or,

∂ ∧ ∂ =
1
2
ϑα ∧ ϑβ(DeαDeβ

−Deβ
Deα − cρ

αβDeρ)− T ρDeρ . (144)

Remark 12 For the case of a Levi-Civita connection we have similar
formulas for ∂| · ∂| (Eq.(142)) and ∂| ∧ ∂| (Eq.(144)) with D 7→ D̊, and of
course, T ρ = 0, as follows directly from Eq.(114).
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11 Coordinate Expressions for Maxwell Equations on Lorentzian
and Riemann-Cartan Spacetimes

11.1 Maxwell Equations on a Lorentzian Spacetime

We now take (M,g) as a Lorentzian manifold, i.e., dim M = 4 and the
signature of g is (1, 3). We consider moreover a Lorentzian spacetime
structure on (M,g), i.e., the pentuple (M,g, D̊, τg, ↑) and a Riemann-
Cartan spacetime structure (M,g, D, τg, ↑).

Now, in both spacetime structures, Maxwell equations in vacuum
read:

dF = 0, δF = −J, (145)

where F ∈ sec
∧2

T ∗M is the Faraday tensor (electromagnetic field) and

J ∈ sec
∧1

T ∗M is the current. We observe that writing

F =
1
2
Fµνdxµ ∧ dxν =

1
2
Fµνθµ ∧ θν =

1
2
Fµνθµν , (146)

we have using Eq.(34) that

?F =
1
2
Fµν(?θµν) =

1
2

?Fρσϑρσ =
1
2
(Fµν

1
2

√
|detg|gµαgνβεαβρσ)ϑρσ

(147)
Thus

?Fρσ = (?F)ρσ =
1
2
Fµν

√
|detg|gµαgνβεαβρσ. (148)

The homogeneous Maxwell equation dF = 0 can be writing as δ?F =
0. The proof follows at once from the definition of δ (Eq.(37)). Indeed,
we can write

0 = dF = ? ?−1 d ? ?−1F = ?δ ?−1 F = − ? δ ? F = 0.

Then ?−1 ? δ ? F = 0 and we end with

δ ? F = 0.

(a) We now express the equivalent equations dF = 0 and δ ? F = 0 in
arbitrary coordinates {xµ} covering U ⊂ M using first the Levi-Civita
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connection and noticeable formula in Eq.(110). We have

dF = θα ∧ (D̊∂α
F )

=
1

2
θα ∧

h
D̊∂α

(Fµνθµ ∧ θν)
i

=
1

2
θα ∧

h
(∂αFµν)θµ ∧ θν − Fµν Γ̊µ

αρθρ ∧ θν − Fµν Γ̊ν
αρθµ ∧ θρ

i
=

1

2
θα ∧

h
(D̊αFµν)θµ ∧ θν

i
=

1

2
DαFµνθα ∧ θµ ∧ θν

=
1

2

»
1

3
D̊αFµνθα ∧ θµ ∧ θν +

1

3
D̊µFναθµ ∧ θν ∧ θα +

1

3
D̊νFαµθν ∧ θα ∧ θµ

–
=

1

2

»
1

3
D̊αFµνθα ∧ θµ ∧ θν +

1

3
D̊µFναθα ∧ θµ ∧ θν +

1

3
D̊νFαµθα ∧ θµ ∧ θν

–
=

1

6

“
D̊αFµν + D̊µFνα + D̊νFαµ

”
θα ∧ θµ ∧ θν .

So,

dF = 0 ⇔ D̊αFµν + D̊µFνα + D̊νFαµ = 0. (149)

If we calculate dF = 0 using the definition of d we get:

dF =
1
2
(∂αFµν)θα ∧ θµ ∧ θν (150)

=
1
6

(∂αFµν + ∂µFνα + ∂νFαµ) θα ∧ θµ ∧ θν ,

from where we get that

dF = 0 ⇐⇒ ∂αFµν+∂µFνα+∂νFαµ = 0 ⇐⇒ D̊αFµν+D̊µFνα+D̊νFαµ = 0.
(151)
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Next we calculate δ ? F = 0. We have

δ ? F = −θαy(D̊∂α
? F)

= −1
2
θαy

{
D̊∂α

[?Fµνθµ ∧ θν ]
}

= −1
2
θαy

{
(∂α

?Fµν)θµ ∧ θν − ?Fµν Γ̊µ
αρθ

ρ ∧ θν − ?Fµν Γ̊ν
αρθ

µ ∧ θρ
}

= −1
2
θαy

{
(∂α

?Fµν)θµ ∧ θν − ?Fρν Γ̊ρ
αµθµ ∧ θν − ?FµρΓ̊ρ

ανθµ ∧ θν
}

= −1
2
θαy

{
(D̊α

?Fµν)θµ ∧ θν
}

= −1
2

{
(D̊α

?Fµν)gαµθν − (D̊α
?Fµν)gανθµ

}
= −(D̊α

?Fµν)gαµθν

= −[D̊α(?Fµνgαµ)]θν

= −(D̊α
?Fα

ν )]θν . (152)

Then we get that

D̊αFµν + D̊µFνα + D̊νFαµ = 0 ⇔ dF = 0 ⇔ δ ? F = 0 ⇐⇒ D̊α
?Fα

ν = 0.
(153)

(b) Also, the non homogenoeous Maxwell equation δF = −J can be
written using the definition of δ (Eq.(37)) as d ? F = − ? J:

δF = −J,

(−1)2 ?−1 d ? F = −J,

? ?−1 d ? F = − ? J,

d ? F = − ? J. (154)

We now express δF = − J in arbitrary coordinates17 using first the
Levi-Civita connection. We have following the same steps as in Eq.(152)

δF + J = −1
2
θαy

{
D̊∂α

[Fµνθµ ∧ θν ]
}

+ Jνθν (155)

= (−D̊αFα
ν + Jν)θν .

17We observe that in terms of the “classical” charge and “vector” current densities
we have J =ρθ0 − jiθ

i.
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Then
δF + J = 0 ⇔ D̊αFαν = Jν . (156)

We also observe that using the symmetry of the connection coeffi-
cients and the antisymmetry of the Fαν that Γ̊ν

αρF
αρ = −Γ̊ν

αρF
αρ = 0.

Also,

Γ̊α
αρ = ∂ρ ln

√
|detg| = 1√

|detg|
∂ρ |detg| ,

and

D̊αFαν = ∂αFαν + Γ̊α
αρF

ρν + Γ̊ν
αρF

αρ

= ∂αFαν + Γ̊α
αρF

ρν

= ∂ρF
ρν +

1√
|detg|

∂ρ(
√
|detg|)F ρν .

Then

D̊αFαν = Jν ,√
|detg|∂ρF

ρν + ∂ρ(
√
|detg|)F ρν =

√
|detg|Jν ,

∂ρ(
√
|detg|F ρν) =

√
|detg|Jν ,

1√
|detg|

∂ρ(
√
|detg|F ρν) = Jν , (157)

and

δF = 0 ⇔ D̊αFαν = Jν ⇔ 1√
|detg|

∂ρ(
√
|detg|F ρν) = Jν . (158)

Exercise 13 Show that in a Lorentzian spacetime Maxwell equations
become Maxwell equation, i.e.,

∂|F = J. (159)

11.2 Maxwell Equations on Riemann-Cartan Spacetime

From time to time we see papers (e.g., [19, 25]) writing Maxwell equa-
tions in a Riemann-Cartan spacetime using arbitrary coordinates and
(of course) the Riemann-Cartan connection. As we shall see such enter-
prises are simple exercises, if we make use of the noticeable formulas of
Eq.(111). Indeed, the homogeneous Maxwell equation dF = 0 reads

dF = θα ∧ (D∂α
F)− T α ∧ (θαyF) = 0 (160)
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or

1
6
(DαFµν + DµFνα + DνFαµ)θα ∧ θµ ∧ θν

− 1
2

1
2
Tα

ρσθρ ∧ θσ ∧ [θαyFµν(θµ ∧ θν)]

=
1
6
(DαFµν + DµFνα + DνFαµ)θα ∧ θµ ∧ θν

− 1
2
Tα

ρσFµνθρ ∧ θσ ∧ δµ
αθν

=
1
6
(DαFµν + DµFνα + DνFαµ)θα ∧ θµ ∧ θν

− 1
2
T σ

αµFσνθα ∧ θµ ∧ θν

=
1
6
(DαFµν + DµFνα + DνFαµ)θα ∧ θµ ∧ θν

− 1
6
(T σ

αµFσν + T σ
µνFσα + T σ

ναFσµ)θα ∧ θµ ∧ θν

=
1
6
(DαFµν + DµFνα + DνFαµ)θα ∧ θµ ∧ θν

+
1
6
(FασT σ

µν + FµσT σ
να + FνσT σ

αµ)θα ∧ θµ ∧ θν .

i.e.,

dF = 0 ⇐⇒ DαFµν +DµFνα +DνFαµ +FσαT σ
µν +FµσT σ

να +FνσT σ
αµ = 0.

(161)
Also, taking into account that dF = 0 ⇐⇒ δ ? F = 0 we have using the
second noticeable formula in Eq.(111) that

δ ? F =−θαy(Deα ? F)− T αy(θα ∧ ?F) = 0. (162)

Now,

θαy(Deα
? F) = (Dα

?Fα
ν)θν = (Dα

?Fαν)θν (163)
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and

T αy(θα ∧ ?F)

=
1

4
T α

βρ(θ
β ∧ θρ)y(θα ∧ (?Fµνθµ ∧ θν)

=
1

4
T α

βρ
?Fµν(θβ ∧ θρ)y(θα ∧ θµ ∧ θν)

=
1

4
T α

βρ
?F µνθβy[θρy(θα ∧ θµ ∧ θν)]

=
1

4
T α

βρ
?F µνθβy(δρ

αθµ ∧ θν − δρ
µθα ∧ θν + δρ

νθα ∧ θµ)

=
1

4
T α

βα
?F µνθβy(θµ ∧ θν)− 1

4
T α

βµ
?F µνθβy(θα ∧ θν) +

1

4
T α

βν
?F µνθβy(θα ∧ θµ)

=
1

4
T α

βα
?F µνθβy(θµ ∧ θν)− 1

4
T µ

βρ
?F ρνθβy(θµ ∧ θν) +

1

4
T µ

βρ
?F νρθβy(θµ ∧ θν)

=
1

4
(T α

βα
?F µν − T µ

βρ
?F ρν + T µ

βρ
?F νρ)θβy(θµ ∧ θν)

=
1

4
(T α

βα
?F µν − T µ

βρ
?F ρν + T µ

βρ
?F νρ)(δβ

µθν − δβ
ν θµ)

=
1

4
(T α

µα
?F µν − T µ

µρ
?F ρν + T µ

µρ
?F νρ)θν −

1

4
(T α

µα
?F νµ − T ν

µρ
?F ρµ + T ν

µρ
?F µρ)θν

=
1

2
(T α

µα
?F µν − T µ

µρ
?F ρν + T ν

µρ
?F µρ)θν (164)

Using Eqs.(163) and (164) in Eq.(162) we get

Dα
?Fαν +

1
2
(Tα

µα
?Fµν − Tµ

µρ
?F ρν + T ν

µρ
?Fµρ) = 0 (165)

and we have

dF = 0 ⇔ δ ?F =0 ⇔ Dα
?Fαν +

1
2
(Tα

µα
?Fµν−Tµ

µρ
?F ρν +T ν

µρ
?Fµρ) = 0.

(166)
Finally we express the non homogenous Maxwell equation δF = −J in
arbitrary coordinates using the Riemann-Cartan connection. We have

δF = −θαy(Deα
F)− T αy(θα ∧ F)

= −[DαFαν +
1
2
(Tα

µα
?Fµν − Tµ

µρ
?F ρν + T ν

µρ
?Fµρ)]θν = −Jνθν ,

(167)
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i.e.,

DαFαν +
1
2
(Tα

µα
?Fµν − Tµ

µρ
?F ρν + T ν

µρ
?Fµρ) = Jν . (168)

Exercise 14 Show (use Eq.(111)) that in a Riemann-Cartan spacetime
Maxwell equations become Maxwell equation, i.e.,

∂F = J + T ay(θa ∧ F)− T a ∧ (θayF). (169)

12 Bianchi Identities

We rewrite Cartan’s structure equations for an arbitrary Riemann-
Cartan structure (M,g, D, τg) where dim M = n and g is a metric of
signature (p, q), with p + q = n using an arbitrary cotetrad {θa} as

T a = dθa + ωa
b ∧ θb = Dθa,

Ra
b = dωa

b + ωa
c ∧ ωc

b

(170)

where

ωa
b = ωa

cbθc,

T a =
1
2
T a
bcθ

b ∧ θc (171)

Ra
b =

1
2
Rb

a
cdθc ∧ θd. (172)

Since the T a and the Ra
b are index form fields we can apply to those

objects the exterior covariant differential (Eq.(87)). We get

DT a = dT a + ωa
b ∧ T b = d2θa + d(ωa

b ∧ θb) + ωa
b ∧ T b

= dωa
b ∧ θb − ωa

b ∧ dθb + ωa
b ∧ T b

= dωa
b ∧ θb − ωa

b ∧ (T b − ωb
c ∧ θc) + ωa

b ∧ T b

= (dωa
b + ωa

c ∧ ωc
b) ∧ θb

= Ra
b ∧ θb (173)
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Also,

DRa
b = dRa

b + ωa
c ∧Rc

b − ωc
b ∧Ra

c

= d2ωa
b + dωa

c ∧ ωc
b − dωc

b ∧ ωa
c −Ra

c ∧ ωc
b +Rc

b ∧ ωa
c

= dωa
c ∧ ωc

b − (dωa
c + ωa

d ∧ ωd
c ) ∧ ωc

b − dωa
c ∧ ωc

b + (dωc
b + ωc

d ∧ ωd
b) ∧ ωa

c

= −ωa
d ∧ ωd

c ∧ ωc
b + ωc

d ∧ ωd
b ∧ ωa

c

= −ωa
d ∧ ωd

c ∧ ωc
b + ωd

c ∧ ωc
b ∧ ωa

d

= −ωa
d ∧ ωd

c ∧ ωc
b + ωa

d ∧ ωd
c ∧ ωc

b = 0. (174)

So, we have the general Bianchi identities which are valid for any one
of the metrical compatible structures18 classified in Section 2,

DT a = Ra
b ∧ θb,

DRa
b = 0. (175)

12.1 Coordinate Expressions of the First Bianchi Identity

Taking advantage of the calculations we done for the coordinate expres-
sions of Maxwell equations we can write in a while:

DT a = dT a + ωa
b ∧ T b

=
1

3!

“
∂µT a

αβ + ωa
µbTb

αβ + ∂αT a
βµ + ωa

αbTb
βµ + ∂βT a

µα + ωa
βbTb

µα

”
θµ ∧ θα ∧ θβ .

(176)

Now,
∂µT a

αβ = (∂µqa
ρ)T ρ

αβ + qa
ρ∂µT ρ

αβ , (177)

and using the freshman identity (Eq.(23)) we can write

ωa
µbTb

αβ = ωa
µbqb

ρ T ρ
αβ = La

µbqb
ρ T ρ

αβ − (∂µqa
ρ)T ρ

αβ . (178)

So,

∂µT a
αβ + ωa

µbTb
αβ

= qa
ρ∂µT ρ

αβ + Γa
µbqb

ρ T ρ
αβ

= qa
ρ(DµT ρ

αβ + Γκ
µαT ρ

κβ + Γκ
µβT ρ

ακ). (179)

18For non metrical compatible structures we have more general equations than the
Cartan structure equations and thus more general identities, see [22].
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Now, recalling that Tκ
µα = Γκ

µα − Γκ
αµ we can write

qa
ρ(Γκ

µαT ρ
κβ + Γκ

µβT ρ
ακ)θµ ∧ θα ∧ θβ (180)

= qa
ρTκ

µαT ρ
κβθµ ∧ θα ∧ θβ .

Using these formulas we can write

DT a =

1

3!
qa

ρ

˘
DµT ρ

αβ + DαT ρ
βµ + DβT ρ

µα + T κ
µαT ρ

κβ + T κ
αβT ρ

κµ + T κ
βµT ρ

κα

¯
θµ ∧ θα ∧ θβ .

(181)

Now, the coordinate representation of Ra
b ∧ θb is:

Ra
b ∧ θb =

1
3!

qa
ρ(Rµ

ρ
αβ + Rα

ρ
βµ + Rβ

ρ
µα)θµ ∧ θα ∧ θβ , (182)

and thus the coordinate expression of the first Bianchi identity is:

DµT ρ
αβ + DαT ρ

βµ + DβT ρ
µα

= (Rµ
ρ
αβ + Rα

ρ
βµ + Rβ

ρ
µα)− (Tκ

µαT ρ
κβ + Tκ

αβT ρ
κµ + Tκ

βµT ρ
κα),
(183)

which we can write as∑
(µαβ)

Rµ
ρ
αβ =

∑
(µαβ)

(
DµT ρ

αβ − Tκ
µβT ρ

κα

)
, (184)

with
∑

(µαβ)

denoting as usual the sum over cyclic permutation of the

indices (µαβ). For the particular case of a Levi-Civita connection D̊
since the T ρ

αβ = 0 we have the standard form of the first Bianchi identity
in classical Riemannian geometry, i.e.,

Rµ
ρ
αβ + Rα

ρ
βµ + Rβ

ρ
µα = 0. (185)

If we now recall the steps that lead us to Eq.(166) we can write for
the torsion 2-form fields T a,

dT a = ? ?−1 d ? ?−1T a

= (−1)n−2 ? δ ?−1 T a = (−1)n−2(−1)n−2sgng ? δ ? T a

= (−1)n−2 ?−1 δ ? T a. (186)
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with sgng = detg/ |detg|. Then we can write the first Bianchi identity
as

δ ? T a = (−1)n−2 ? [Ra
b ∧ θb − ωa

b ∧ T b], (187)

and taking into account that

?(Ra
b ∧ θb) = ?(θb ∧Ra

b) = θby ?Ra
b,

?(ωa
b ∧ T b) = ωa

by ? T b, (188)

we end with

δ ? T a = (−1)n−2(θby ?Ra
b − ωa

by ? T b). (189)

This is the first Bianchi identity written in terms of duals. To calculate
its coordinate expression, we recall the steps that lead us to Eq.(166)
and write directly for the torsion 2-form fields T a

δ ? T a

= −(Dα
?T aαν +

1
2
(Tα

µα
?T aµν − Tµ

µρ
?T aρν + T ν

µρ
?T aµρ))θν . (190)

Also, writing

?Ra
b =

1
2
∗R a

b cdθc ∧ θd, (191)

we have:

?(Ra
b ∧ θb) = θby ?Ra

b

=
1
2
θby(?R a

b cdθc ∧ θd)

= ?R a
b cdηbcθd

= ?Rca
cdθd = ?Rca d

c θd = ?Rca d
c qν

dθν . (192)
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On the other hand we can also write:

?(Ra
b ∧ θb) = θby ?Ra

b

=
1
2
ϑby(

1
(n− 2)!

R akl
b εklmnθm ∧ θn)

=
1
2

1
(n− 2)!

(R akl
b εklmnηbm ∧ θn −R akl

b εklmnηbn ∧ θm)

=
1

(n− 2)!
R akl

b εklmnηbmθn =
1

(n− 2)!
Rmaklεklmnθn

=
1

(n− 2)!
R akl

m ε mn
kl θn

=
1

(n− 2)!
R akl

m ε mn
kl qν

nθν .

from where we get in agreement with Eq.(34) the formula

?Rca
cd =

1
(n− 2)!

Rmaklεmkld, (193)

which shows explicitly that ?Rca
cd are not the components of the Ricci

tensor.
Moreover,

ωa
by ? T b (194)

=
1
2
ωa

αbθαy(?Tbµνθµ ∧ θν)

=? Tbµνωa
αbθν .

Collecting the above formulas we end with

Dα
?T aαν+

1

2
(T α

µα
?T aµν−T µ

µρ
?T aρν+T ν

µρ
?T aµρ) = (−1)n−1(?Rca d

c qν
d−ωa?

αbTbαν),

(195)

which is another expression for the first Bianchi identity written in terms
of duals.

Remark 15 Consider, e.g., the term Dα
?T aαν in the above equation

and write
Dα

?T aαν = Dα(qa
ρ

?T ραν). (196)

We now show that

Dα(qa
ρ

?T ραν) 6= qa
ρDα

?T ραν . (197)
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Indeed, recall that we already found that

(Dα
?T aαν)θν = −δ?T a+

1
2
(Tα

µα
?T aµν−Tµ

µρ
?T aρν +T ν

µρ
?T aµρ)θν , (198)

and taking into account the second formula in Eq.(111) we can write

θαy(D∂α
?T a) = −δ?T a+

1
2
(Tα

µα
?T aµν−Tµ

µρ
?T aρν+T ν

µρ
?T aµρ)θν . (199)

Now, writing ?T a = 1
2qa

ρ
?T ρµνθµ ∧ θν and get

θαy(D∂α
? T a)

=
1
2
θαy[D∂α

(qa
ρ

?T ρµνθµ ∧ θν)]

=
1
2
ϑαy[∂α(qa

ρ
?T ρµν)θµ ∧ θν + qa

ρ
?T ρµνD∂α

(θµ ∧ θν)]

=
1
2
ϑαy[(∂αqa

ρ)?T ρµνθµ ∧ θν + qa
ρ∂α(?T ρµν)θµ ∧ θν + qa

ρ
?T ρµνD∂α

(θµ ∧ θν)]

=
1
2
ϑαy[(∂αqa

ρ)?T ρµνθµ ∧ θν + qa
ρDα(?T ρµν)θµ ∧ θν ]

= (∂αqa
ρ)?T ρµνδα

µθν + qa
ρDα(?T ρµν)δα

µθν . (200)

Comparing the Eq.(198) with Eq.(199) using Eq.(200) we get

Dα
?T aανθν = Dα(qa

ρ
?T aανθν) = (∂αqa

ρ)?T ρµν + qa
ρDα(?T ρµν), (201)

thus proving our statement and showing the danger of applying a so
called “tetrad postulate” asserting without due care on the meaning of
the symbols that “ the covariant derivative of the tetrad is zero, and thus
using “Dαqa

ρ = 0”.”

Exercise 16 Show that the coordinate expression of the second Bianchi
identity DRa

b = 0 is ∑
(µνρ)

DµR α
β νρ =

∑
(µνρ)

Tα
νµR α

β αρ. (202)

Exercise 17 Calculate ?Ra
b ∧ θb in an orthonormal basis.
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Solution: First we recall the ?Ra
b ∧ θb = θb ∧ ?Ra

b and then use the
formula in the third line of Eq.(35) to write:

θb ∧ ?Ra
b = − ? (θbyRa

b)

= − ?

[
1
2
θby(R a

b cdθc ∧ θd)
]

= − ? [R a
b cdηbcθd]

= − ? [Rca
cdθd] = − ? [Rac

dcθ
d]

= − ? [Ra
dθd] = − ?Ra (203)

Of course, if the connection is the Levi-Civita one we get

θb ∧ ?R̊a
b = − ? (θbyR̊a

b) = −R̊a
bθb = − ? R̊a. (204)

13 A Remark on Evans 101th Paper on “ECE Theory”

Eq. (195) or its equivalent Eq.(201) is to be compared with a wrong one
derived by Evans from where he now claims that the Einstein-Hilbert
(gravitational) theory which uses in its formulation the Levi-Civita con-
nection D̊ is incompatible with the first Bianchi identity. Evans con-
clusion follows because he thinks to have derived “from first principles”
that

D?T a = ?Ra
b ∧ θb, (205)

an equation that if true implies as we just see from Eq.(203) that for
the Levi-Civita connection for which T a = 0 the Ricci tensor of the
connection D̊ is null.

We show below that Eq.(205) is a false one in two different ways,
firstly by deriving the correct equation for D?T a and secondly by show-
ing explicit counterexamples for some trivial structures.

Before doing that let us show that we can derive from the first Bianchi
identity that

R̊ a
a cd = 0, (206)

an equation that eventually may lead Evans in believing that for a Levi-
Civita connection the first Bianchi identity implies that the Ricci tensor
is null. As we know, for a Levi-Civita connection the first Bianchi iden-
tity gives (with Ra

b 7−→ R̊a
b):

R̊a
b ∧ θb = 0. (207)
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Contracting this equation with θa we get

θay(R̊a
b ∧ θb) = θay(θb ∧ R̊a

b)

= δb
a R̊a

b − θb ∧ (θayR̊a
b)

= R̊a
a −

1
2
θb ∧ [θay(R̊ a

b cdθc ∧ θd)]

= R̊a
a − R̊ a

b adθb ∧ θd

Now, the second term in this last equation is null because according to
the Eq.(106), −R a

b ad = R a
b da = Rbd are the components of the Ricci

tensor, which is a symmetric tensor for the Levi-Civita connection. For
the first term we get

R̊ a
a cdθc ∧ θd = 0, (208)

which implies that as we stated above that

R̊ a
a cd = 0. (209)

But according to Eq.(106) the R̊ a
a cd are not the components of the Ricci

tensor, and so there is not any contradiction. As an additional ver-
ification recall that the standard form of the first Bianchi identity in
Riemannian geometry is

R̊b
a
cd + R̊c

a
db + R̊d

a
bc. = 0 (210)

Making b = a we get

R̊a
a
cd + R̊c

a
da + R̊d

a
ac

= R̊a
a
cd − R̊c

a
ad + R̊d

a
ac

= R̊a
a
cd + R̊cd − R̊dc

= R̊a
a
cd = 0. (211)

14 Direct Calculation of D ? T a

We now present using results of Clifford bundle formalism, recalled
above (for details, see, e.g., [22]) a calculation of D ? T a.

We start from Cartan first structure equation

T a = dθa + ωa
b ∧ θb. (212)
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By definition
D ? T a = d ? T a + ωa

b ∧ ?T b. (213)

Now, if we recall Eq.(39), since the T a ∈ sec
∧2

T ∗M ↪→ sec C`(M, g)
we can write

d ? T a = ?δT a. (214)

We next calculate δT a. We have:

δT a = δ
(
dθa + ωa

b ∧ θb
)

= δdθa + dδθa − dδθa + δ(ωa
b ∧ θb) . (215)

Next we recall the definition of the Hodge D’Alembertian which,
recalling Eq.(112) permit us to write the first two terms in Eq.(215) as
the negative of the square of the standard Dirac operator (associated
with the Levi-Civita connection)19. We then get:

δT a = − ∂| 2θa − dδθa + δ(ωa
b ∧ θb)

Eq.(115)
= −�̊θa − (∂| ∧ ∂|)θa − dδθa + δ(ωa

b ∧ θb)

Eq.(127)
= −�̊θa − R̊a − dδθa + δ(ωa

b ∧ θb)

= −�̊θa −Ra + J a − dδθa + δ(ωa
b ∧ θb) (216)

where we have used Eq(107) to write

Ra = Ra
bθb = (R̊a

b + Ja
b)θb. (217)

So, we have

d ? T a = − ? �̊θa − ?Ra + ?J a − ?dδθa + ?δ(ωa
b ∧ θb)

and finally

D ?T a = −? �̊θa−?Ra +?J a−?dδθa +?δ(ωa
b∧ θb)+ωa

b∧?T b (218)

or equivalently recalling Eq.(35)

D?T a = −? �̊θa−?Ra +?J a−?dδθa +?δ(ωa
b∧θb)−?(ωa

byT b) (219)

19Be patient, the Riemann-Cartan connection will appear in due time.
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Remark 18 Eq.(219) does not implies that D ? T a = ?Ra
b ∧ θb because

taking into account Eq.(203)

?Ra
b∧θb = −?Ra 6= D?T a = −?�̊θa−?Ra+?J a−?dδθa+?δ(ωa

b∧θb)−?(ωa
byT b)

(221)

in general.

So, for a Levi-Civita connection we have that D ? T a = 0 and then
Eq.(218) implies

D ? T a = 0 ⇔ −�̊θa − R̊a − dδθa + δ(ω̊a
b ∧ θb) = 0 (220)

or since ω̊a
b ∧ θb = −dθb for a Levi-Civita connection,

D ? T a = 0 ⇔ −�̊θa − R̊a − dδθa − δdθa = 0 (221)

or yet
−�̊θa − R̊a = − ∂| 2 θa = dδθa + δdθa, (222)

an identity that we already mentioned above (Eq.(113)).

14.1 Einstein Equations

The reader can easily verify that Einstein equations in the Clifford bundle
formalism is written as:

R̊a − 1
2
R̊θa = Ta, (223)

where R̊ is the scalar curvature and Ta = −T a
bθb are the energy-

momentum 1-form fields. Comparing Eq.(221) with Eq.(223). We im-
mediately get the “wave equation” for the cotetrad fields:

Ta = −1
2
R̊θa − �̊θa − dδθa − δdθa, (224)

which does not implies that the Ricci tensor is null.

Remark 19 We see from Eq.(224) that a Ricci flat spacetime is charac-
terized by the equality of the Hodge and covariant D’ Alembertians acting
on the coterad fields, i.e.,

�̊θa = ♦θa, (225)

a non trivial result.

Exercise 20 Using Eq.(120) and Eq.(121 ) write �̊θa in terms of the
connection coefficients of the Riemann-Cartan connection.
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15 Two Counterexamples to Evans (Wrong) Equation
“D ? T a = ?Ra

b ∧ θb”

15.1 The Riemannian Geometry of S2

Consider the well known Riemannian structure on the unit radius sphere
[12] {S2,g, D̊}. Let {xi}, x1 = ϑ , x2 = ϕ, 0 < ϑ < π, 0 < ϕ < 2π, be
spherical coordinates covering U = {S2− l}, where l is the curve joining
the north and south poles.

A coordinate basis for TU is then {∂µ} and its dual basis is {θµ =
dxµ}. The Riemannian metric g ∈ sec T 2

0 M is given by

g = dϑ⊗ dϑ + sin2 ϑdϕ⊗ dϕ (226)

and the metric g∈ sec T 0
2 M of the cotangent space is

g = ∂1 ⊗ ∂1 +
1

sin2 ϑ
∂2 ⊗ ∂2. (227)

An orthonormal basis for TU is then {ea} with

e1 = ∂1, e2 =
1

sinϑ
∂2, (228)

with dual basis {θa} given by

θ1 = dϑ, θ2 = sinϑdϕ. (229)

The structure coefficients of the orthonormal basis are

[ei, ej] = ckijek (230)

and can be evaluated, e.g., by calculating dθi = − 1
2cijkθj ∧ θk. We get

immediately that the only non null coefficients are

c212 = −c221 = − cot θ. (231)

To calculate the connection 1-form ωc
d we use Eq.(92), i.e.,

ωcd =
1
2
(−ccjkηdj + cdjkηcj − ηcaηbkηdjcbja)θ

k.

Then,
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ω21 =
1
2
(−c212η11 − η22η22η11c212)θ2 = cotϑθ2. (232)

Then

ω21 = −ω12 = cotϑθ2,

ω2
1 = −ω1

2 = cotϑθ2, (233)

ω̊2
21 = cotϑ , ω̊2

11 = 0. (234)

Now, from Cartan’ s second structure equation we have

R̊1
2 = dω̊1

2 + ω̊1
1 ∧ ω̊1

1 + ω̊1
2 ∧ ω̊2

2 = dω̊1
2 (235)

= θ1 ∧ θ2

and20

R̊ 1
2 12 = −R̊ 1

2 21 = −R̊ 2
1 12 = R̊ 2

1 21 =
1
2
. (236)

Now, let us calculate ?R1
2 ∈ sec

∧0
T ∗M . We have

?R1
2 = R̃1

2yτg = −(θ1 ∧ θ2)y(θ1 ∧ θ2) = −θ1θ2θ1θ2

=
(
θ1

)2 (
θ2

)2
= 1 (237)

and
?R1

a ∧ θa = R1
2 ∧ θ2 = θ2 6= 0. (238)

Now, Evans equation implies that ?R1
a ∧ θ1 = 0 for a Levi-Civita con-

nection and thus as promised we exhibit a counterexample to his wrong
equation.

Remark 21 We recall that the first Bianchi identity for (S2,g, D̊), i.e.,
DT a = Ra

b∧ θb = 0 which translate in the orthonormal basis used above
in R̊b

a
cd + R̊c

a
db + R̊d

a
bc. = 0 is rigorously valid. Indeed, we have

R̊2
1
12 + R̊1

1
21 + R̊2

1
21 = R̊2

1
12 − R̊2

1
12 = 0,

R̊1
2
12 + R̊1

2
21 + R̊2

2
21 = R̊1

2
12 − R̊1

2
12 = 0. (239)

20Observe that with our definition of the Ricci tensor it results that R̊ = R̊1
1+R̊2

2 =
−1.
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15.2 The Teleparallel Geometry of (S̊2,g, D)

Consider the manifold S̊2 = {S2\north pole} ⊂ R3, it is an sphere of
unitary radius excluding the north pole. Let g ∈ sec T 0

2 S̊2 be the stan-
dard Riemann metric field for S̊2 (Eq.(226)). Now, consider besides the
Levi-Civita connection another one, D, here called the Nunes (or navi-
gator [17]) connection21. It is defined by the following parallel transport
rule: a vector is parallel transported along a curve, if at any x ∈ S̊2

the angle between the vector and the vector tangent to the latitude line
passing through that point is constant during the transport (see Figure
1)
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Figure 1: Geometrical Characterization of the Nunes Connection.

As before (x1, x2) = (ϑ, ϕ) 0 < ϑ < π, 0 < ϕ < 2π, denote the
standard spherical coordinates of a S̊2 of unitary radius, which covers
U = {S̊2 − l}, where l is the curve joining the north and south poles.

Now, it is obvious from what has been said above that our connection
is characterized by

Dej
ei = 0. (240)

21See some historical details in [22].
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Then taking into account the definition of the curvature tensor we
have

R(ek, θa, ei, ej) = θa
([

Dei
Dej

−Dej
Dei

−Dc
[ei,ej]

]
ek

)
= 0. (241)

Also, taking into account the definition of the torsion operation we
have

τ(ei, ej) = Tk
ijek = Dej

ei −Dei
ej − [ei, ej]

= [ei, ej] = ckijek, (242)

T 2
21 = −T 2

12 = cotϑ , T 1
21 = −T 1

12 = 0. (243)

It follows that the unique non null torsion 2-form is:

T 2 = − cot ϑθ1 ∧ θ2.

If you still need more details, concerning this last result, consider Fig-
ure 1(b) which shows the standard parametrization of the points p, q, r, s
in terms of the spherical coordinates introduced above [17]. According
to the geometrical meaning of torsion, we determine its value at a given
point by calculating the difference between the (infinitesimal)22 vectors
pr1 and pr2 determined as follows. If we transport the vector pq along ps

we get the vector ~v = sr1 such that |g(~v,~v)|
1
2 = sinϑ4ϕ. On the other

hand, if we transport the vector ps along pr we get the vector qr2 = qr.
Let ~w = sr. Then,

|g(~w, ~w)|
1
2 = sin(ϑ−4ϑ)4ϕ ' sinϑ4ϕ− cos ϑ4ϑ4ϕ, (244)

Also,

~u = r1r2 = −u(
1

sinϑ
∂2) , u = |g(~u, ~u)| = cos ϑ4ϑ4ϕ. (245)

22This wording, of course, means that this vectors are identified as elements of the
appropriate tangent spaces.
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Then, the connection D of the structure (S̊2,g, D) has a non null torsion
tensor Θ. Indeed, the component of ~u = r1r2 in the direction ∂2 is
precisely Tϕ

ϑϕ4ϑ4ϕ. So, we get (recalling that D∂j
∂i = Γk

ji∂k)

Tϕ
ϑϕ =

(
Γϕ

ϑϕ − Γϕ
ϕϑ

)
= − cot ϑ. (246)

Exercise 22 Show that D is metrical compatible, i.e., Dg = 0.

Solution:

0 = Decg(ei, ej) = (Decg)(ei, ej) + g(Decei, ej) + g(ei, Decej)
= (Decg)(ei, ej) (247)

Remark 23 Our counterexamples that involve the parallel transport
rules defined by a Levi-Civita connection and a teleparallel connection
in S̊2 show clearly that we cannot mislead the Riemann curvature ten-
sor of a connection defined in a given manifold with the fact that the
manifold may be bend as a surface in an Euclidean manifold where it is
embedded. Neglecting this fact may generate a lot of wishful thinking.

16 Conclusions

In this paper after recalling the main definitions and a collection of
tricks of the trade concerning the calculus of differential forms on the
Cartan, Hodge and Clifford bundles over a Riemannian or Riemann-
Cartan space or a Lorentzian or Riemann-Cartan spacetime we solved
with details several exercises involving different grades of difficult and
which we believe, may be of some utility for pedestrians and even for
experts on the subject. In particular we found using technology of the
Clifford bundle formalism the correct equation for D?T a. We show that
the result found by Dr. Evans [10], “D ? T a = ?Ra

b ∧ T b” because it
contradicts the right formula we found. Besides that, the wrong formula
is also contradicted by two simple counterexamples that we exhibited
in Section 15 . The last sentence before the conclusions is a crucial
remark, which each one seeking truth must always keep in mind: do
not confuse the Riemann curvature tensor23 of a connection defined in a
given manifold with the fact that the manifold may be bend as a surface
in an Euclidean manifold where it is embedded.

23The remark applies also to the torsion of a connection.
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We end the paper with a necessary explanation. An attentive reader
may ask: Why write a bigger paper as the present one to show wrong a
result not yet published in a scientific journal? The justification is that
Dr. Evans maintain a site on his (so called) “ECE theory” which is read
by thousand of people that thus are being continually mislead, thinking
that its author is creating a new Mathematics and a new Physics. Besides
that, due to the low Mathematical level of many referees, Dr. Evans
from time to time succeed in publishing his papers in SCI journals, as
the recent ones., [8, 9]. In the past we already showed that several
published papers by Dr. Evans and colleagues contain serious flaws (see,
e.g., [5, 21]) and recently some other authors spent time writing papers
to correct Mr. Evans claims (see, e.g.,[1, 2, 3, 14, 15, 28]) It is our
hope that our effort and of the ones by those authors just quoted serve
to counterbalance Dr. Evans influence on a general public24 which
being anxious for novelties may be eventually mislead by people that
claim among other things to know [6, 7, 8, 9] how to project devices to
withdraw energy from the vacuum.

Acknowledgement 24 The author is grateful to Prof. E. A. Notte-
Cuello, for have checking all calculations and discovered several mis-
prints, that are now corrected. Moreover, the author will be grateful to
any one which point any misprints or eventual errors.
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