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ABSTRACT. In this paper after recalling some essential tools concern-
ing the theory of differential forms in the Cartan, Hodge and Clifford
bundles over a Riemannian or Riemann-Cartan space or a Lorentzian
or Riemann-Cartan spacetime we solve with details several exercises
involving different grades of difficult. One of the problems is to show
that a recent formula given in [10] for the exterior covariant deriva-
tive of the Hodge dual of the torsion 2-forms is simply wrong. We
believe that the paper will be useful for students (and eventually for
some experts) on applications of differential geometry to some physi-
cal problems. A detailed account of the issues discussed in the paper
appears in the table of contents.
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1 Introduction

In this paper we first recall some essential tools concerning the theory
of differential forms in the Cartan, Hodge and Clifford bundles over a n-
dimensional manifold M equipped with a metric tensor g € sec TY M of
arbitrary signature (p, q), p+¢ = n and also equipped with metric com-
patible connections, the Levi-Civita (D) and a general Riemann-Cartan
(D) onel. After that we solved with details some exercises involving
different grades of difficult, ranging depending on the readers knowledge
from kindergarten, intermediate to advanced levels. In particular we
show how to express the derivative (d) and coderivative (§) operators as
functions of operators related to the Levi-Civita or a Riemann-Cartan
connection defined on a manifold, namely the standard Dirac operator
() and general Dirac operator (8). Those operators are then used to
express Maxwell equations in both a Lorentzian and a Riemann-Cartan
spacetime. We recall also important formulas (not well known as they
deserve to be) for the square of the general Dirac and standard Dirac
operators showing their relation with the Hodge D’Alembertian (Q), the
covariant D’ Alembertian (0) and the Ricci operators (R*, R®) and
FEinstein operator (H) and the use of these operators in the FEinstein-
Hilbert gravitational theory. Finally, we study the Bianchi identities.
Recalling that the first Bianchi identity is D72 = R A 6°, where 72
and R2 are respectively the torsion and the curvature 2-forms and {6°}
is a cotetrad we ask the question: Who is D x 72?7 We find the correct
answer (Eq.(218)) using the tools introduced in previous sections of the
paper. Our result shows explicitly that the formula “Dx7?2 = xR2 AGP”
recently found in [10] and claimed to imply a contradiction in Einstein-
Hilbert gravitational theory is wrong. Two very simple counterexamples
contradicting the wrong formula for D x 72 are presented. A detailed
account of the issues discussed in the paper appears in the table of con-
tents?. We call also the reader attention that in the physical applications
we use natural units for which the numerical values of ¢,h and the grav-
itational constant k (appearing in Einstein equations) are equal to 1.

LA spacetime is a special structure where the manifold is 4-dimensional, the metric
has signature (1,3) and which is equipped with a Levi-Civita or a Riemann-Cartan
connection, orientability and time orientation. See below and, e.g., [22, 26] for more
details, if needed.

2More on the subject may be found in, e.g., [22] and recent advanced material
may be found in several papers of the author posted on the arXiv.
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2 Classification of Metric Compatible Structures (M, g, D)

Let M denotes a n-dimensional manifold®. We denote as usual by T, M
and TM respectively the tangent and the cotangent spaces at = €
M. By TM = UxeM T.M and T*M = UmeM TZM respectively
the tangent and cotangent bundles. By 77 M we denote the bundle

of r-contravariant and s-covariant tensors and by TM = @, _,ToM

the tensor bundle. By /\TTM and /\TT*M denote respectively the
bundles of r-multivector fields and of r-form fields. We call /\TM =
@Tiz /\TTM the bundle of (non homogeneous) multivector fields and

call /\T*M = @TiZ/\TT*M the exterior algebra (Cartan) bundle. Of
course, it is the bundle of (non homogeneous) form fields. Recall that
the real vector spaces are such that dim A" T, M = dim \" Ty M = ()

and dim /\T*M = 2". Some additional structures will be introduced or

mentioned below when needed. Let g € sec TY M a metric of signature
(p, q) and D an arbitrary metric compatible connection on M, i.e., Dg =
0. We denote by R and T respectively the (Riemann) curvature and
torsion tensors® of the connection D, and recall that in general a given
manifold given some additional conditions may admit many different
metrics and many different connections.

Given a triple (M, g, D):

(a) it is called a Riemann-Cartan space if and only if

Dg=0 and T #0. (1)
(b) it is called Weyl space if and only if

Dg+#0 and T =0. (2)
(c) it is called a Riemann space if and only if

Dg=0 and T =0, (3)

3We left the toplogy of M unspecified for a while.

4We denote by sec(X (M)) the space of the sections of a bundle X (M). Note that
all functions and differential forms are supposed smooth, unless we explicitly say the
contrary.

5The precise definitions of those objects will be recalled below.
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and in that case the pair (D, g) is called Riemannian structure.

(d) it is called Riemann-Cartan-Weyl space if and only if
Dg#0 and T #0. (4)
(e) it is called (Riemann) flat if and only if

Dg=0 and R =0,

(f) it is called teleparallel if and only if
Dg=0, T#0 and R =0. (5)

2.1 Levi-Civita and Riemann-Cartan Connections

For each metric tensor defined on the manifold M there exists one and
only one connection in the conditions of Eq.(3). It is is called Levi-Civita
connection of the metric considered, and is denoted in what follows by D.
A connection satisfying the properties in (a) above is called a Riemann-
Cartan connection. In general both connections may be defined in a
given manifold and they are related by well established formulas re-
called below. A connection defines a rule for the parallel transport of
vectors (more generally tensor fields) in a manifold, something which is
conventional [20], and so the question concerning which one is more im-
portant is according to our view meaningless®. The author knows that
this assertion may surprise some readers, but he is sure that they will
be convinced of its correctness after studying Section 15. More on the
subject in [22]. For implementations of these ideas for the theory of
gravitation see [18]

2.2 Spacetime Structures

Remark 1 When dim M = 4 and the metric g has signature (1,3)
we sometimes substitute Riemann by Lorentz in the previous definitions

(c),(e) and (f).

Remark 2 In order to represent a spacetime structure a Lorentzian
or a Riemann-Cartan structure (M, g, D) need be such that M is con-
nected and paracompact [11] and equipped with an orientation defined by

6Even if it is the case, that a particular one may be more convenient than others
for some purposes. See the example of the Nunes connections in Section 15.
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4
the volume element T7g € Sec/\ T*M and a time orientation denoted
by 7. We omit here the details and ask to the interested reader to con-
sult, e.g., [22]. A general spacetime will be represented by a pentuple

(M7g,D,Tg7T)~

3 Absolute Differential and Covariant Derivatives

Given a differentiable manifold M, let X,Y € secTM be any vector
fields and o € sec T*M any covector field . Let TM = @ _, T M be

r,5=0

the tensor bundle of M and P € sec 7T M any general tensor field.

We now describe the main properties of a general connection D (also
called absolute differential operator). We have

D :secTM xsecTM — secT M,
(X7P)'_)DXPa (6)

where Dy the covariant derivative in the direction of the vector field
X satisfy the following properties: Given, differentiable functions f, g :
M — R, vector fields X,Y € secTM and P,Q € secT M we have

DixygvP = fDxP+gDyP,
Dx(P+ Q)= DxP+ DxQ,
Dx(fP) = fDx(P)+X(f)P,
Dx(P®Q)=DxP®Q+PxDxQ. (7)

Given Q €secT, M the relation between DQ, the absolute differen-
tial of Q and DxQ the covariant derivative of Q in the direction of the
vector filed X is given by

D:secTyM — secTy M,
DQ(X, Xy, ... X5, a1, oy )
=DxQ(Xq, ..., X5, a1, ..., ),
X, .., Xs €secTM, a,...a. € secT*M. (8)

Let U C M and consider a chart of the maximal atlas of M covering
U coordinate functions” {x*}. Let g € secTYM be a metric field for

“If e € M, then x*(e) = z* is the p coordinate of e in the given chart.
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M. Let {9,} be a basis for TU, U C M and let {§* = da*} be the
dual basis of {9,}. The reciprocal basis of {6*} is denoted {6}, and
g(6#,6,) := 6" -6, = 5. Introduce next a set of differentiable functions

¢, qp : U — R such that :

hap =08 . i =6l . 9)
It is trivial to verify the formulas
G = 0 Mab 9" = qlapn®™,
Nab = qhqt g, 120 = Cang", (10)
with )
Nab = diag(l,...,1—-1,... — 1)
P times q times

Moreover, defining
€p = qu)au
the set {ea} with e, € secTM is an orthonormal basis for TU. The
dual basis of TU is {02}, with 0% = ¢fdxz*. Also, {0p} is the reciprocal
basis of {62}, i.e. 62 -0, = 63.

Remark 3 When dim M = 4 the basis {ea} of TU is called a tetrad
and the (dual) basis {62} of T*U is called a cotetrad. The names are
appropriate ones if we recall the Greek origin of the word.

The connection coefficients associated to the respective covariant
derivatives in the respective basis will be denoted as:

Dy 8, =T0,8, Dg 8" =-Th,d" (12)
De,eb=wip e, Do, e”=-wi e’ Dy en=uwjp ec,
Dy da" = ~T}.dx", Dy 0, =T},0,, (13)
D o, 60° = —wP o°, Daué)b = —wp,0° (14)
D 6% = —weant®,
Wabe = TadWhe = —Weba,  Wh® = N wiain®, wp® = —wP

ete... (15)
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Remark 4 The connection coefficients of the Levi-Civita Connection
in a coordinate basis are called Christoffel symbols. We write in what
follows ) . ) )

Dauay = szap’DaudIV =T}, dx" . (16)

To understood how D works, consider its action, e.g., on the sections
of T'M =TM @ T*M.

D(X®a)=(DX)®a+ X ® Da. (17)

For every vector field V' € secTU and a covector field C € sec T*U
we have
Dauv = Dau (V98.,), Dauc = Dau (Cub) (18)

and using the properties of a covariant derivative operator introduced
above, Dg V can be written as:
m

DauV = Dau (V99,) = (DBMV)QBQ
=(8,V)0, + VaDauaa

oV
= (amu + V’TZP> 0o = (D}V)8a, (19)

where it is to be kept in mind that the symbol DIV“ is a short notation
for
D:Va = (DauV)o‘ (20)

Also, we have

Dauc = Dau (Cu8) = (Da#C)aﬁa
aC,
_ o« &) a
= (333“ Cﬁf‘#a> 0%,
= (D;Ca)e‘”‘ (21)

where it is to be kept in mind that ® that the symbol D, C, is a short
notation for

D;, Co == (Dg C)a. (22)

8Recall that other authors prefer the notations (DBMV)O‘ =V and (Dau Ca =
Ca:p- What is important is always to have in mind the meaning of the symbols.
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Remark 5 The necessity of precise notation becomes obvious when we
calculate

D, a3 = (Dg 0%), = (Dg dida"), = dual — 0,45 = wina,
D q; = (Dg dpea)” = 0uqy +wi,ap = T0,05,
thus verifying that D, q; # D;quj # 0 and that
Oudy, + waqy? - FZbQE = 0. (23)
Moreover, if we define the object
q=e®0* =g €a ® dz" € secTLU C sec T M, (24)

which is clearly the identity endormorphism acting on sections of TU,
we find

Dug} = (Dg @)} = 9ua} +wpnay, — Tinas =0. (25)

Remark 6 Some authors call q € secTLU (a single object) a tetrad,
thus forgetting the Greek meaning of that word. We shall avoid this
nomenclature. Moreover, Eq.(25) is presented in many textbooks (see,
e.g., [4, 13, 24]) and articles under the name ‘tetrad postulate’ and it is
said that the covariant derivative of the “tetrad” vanish. It is obvious
that Eq.(25) it is not a postulate, it is a trivial (freshman) identity.
In those books, since authors do mnot distinguish clearly the derivative
operators DT, D™ and D, Eq.(25) becomes sometimes misunderstood as
meaning D, q; or D;{qﬁ, thus generating a big confusion and producing
errors (see below).

4 Calculus on the Hodge Bundle (/\T*M, 5 Tg)

We call in what follows Hodge bundle the quadruple ( /\T*M A, Tg).
We now recall the meaning of the above symbols.

4.1 Exterior Product

We suppose in what follows that any reader of this paper knows the
meaning of the exterior product of form fields and its main properties®.
We simply recall here that if A, € sec \" T*M, B; € sec \*T*M then

Ay ABy = (—1)"B, A A,. (26)

9We use the conventions of [22].
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4.2 Scalar Product and Contractions
Let be A, = a1 A...Na, €sec \"T*M, B, = by A ... Nb. € sec \" T*M
where a;,b; € sec /\1 T*M (i,j=1,2,...;,7).

(i) The scalar product A, - B, is defined by

A B.= (a1 AN...Nap) - (by Ao A by)

R . (27)

where a; - b; = g(a;, ;).

We agree that if r = s = 0, the scalar product is simple the ordinary
product in the real field.

Also, if r # s, then A,.-Bs = 0. Finally, the scalar product is extended
by linearity for all sections of /\T*M .

Forr <s, A, =a1 A... Na,, Bs = by A... Nbs we define the left
contraction by

2 (A By) = ApuBo = Y € (an A Aar)- (b A oAb, ) T bi g1 A Abs,

i <... <ip
(28)
where ~ is the reverse mapping (reversion) defined by
P
~: sec/\ T"M3a N...Nap—ap A ... ANag (29)

and extended by linearity to all sections of /\T*M . We agree that for

a, B € sec /\O T*M the contraction is the ordinary (pointwise) product
in the real field and that if a € sec A\°T*M, A, € sec\" T*M, B, €
sec \° T*M then (aA,).Bs = A, (aBs). Left contraction is extended

by linearity to all pairs of elements of sections of /\T*M7 ie,for A,B e
sec /\T*M

AB = (A)u(B)s, 1<, (30)

where (A), means the projection of A in /\TT*M .

It is also necessary to introduce the operator of right contraction
denoted by L. The definition is obtained from the one presenting the
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left contraction with the imposition that » > s and taking into ac-

count that now if A, € sec \" T*M, Bs € sec \°T*M then Bs A, =
(_1)5(7’—5)ATLBS_

4.3 Hodge Star Operator *
The Hodge star operator is the mapping

k —k
* Sec/\ "M — sec/\n T"M, Ap+— *Ag
where for Ay € sec \* T*M
k
[Bi - Ailrg = Be AxAy,  VBy € sec [\ T*M (31)

Tg € N'"T*M is the metric volume element. Of course, the Hodge
star operator is naturally extended to an isomorphism * : sec AT*M —
sec A T*M by linearity. The inverse x~1 :sec A"~ " T*M — sec \" T*M
of the Hodge star operator is given by:

* 1= (=1)"""sgngx, (32)
where sgn g = det g/| det g| denotes the sign of the determinant of the

matrix (gog = 8(ea,ep)), where {e,} is an arbitrary basis of TU.
We can show that (see, e.g., [22]) that

*.Ak = j}cJTg, (33)

where as noted before, in this paper /Tk denotes the reverse of Ay.

Let {9} be the dual basis of {ey} (i.e., it is a basis for T*U =
/\1 T*U) then g(9,9°) = ¢*?, with ¢*?g,, = 5;?. Writing 9#1-Hr =
HUA LA G 1 = gVt A A 9P we have from Eq.(33)

1
* QH1Br = m\/ ‘det g‘gltllfl”'gllpl’peyln.un,&l/;ﬂ»buljn. (34)
Some identities (used below) involving the Hodge star operator, the ex-

terior product and contractions are'*:
A, ANxBs =By A%A,; r=s
A, - xBy =B, -%A,; r+s=n
A AN*Bg = (=167 5 (A,1By); r<s (35)
A.ax Bs=(—1)" % (/L ABg); r+s<n
*Tg =sign g; *x1l=r1g.

10See also the last formula in Eq.(45) which uses the Clifford product.
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4.4 Exterior derivative d and Hodge coderivative ¢

The exterior derivative is a mapping
d: sec/\T*M — sec/\T*M

satisfying:

i) d(A+ B)=dA+ dB;

11) d(AANB)=dAANB+ ANAdB;
ii )= o(f);

for every A,B € sec N\T*M, [ € sec/\0 T*M and v € secTM.

The Hodge codifferential operator in the Hodge bundle is the mapping
§ :sec \"T*M — sec A"~ T* M, given for homogeneous multiforms, by:

§=(=1)" %"t dx, (37)

where * is the Hodge star operator. The operator § extends by linearity
toall A\T*M
The Hodge Laplacian (or Hodge D’Alembertian) operator is the map-
ping
O sec/\T*M — sec/\T*M

given by:
O = —(dé + dd). (38)

The exterior derivative, the Hodge codifferential and the Hodge D’
Alembertian satisfy the relations:

dd=065=0; = (d—9)?

Ao =90d; 60 =00

Ok = (=1l xd; *6=(—1)"dx
dox = xdd; *dd = ddx; *O = .

5 Clifford Bundles

Let (M, g, V) be a Riemannian, Lorentzian or Riemann-Cartan struc-
ture!!. As before let g € secT¢M be the metric on the cotangent
bundle associated with g € secTYM. Then T:M ~ RP:9 where RP:4

1V may be the Levi-Civita connection D of g or an arbitrary Riemann-Cartan
connection D.
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is a vector space equipped with a scalar product e = g|  of signa-
ture (p,q). The Clifford bundle of differential forms C/(M,g) is the
bundle of algebras, i.e., C{(M,g) = UpepCL(T M, o), where Vo € M,
CU(TiM,e) =R, 4, areal Clifford algebra. When the structure (M, g, V)
is part of a Lorentzian or Riemann-Cartan spacetime C4(T M, o) =Ry 5
the so called spacetime algebra. Recall also that C(M, g) is a vector bun-
dle associated with the g-orthonormal coframe bundle PSO?M) (M,g),
ie,Cl(M,g) = PSOfM) (M, g) % qaR1 3 (see more details in, e.g., [16, 22]).
For any x € M, C{(TfM,e) is a linear space over the real field R. More-
over, CL(T; M) is isomorphic as a real vector space to the Cartan alge-
bra AT;M of the cotangent space. Then, sections of C{(M,g) can be
represented as a sum of non homogeneous differential forms. Let now
{ea} be an orthonormal basis for TU and {62} its dual basis. Then,
g(9a7 eb) = Uab~

5.1 Clifford Product
The fundamental Clifford product (in what follows to be denoted by

juxtaposition of symbols) is generated by
620° + 6Ph2 = 272P (40)
and if C € C4(M, g) we have

1 1
C =5+ ,Uaga + Ebaboaob + ?aabceaeboc +p0n+1 ) (41)

where 7g := g7t = 99919263...6™ is the volume element and s, va, bab,
Gabe; P € sec " T*M < secCU(M, g).

Let A,, € sec \" T*M — secCl(M,g),Bs € sec \° T*M — secCl(M,g).
For r = s = 1, we define the scalar product as follows:

For a,b € sec \' T*M — secCU(M, g),
1
a-b= §(ab + ba) = g(a,b). (42)

We identify the exterior product ((Vr,s = 0,1,2,3,...,n) of homogeneous
forms (already introduced above) by

Ar A Bs = <Ar85>r+s; (43>

where (), is the component in A" T*M (projection) of the Clifford field.
The exterior product is extended by linearity to all sections of C4(M, g).
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The scalar product, the left and the right are defined for homogeneous
form fields that are sections of the Clifford bundle in exactly the same
way as in the Hodge bundle and they are extended by linearity for all
sections of C4(M, g).

In particular, for A, B € secCl(M, g) we have

AB =) (A)u(B)s, 7<s. (44)

The main formulas used in the present paper can be obtained (details

may be found in [22]) from the following ones (where a € sec A" T*M <
secCl(M,g)):

aBs = aiBs +a N Bs, Bsa=BsLa+ Bs A a,
0B, = (aB. — (~1)B.a),
AuB, = (—1)" "B A,
ahBs= %(al’)’s + (—=1)°Bsa),
A By = (ArBs)jr—s) + (ArBs)jr—sj42 + - + (ArBs)rts|

= Z<A7‘Bs>|r—s|+2k

k=0
Ar : Br = Br . Ar = JZT JBT = Ar\—gr = <~’2(’I”B7‘>0 = <Argr>0»
* A, = ./Z(kJTg = ./ZkTg. (45)

Two other important identities to be used below are:

as(X ANY) = (asX)AY + X A (as)), (46)
for any a € sec /\1T*M and X,) € sec /\T*M, and
AL(BLC) = (AAB)JuC, (47)

for any A,B,C € sec N\T*M — Cl(M, g)
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5.2 Dirac Operators Acting on Sections of a Clifford Bundle C{(M, g)

5.2.1 The Dirac Operator 3 Associated to D

The Dirac operator associated to a general Riemann-Cartan structure
(M, g, D) acting on sections of C/(M,g) is the invariant first order dif-
ferential operator

8 = 02D, = 9°D._. (48)

For any A € sec AT*M — secCl(M,g) we define

OA=0NA+0.A
ONA=0N(De,A), 0.A=0"1(Dc,A). (49)
5.2.2 Clifford Bundle Calculation of D¢ A

Recall that the reciprocal basis of {#P} is denoted {6} with 0, -0y = 7ap
(nap = diag(1,...,1,—1,...,—1)) and that

De 6P = —wP ¢ = —wPed,, (50)
with wgc = —wgb, and wi’c = nbkwkamd, Wabe = nadwgc = —Wcba-
Defining

Wa = iwacﬂb N € sec/\ T*M — secCl(M, g), (51)

we have (by linearity) that [16] for any A € sec A T*M — secCl(M,g)
1
De, A = 0e, A+ §[wa, Al, (52)
where Oe, is the Pfaff derivative, i.e., for any A = %!Ailmipﬁil .00 S
sec NP T*M — secCl(M, g) it is:

895/1 = }%[ea(Ail_“ip)]H‘l .00 . (53)
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5.2.3 The Dirac Operator § Associated to D

Using Eq.(52) we can show that for the case of a Riemannian or

o

Lorentzian structure (M, g, D) the standard Dirac operator defined by:

= 0*Do, =D,
PA=PNA+ A (54)

for any A € sec AT*M — secCl(M, g) is such that

INA=dA, HA=-5A (55)

ie.,

d=d—0 (56)

6 Torsion, Curvature and Cartan Structure Equations

As we said in the beginning of Section 1 a given structure (M, g) may
admit many different metric compatible connections. Let then D be the
Levi-Civita connection of g and D a Riemann-Cartan connection acting
on the tensor fields defined on M.

Let U C M and consider a chart of the maximal atlas of M covering
U with arbitrary coordinates {z*}. Let {9,} be a basis for TU, U C M
and let {#* = dx"} be the dual basis of {9,}. The reciprocal basis of
{6#} is denoted {6*}, and g(6*,0,) := 6+ - 0, = o~

Let also {ea} be an orthonormal basis for TU C TM with ep =
41,0, The dual basis of TU is {#*}, with 62 = gidz”. Also, {fp} is
the reciprocal basis of {62}, i.e. 62 -6y = 0f. An arbitrary frame on
TU C TM, coordinate or orthonormal will be denote by {e,}. Its dual
frame will be denoted by {9°} (i.e., 9°(eq) = 62 ).

6.1 Torsion and Curvature Operators

Definition 7 The torsion and curvature operators T and p of a connec-
tion D, are respectively the mappings:

7(u,v) = Dyv — Dyu — [u, v], (57)
p(uv V) = DuDy — DyDy — D[u,v]v (58)

for every u,v € secTM.
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6.2 Torsion and Curvature Tensors

Definition 8 The torsion andcurvature tensors of a connection D, are
respectively the mappings:

T(a,u,v) = a(r(u,v)), (59)
R(w,a,u,v) = a(p(u, v)w), (60)

for every u,v,w € secTM and o € sec /\1 T*M.

We recall that for any differentiable functions f, g and h we have
7(gu,hv) = ghr(u,v),
plgu,hv) fw=ghfp(u,v)w (61)

6.2.1 Properties of the Riemann Tensor for a Metric Com-
patible Connection

Note that it is quite obvious that
R(w,a,u,v) = R(w,a, v, u). (62)

Define the tensor field R’ as the mapping such that for every a,u,v,w €
secTM and a € sec \' T*M.

R/(w,a,u,v) = R(w,a,v,u). (63)
It is quite ovious that
R'(w,a,u,v) = a(p(u,v)w), (64)

where
a = g(a, ) , A= g(av ) (65)

We now show that for any structure (M, g, D) such that Dg = 0 we have
for c,u,v € secT M,

R/(c,c,u,v) = c:(p(u,v)c) = 0. (66)
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We start recalling that for every metric compatible connection it
holds:

u(v(c-c)=u(Dyc-c+ c-Dyc) =2u(Dyc-c)
= 2(DyDyc) - ¢ + 2(Dyc) - Dy, (67)

Exachanging u < v in the last equation we get
v(u(c - c) =2(DyDyc) - ¢ + 2(Dyc) - Dyec. (68)
Subtracting Eq.(67) from Eq.(68) we have
fu,v)(c - ¢) =2([Du, D) - @ (69)

But since
[11, V](C ' C) :D[U,V] (C : C) = 2(l)[u,v]c) - C, (70)

we have from Eq.(69) that
([Du, Dy]e=Dpy ) € =0, (71)

and it follows that R/(c,c,u,v) = 0 as we wanted to show.

Exercise 9 Prove that for any metric compatible connection,

R'(c,d,u,v) = R'(d,c,u,v). (72)

Given an arbitrary frame {e,} on TU C TM, let {¥9?} be the dual
frame. We write:
[eaaeﬁ]zcgﬁep
Deaeg:LZﬁep, (73)

where ¢, 5 are the structure coefficientsof the frame {e,} and Lgﬁ are
the connection coefficientsin this frame. Then, the components of the
torsion and curvature tensors are given, respectively, by:

T (9, eq.e53) = Tofﬁ = Lgﬁ — Lga — cgﬁ
R(eu’ﬁp7eaveﬁ) = Rupaﬁ

= €a (LZM) —ep(Lg,) + Lo L3, — LZULU

—c? LP
ap CQBLUM'

(74)
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It is important for what follows to keep in mind the definition of the
(symmetric) Ricci tensor, here denoted Ric € sec Ty M and which in an
arbitrary basis is written as

Ric =R, 9" @ 0 :=R,",, 0" @ 0" (75)

It is crucial here to take into account the place where the contraction in
the Riemann tensor takes place according to our conventions.

We also have:
dir = —%025190‘ NG

D, 9" = —L, ;07 (76)

where wg € sec /\1 T*M are the connection 1-forms, Lgﬁ are said to be

the connection coefficients in the given basis, and the 77 € sec /\2 M
are the torsion 2-forms and the Rg € sec /\2 T*M are the curvature
2-forms, given by:

wh = L7 ;0%
1
TP = 5Tgﬁﬁa N (77)

1
R} = 5 Rufapd® A 0P,

Multiplying Eqs.(74) by 29 A 9° and using Eqs.(76) and (77), we
get:

6.3 Cartan Structure Equations

o B8 —
;wf;erg/\ﬁg__?;; (78)
wy, +wg Awy =Ry

We can show that the torsion and (Riemann) curvature tensors can
be written as

T=e, 7T, (79)
R=¢c,@e" @R). (80)
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7 Exterior Covariant Derivative D

Sometimes, Eqs.(78) are written by some authors [27] as

DY’ =T°, (81)
“ Duwf =TRE.” (82)

and D : sec N\T*M — sec AT*M is said to be the exterior covariant
derivativerelated to the connection D. Now, Eq.(82) has been printed
with quotation marks due to the fact that it is an incorrect equation.
Indeed, a legitimate exterior covariant derivative operator'? is a concept
that can be defined for (p+q)-indexed r-form fields'? as follows. Suppose
that X € sec T, "M and let

r *
Xkt e sec [\ T*M, (83)
such that for v; € secTM,i=20,1,2,..,7,
X “1’ (V15000 Up) = X(V15 0y Upy €0y ooy €y, 1T 0. (84)

NP

The exterior covariant differential D of X, fff on a manifold with

a general connection D is the mapping;:

r r+1
D:sec /\ T°M —sec \ " T°M, 0<r<4, (85)
such that'#
(r+1)DX., 07 (vo, v1, ..y Ur)

_ - I i
E ) Do, X (00,01, .0y Doy ooV, €0y 5 ooy €0, O, L 9HP)

v+¢ - -
- g (—1)" T X (T (02, V¢),00, V1, ey Ony evey Dgy ey Upy € oeny €0, V1 9HP),
0<A, ¢ <r

(86)

123ometimes also called exterior covariant differential.

13Which is not the case of the connection 1-forms wg, despite the name. More
precisely, the wg‘ are not true indexed forms, i.e., there does not exist a tensor field
w such that w(e;, eg, ¥%) = wg (e:).

14 As usual the inverted hat over a symbol (in Eq.(86)) means that the corresponding
symbol is missing in the expression.
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Then, we may verify that
DXy =dXp e +wpt ANXe 4+ wffl XpLohe (87)
—ws /\X”1 — .= w”l X[

Vq

Remark 10 Note that if Eq.(87) is applied on any one of the connection
1-forms w¥ we would get Dw# = dw! +wh AwS —wS Awk. So, we see that
the symbol Dwt in Eq.(82), supposedly defining the curvature 2-forms
is simply wrong despite this being an equation printed in many Physics
textbooks and many professional articles™®! .

7.1  Properties of D

The exterior covariant derivative D satisfy the following properties:

(a) For any X7/ € sec A\"T*M and Y¥ € sec \*T*M are sets of
indexed forms'®, then

DX/ AYE)=DX/ AYE + (—1) X7 ADY¥. (88)

(b) For any X#1-#» € sec \" T*M then
DDX#H e = dXHete RV N X et RPN XH1le o (89)
(c) For any metric-compatible connection D if g = g, 9" ® ¥ then,
Dg,., =0. (90)

7.2 Formula for Computation of the Connection 1- Forms wj,

In an orthonormal cobasis {62} we have (see, e.g., [22]) for the connection
1-forms

1
d _ 3 [09.d6° — 6°1d6? + 6° (09 1d0a)67] (91)
or taking into account that d¢* = — 3¢5 63 A 6%,
c 1 c ca j
w = 5(—Cjk77dJ +¢ k77 =1 lekﬁdjc}’a)ek- (92)

15The authors of reference [27] knows exactly what they are doing and use “Dwﬁ =
’Rﬁ” only as a short notation. Unfortunately this is not the case for some other
authors.

L6Multi indices are here represented by J and K.
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8 Relation Between the Connections D and D

As we said above a given structure (M, g) in general admits many differ-
ent connections. Let then D and D be the Levi-Civita connection of g
on M and D and arbitrary Riemann-Cartan connection. Given an arbi-
trary basis {e,} on TU C TM, let {¢¥*} be the dual frame. We write for
the connection coeflicients of the Riemann-Cartan and the Levi-Civita
connections in the arbitrary bases {e, },{9*}:

De,es =L0 e, Do, 0° = —LE 97,
D eg = Egﬁep, D, 9 = —Egﬁﬁﬁ. (93)

Moreover, the structure coefficients of the arbitrary basis {e,} are:
[eases] = cf gep- (94)

Let moreover,

Wy = —(£erg)as, (95)

where £., is the Lie derivative in the direction of the vector field e”.
Then, we have the noticeable formula (for a proof, see, e.g., [22]):

. 1 1
=L+ T, +-5" (96)

p
L st 5lap T 5%

af
where the tensor Sgﬁ is called the strain tensor of the connection and
can be decomposed as:

9 2
Sgﬁ = SZ,B + gspga@ (97)
where S ’ 5 s its traceless part, is called the shear of the connection, and

1
sP = §QWSZV (98)
is its trace part, is called the dilation of the connection. We also have
that connection coefficients of the Levi-Civita connection can be written
as: L
re _ P P
Moreover, we introduce the contorsion tensor whose components in
an arbitrary basis are defined by
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o 1
—_ 1P [ — 14 P
Kgéﬂ - Laﬂ —Los = §(Taﬂ + Saﬁ)a (100)
and which can be written as
1 g
Kgéﬁ = 7§gp (gﬂO‘Touﬁ + g#ﬁT#a - gungﬁ)- (101)

We now present the relation between the Riemann curvature ten-
sor R, ”,s associated with the Riemann-Cartan connection D and the

Riemann curvature tensor ]o%u”ag of the Levi-Civita connection D.
R,upozﬁ = P}/LPOLB + J/Lp[aﬂ]v (102)
where:
JiPap = 1"7&1«;# - K%,K%,, = Do K, — K0, K, + K5 K5, (103)
Multiplying both sides of Eq.(102) by %9“ A 608 we get:
Rf, =Ry + 30, (104)
where

1
= S5m0 A 0°. (105)

From Eq.(102) we also get the relation between the Ricci tensors of
the connections D and D. We write for the Ricci tensor of D

Ric = R, dz" @ dz”
Ruo =R, 0p (106)
Then, we have )
R0 = Rua + Jyua, (107)
with
Jua = DuK?, — D,K?,, + K?,, K%, — K, K, ,

= DK, — DK, — K K7, + K (K7, ,. (108)

Observe that since the connection D is arbitrary, its Ricci tensor will be
not be symmetric in general. Then, since the Ricci tensor R, of D is
necessarily symmetric, we can split Eq.(107) into:

Ripa) = Jjua);
O (109)
Rua)y = Ruay + Jipay-
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9 Expressions for d and ¢ in Terms of Covariant Derivative
Operators D and D

We have the following noticeable formulas whose proof can be found in,
e.g., [22]. Let Q € sec /\T*M. Then as we already know

dQ = 9* A (D., Q) = dNQ,
6Q = —9°4(D,, Q) = d.0. (110)

We have also the important formulas

dQ =9 A (D, Q) = T A (942Q) =0 A Q — T* A (1429Q),
§Q = =9 4(D,, Q) — T*2(9a A Q) = —8Q — T,(9a A Q). (111)

10 Square of Dirac Operators and D’ Alembertian, Ricci and
Einstein Operators

We now investigate the square of a Dirac operator. We start recalling
that the square of the standard Dirac operator can be identified with
the Hodge D’ Alembertian and that it can be separated in some inter-
esting parts that we called in [22] the D’Alembertian, Ricci and Einstein
operators of (M, g, D).

10.1 The Square of the Dirac Operator §) Associated to D

The square of standard Dirac operator @ is the operator, & = & :
sec NP T*M — secCl(M,g) — sec \* T*M — secCl(M, g) given by:

% = (N + Q) (DA + ) = (d — 6)(d — 0) (112)

It is quite obvious that
d? = —(dd + 6d), (113)

and thus we recognize that @ 2 = ¢ is the Hodge D’Alembertian of the
manifold introduced by Eq.(38)

Qn the other hand, remembering the standard Dirac operator is § =
9 D, where {0?} is the dual basis of an arbitrary basis {e,} on TU C
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TM and D is the Levi-Civita connection of the metric g, we have:
§? = (9°De,)(0°De,) = 9*(9°De, De,, + (De,9°)De,,)
= 9*?(De, Dey — L 3D.,) + 9 A9 (De, D,y — L8 5 D).
Then defining the operators:

(a) 69 &9:gaﬁ(beabe[3 - f‘gﬁbep)

(b) YA §=0> A3 (D, D, — 1 ,D, ), (114)
a af P

€g

we can write:
O=9*=8-9+0n0 (115)

or,

& =D+ N+ an)
=N+ PN D (116)

It is important to observe that the operators - @ and PA @ do not

have anything analogous in the formulation of the differential geometry
in the Cartan and Hodge bundles.

The operator @ § can also be written as:
1 o o o o o o
§-8= 59" [De. Dy + Doy D, - bgﬁDeJ : (117)
Applying this operator to the 1-forms of the frame {6}, we get:
1 o
(@ 90 = =5 " My 0", (118)
where:
Muaﬁ = ea(Lgp) + eﬁ(Lgp) - LgaLgp - ngLZp - bgBLgp' (119)
The proof that an object with these components is a tensor may be

found in [22]. In particular, for every r-form field w € sec A" T*M,
w = Zwa, . .a,0% A... NG, we have:

1 o o
(@ Pw = ﬁgaﬁpapﬁwal__areal AL ANOYT (120)
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where Baﬁgwalmar are the components of the covariant derivative of
w, i.e., writing De,w = %Dgwm“_aﬁal AL ABYT it s:

bﬁwau-ar = eﬁ(wm---ar) _Egalwoazmar - _i‘garwal--.arqo' (121)

In view of Eq.(120), we call the operator O = §-d the covariant
D’Alembertian.

Note that the covariant D’Alembertian of the 1-forms 9* can also be
written as:

(9- )9" = §°° Do Dot 9" = %gaﬁ(éamag + DDy ok )0°
and therefore, taking into account the Eq.(118), we conclude that:
M o5 = —(DoDgd" + DgDoot). (122)
By its turn, the operator A @ can also be written as:
- %w N [DaDy — DyDa — 5D, (123)
Applying this operator to the 1-forms of the frame {¥*}, we get:

1o o
(@AD" = = Ry o (07 N 07)0” = —RUD”, (124)

where Ic%p“a,g are the components of the curvature tensor of the connec-
tion D. Then using the second formula in the first line of Eq.(45) we
have ) ) )

RLO? = RELOP + R A6 (125)
The second term in the r.h.s. of this equation is identically null because
due to the first Bianchi identity which for the particular case of the
Levi-Civita connection (7# = 0) is Rh A 0”7 = 0 . The first term in
Eq.(125) can be written

- 1o
RELOP = iRpﬂag(ea NN
1.
- 5R,,“aﬂafu(@a A 0P
1o s por s 0B e
= =5 Ry ap(g"0” — §770%)

—G" R, 0p0” = —REO7, (126)
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where Rg are the components of the Ricci tensor of the Levi-Civita

connection D of g. Thus we have a really beautiful result:
(A Yo" = RH, (127)

where RH = ég@ﬁ are the Ricci 1-forms of the manifold. Because of

this relation, we call the operator @A @ the Ricci operatorof the manifold
associated to the Levi-Civita connection D of g.

We can show [22] that the Ricci operator §A @ satisfies the relation:
INY= R Ny + R Ny, (128)

where the curvature 2-forms are R*% = %]—?p"agﬁ‘a A 9P and

i,w =Y, w. (129)

Observe that applying the operator given by the second term in the
r.h.s. of Eq.(128) to the dual of the 1-forms 9#, we get:

RFT Nipip x 0 = R o + 07 2(07 3% 9M))
= —Rpo A*(07 A7 % O") (130)

o

= *x(Rpo2(¥ NI7 ANOH)),
where we have used the Eqgs.(35). Then, recalling the definition of the
curvature forms and using the Eq.(28), we conclude that:

RIT N (D)0 a 4 ") = 24 (RF — %fwﬂ) =2%G", (131)

where R is the scalar curvature of the manifold and the G* may be
called the Finstein 1-form fields.

That observation motivate us to introduce in [22] the Einstein op-
erator of the Levi-Civita connection D of g on the manifold M as the
mapping B : secCl(M, g) — secCL(M, g) given by:

o 1 o
= (R AL % (132)
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Obviously, we have:
o o o 1o
W' =G" =R" — §R19“. (133)

In addition, it is easy to verify that +~L(§A P)x = — PA P and x~ (R A
iy)* = R?_4j,. Thus we can also write the Einstein operator as:

o 1 o
H-= —§($A P+R7 1y ), (134)
where
JoA =1, N A, (135)
for any A € sec /\T*M — secCl(M, g).

We recall [22] that if W are the Levi-Civita connection 1-forms fields

o

in an arbitrary moving frame {9#} on (M, g, D) then:

(a) (9 Qr=—(0-&f —w] - wh)v”

(b) (@A DI =— (ALl — 07 AE2)9”, (136)
and
2 o oo o
M = — (ol — wTwk)P. (137)
Exercise 11 Show that ¥, A 1907029" = —132, where R is the curvature
scalar.

10.2 The Square of the Dirac Operator 8 Associated to D

Consider the structure (M, g, D), where D is an arbitrary Riemann-
Cartan-Weyl connection and the Clifford algebra C£(M,g). Let us now
compute the square of the (general) Dirac operator 8 = 9*D,_. As in
the earlier section, we have, by one side,

9% = (81+ AN+ ON)
=0.0.+ 00N+ ONDI+ ONON

and we write 8.0, = 8?1, N OA = 8*A and
Ly =010N+ 0N8, (138)

so that:
=04 + Ly + N . (139)
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The operator £, when applied to scalar functions corresponds, for the
case of a Riemann-Cartan space, to the wave operator introduced by
Rapoport [23] in his theory of Stochastic Mechanics. Obviously, for the
case of the standard Dirac operator, £, reduces to the usual Hodge D’
Alembertian of the manifold, which preserve graduation of forms. For
more details see [18].

On the other hand, we have also:

9? = (9°D.,)(¥°De,) = 9* (9" D, D., + (D, 9°)D.,)

= 9**(De, De, — LE 3D.,) + 9% A9 (D, D, — L?;D.,)
and we can then define:
d-8=9g"#(D.,D., — L D.,)
N o af o 140
O NO=0>N6°(D,, D, —L:;D,,) (140)
in order to have:
’=090=0-0+91ND . (141)

The operator @ - 8 can also be written as:
9-0=20" 0 , S99 g 7
18 =50 07(De, Doy = LfDe,) + 507 - 0%(Dey De,, = Ly, De,)

+ D, De, — (L5 + L5, ) D] (142)

€eg €g

1
= —¢*’|D., D
29 [ €a
or,
1 «
8- 0= 59 #(De,Dey + DeyDe, — b5 4D.,) — 5" D, (143)

where s” has been defined in Eq.(98).
By its turn, the operator 8 A @ can also be written as:

1 (0% 1 (03 0
ND = S9N 0% (De, Do, — LY gDe,) + 519[’ ANY9¥(De,De, — LG, De,)

1 (0%

= 519 AYP[De,Dey — DeyDe, — (L 5 — LG ) D]
or,
1 «
DN = SV A ?(De, Dey = DeyDe, — chgDe,) =T De,.  (144)

Remark 12 For the case of a Levi-Civita connection we have similar

formulas for §-§ (BEq.(142)) and YA d (Eq.(144)) with D — D, and of
course, TP =0, as follows directly from Eq.(114).
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11 Coordinate Expressions for Maxwell Equations on Lorentzian
and Riemann-Cartan Spacetimes

11.1 Maxwell Equations on a Lorentzian Spacetime

We now take (M, g) as a Lorentzian manifold, i.e., dim M = 4 and the
signature of g is (1,3). We consider moreover a Lorentzian spacetime
structure on (M, g), i.e., the pentuple (M, g, D,7g,T) and a Riemann-
Cartan spacetime structure (M, g, D, 7g, 1).

Now, in both spacetime structures, Maxwell equations in vacuum
read:
dF =0, OF=-J, (145)
2
where F' € sec /\ T*M is the Faraday tensor (electromagnetic field) and
1
J € sec /\ T*M is the current. We observe that writing

1 1 1
F = 2 Fudet Ade” = JF 0" N0 = S F,, 0", (146)

we have using Eq.(34) that

1 b1 , 11 ) ,
A = S Eu(:0) = 5 "F g7 = 5 (Fug VIdet glg" g caspo )07
(147)
Thus
1 v
"Fpp = (+F),, = 5 Fu/|det glg""g" €agpo. (148)

The homogeneous Maxwell equation dF = 0 can be writing as 0xF =
0. The proof follows at once from the definition of § (Eq.(37)). Indeed,
we can write
0=dF =+x 'dx*x 'F=+x+ 'F=—x6«F =0.
Then x ! xd x F = 0 and we end with
oxF =0.

(a) We now express the equivalent equations dF' = 0 and é x F' = 0 in
arbitrary coordinates {a#} covering U C M using first the Levi-Civita
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connection and noticeable formula in Eq.(110). We have

dF = 0% A (Dg_F)

_ 1l 5 w v
= S60° A [Daa(FWG AB )]
- %(f A [(aaFw)eﬂ NO” — F T 07 A 0" — F,,T%,0% A 9P]
_ 1o b I v
= S0° A [(DQFW)Q Ae]
1

= QDQFWQ" AO" AN BY

1(1- 1. 1.
=5 {gDaFWGO‘ AO*ANO” + gDMFWH“ AOY AOY + gDuFaue” AO% A 0“}

_1 lQ)F +lQ)F —|—ﬁF 0% A O A OV
- 6 at pv ptva vilau .

So,

dF =0 DoFpy + DyFyo + D, Fay, = 0. (149)
If we calculate dF = 0 using the definition of d we get:

1
dF = §(aaFw,)9“ NN (150)
1
=5 (OaFuy + 0uFya + 0y Fop) 0% NOH NG,
from where we get that

dF = 0 <= 0 F1y+0,Fya+8, Fap = 0 <= Dy Fy+D, Fya+D, Fp, = 0.
(151)
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Next we calculate § x F' = 0. We have
§xF=—-0",(Dg *F)

= —%9% {(%*Fuy)@“ ABY — *prfﬁ,ﬂ” AQY — *Fupfgyoﬂ A 91/}
= —%9% {(ba*ﬂw)aﬂ A 9”}
R bpe)
—(ﬁa*F L) g1 e
[Da( Fuwg™)]e”
~(Da"F)))6". (152)
Then we get that

DoFuy+DyFyu+DyFay =06 dF =0 §xF =0 <= D, F% =0.

(153)
(b) Also, the non homogenoeous Maxwell equation F = —.J can be
written using the definition of ¢ (Eq.(37)) as dxF = —x J:
O0F = —J,
(—1)*+x1dxF=-7J,
xx LdxF=—x1,
d*F =—x1J. (154)
We now express 0F = — J in arbitrary coordinates'” using first the

Levi-Civita connection. We have following the same steps as in Eq.(152)

1 o
OF +3 = —20°. {Daa [F,0, 0" A 9”]} 0" (155)
= (=D, F% + J,)0".

I7We observe that in terms of the “classical” charge and “vector” current densities
we have J =p#° — j;0°.
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Then )
OF+J=0& D, F* = J". (156)

We also observe that using the symmetry of the connection coeffi-
cients and the antisymmetry of the F*¥ that F" = —F” L7 = 0.

Also,
I, = 0,In/|det g = \/Hleﬂap \det g,
and
Do F® = 0, F° + 1% F* + 1% For
= 0o I + 173, F™
— O, F" + @@AMW.
Then
l") Fov = Jv,
V/]det gl9, F*” + 0,(y/|det gl) F** = \/[det g].J",
8,(v/|det g|F?") = \/|det g[J7,
\/Mlewap(\/mﬁ”) =J, (157)
and
SF =0 D F = J” < 9,(v/|det gl FP") = J*.  (158)

|dt

Exercise 13 Show that in a Lorentzian spacetime Mazwell equations
become Mazwell equation, i.e.,

IF = J. (159)
11.2 Maxwell Equations on Riemann-Cartan Spacetime

From time to time we see papers (e.g., [19, 25]) writing Maxwell equa-
tions in a Riemann-Cartan spacetime using arbitrary coordinates and
(of course) the Riemann-Cartan connection. As we shall see such enter-
prises are simple exercises, if we make use of the noticeable formulas of
Eq.(111). Indeed, the homogeneous Maxwell equation dF = 0 reads

dF = 0% A (DaaF) — TN (0,0F)=0 (160)
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or

1 v
E(DQFW + D, Fyo + Dy Fo,)0% NO" NG

11 [} o v
- §§Tpo.9p N 9 A [Ha_:F,“,(H“ A 0 )]

1 « v
= E(DQFW + Dy Fyo 4+ Dy Fpn)0“ NO* N0

1 (e} o v

— iTpUFWGP A 6% A SGRO
1

= E(DQFW + D, Fyo + D,F,,)0% N6* N6

1
— =17 Fy,0% NO* NG
9 an

1 o 1%
= 5(DaFyu + DyFya + DyFoy )0 A 6" A0

1
— G T8 Fow + T, Foa + T Fay )0 N O* N 0¥

(DaFuy + Dy Fyo + Dy Fop )0 A O A G

b (Fao TS, + Fug TS + FuoT,)0% A OF A 6",

(03

= =N

i.e.

dF =0<= DoFlu+D, Foo+DyFopu+Fou Ty, +Fuoc Ty, +FooT,, =0.

(161)
Also, taking into account that dF = 0 <= § * F = 0 we have using the
second noticeable formula in Eq.(111) that

5% F =—0° (D, xF) — T*,(0, A +F) = 0. (162)

Now

0% (D, xF) = (Do *F2)0" = (D,*F**)0, (163)



460 W. A. Rodrigues Jr.

and

T%, (Ga A *F)

_ %Tgp(eﬁ AO?)s(0a A (“Frn™ A 6"

_ iTg‘p*FW(GB NO) (00 A O™ A6
_ iTgp*FﬂveﬁJ[am(ea NGy A6
1

= ZTEP*F“”GB_,(&’;@M A Oy — 8000 A Oy + 6004 NO,)
1 * v 1 . x v 1 o8 3 v
= T5a"F" 0° (0, N O,) — 1T F" 0° 100 A 6,) + 1T, F" 0° 3(00 A 6,,)

- iTg‘a*F“”QﬁJ(GM NG — iTé‘p*FWHBJ(@H NG+ %Té‘p*F”’JO’@J(Q# A 6,)

1
= (TG F™ — T4 F™ + T} *F"*)0°3(0, A 0,)

4
1 v v v B B
e g 6, — 500,)
1 1
Y L SR I G R e
1
= S0 P = T F™ + TY, FP0)6, (164)

Using Eqgs.(163) and (164) in Eq.(162) we get
* (6774 1 [0 174 * 1% vV *
D,*F +§(Tua Fr =T P + T, *F') =0 (165)
and we have

1
dF = 0 < §xF :O@DQ*FGV‘F*(T& * PRV _ Tk *Fp”—&-TI’;p*FW) =0.

9\ pa mp

(166)
Finally we express the non homogenous Maxwell equation dF = —J in
arbitrary coordinates using the Riemann-Cartan connection. We have

§F = —0° (D, F) — T® (6, A F)

(677 1 Q. * v * v vV * v
= —[DoF™ 4 S(TR F" = TU FY + T FU)0, = —J"0,,

(167)
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ie.,
v 1 [e% v 17 1% v
D, F* + §(Tua*Fﬂ =T FP + T, “F) = J”. (168)
Exercise 14 Show (use Eq.(111)) that in a Riemann-Cartan spacetime
Mazwell equations become Maxwell equation, i.e.,

OF = J + T°,(0a AF) — T2 A (02F). (169)

12 Bianchi Identities

We rewrite Cartan’s structure equations for an arbitrary Riemann-
Cartan structure (M, g, D, 7g) where dim M = n and g is a metric of
signature (p, q), with p + ¢ = n using an arbitrary cotetrad {62} as

T2 =do* + wd A6 = D62,

RE = dwd + W A wg (170)
where
wfa) = wf:lbgca
1
T2 = §T§c9b A 6° (171)
a 1 a c d
Ry = §Rb ~af® N 0O°. (172)

Since the 72 and the R} are index form fields we can apply to those
objects the exterior covariant differential (Eq.(87)). We get

D72 =dT? + w2 ATP = d*0® + d(wd N OP) + W A TP
= dwp ANOP — WE AdOP + B ATP
= dwd AP —WBA (TP — WP AG°) +wr ATP
= (dw? + w2 AWE) A OP
=R AP (173)
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Also,
DRy =dRp + w3 ARE —wp ARE
=d*w? + dw? Awf — dwf Aw? — REAWE + RE AwW?
= dw? Awi — (dw? + wi Awd) Awf — dw? A wf + (dwf + w§ A wd) A w?
= Wi AW AWE +wE Awd Aw?
= —wi AW AW +wd AWE AW
= iAW AWE + Wi AW AwE = 0. (174)

So, we have the general Bianchi identities which are valid for any one
of the metrical compatible structures'® classified in Section 2,

D72 = R2 A6,
DRE =0. (175)
12.1 Coordinate Expressions of the First Bianchi Identity

Taking advantage of the calculations we done for the coordinate expres-
sions of Maxwell equations we can write in a while:

D72 =d72 +wA AT"

1 a a a a a a e
= ? (aMTaﬁ + waTsﬂ + 8QTBM + wang)M + 86Tp,o¢ + wﬁbTﬁ’a) 9# AOT N 06

(176)
Now,
T8y = (0ua3)Tos + 450, T0g, (177)
and using the freshman identity (Eq.(23)) we can write
Wﬁbeﬁ = wzquTgﬁ = LZbQ,?TSﬁ —(0,4)) T, 5- (178)
So,
T35 + Wi, Tog
= 430, 55 + Thnap Tl
= qz(DMTapﬁ + FZaT;fﬁ + FZBTSN)' (179)

18For non metrical compatible structures we have more general equations than the
Cartan structure equations and thus more general identities, see [22].
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Now, recalling that T)%, =I'}, — 'y, we can write
G, Tl + DT 0% A 6% N 6° (180)
= AT, TL,0" A O* N O
Using these formulas we can write
DT® =
%q? {DuT5+ DaTh, + DaTlo + TpaTls + TasTh + T5. 0} 0% A O™ N 6O°.
(181)
Now, the coordinate representation of R2 A 6P is:
R2ANOP = %qg(Rupaﬁ + Ro’ g+ R o) 0" N O™ NG, (182)
and thus the coordinate expression of the first Bianchi identity is:
D,Ths+ DoTj, + DsT},
= (Rupaﬁ + Rapﬂu + Rﬂpua) - (T}T(XTEB + T(';ﬁngu + TguTrga)a
(183)
which we can write as

S Rlap= > (DHT;’E - T;BT,ga) , (184)

(nap) (nap)

with Z denoting as usual the sum over cyclic permutation of the

(nap) .
indices (paf). For the particular case of a Levi-Civita connection D
since the T 5 =0we have the standard form of the first Bianchi identity
in classical Riemannian geometry, i.e.,

R, ap + Rasu + Rg’ o = 0. (185)

If we now recall the steps that lead us to Eq.(166) we can write for
the torsion 2-form fields 72,

dT2 = xx Ldxx"172
(—D)" 26+t T2 = (—=1)""2(=1)" *sgngx § x T2
()" 2%t e T2 (186)
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with sgng = det g/ |det g|. Then we can write the first Bianchi identity
as

SxT?=(—1)" 2% [REAO® —wB ATP], (187)
and taking into account that

*(RENOP) =x(P AR2) = 0PL«R2,
*(WEATP) = Wi TP, (188)

we end with
SxT2=(—1)""2(PLxRE — wiixTP). (189)

This is the first Bianchi identity written in terms of duals. To calculate
its coordinate expression, we recall the steps that lead us to Eq.(166)
and write directly for the torsion 2-form fields 72

oxT?

= (D T2 4 S (TS FT2H — T <% 4 TV *T*0))g,. (190)

1
5o

Also, writing

*RE = %*R;lcdac A9, (191)

we have:

*(REAOP) = 0P, R2

1

§ebJ(*Rgcd9C A 6%
= *‘Rbacdnbcad

= *R%40% = *R°%,%0a = "R Yq40,,. (192)
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On the other hand we can also write:

*(RENOP) = 0P« RE

1 1
= iﬁbJ(mRbaklﬂdmnam N 9“)
1 1
= 5 (n — 2), (Rl;ikleklmnnbm AP — Rk?kleklmnnbn A em)
1 1
= mRskleklmnnbmgn — (n — 2)' RmakIlemnan
— 1 akl_, mn
= mRm (3% n
1 akl  mn v
= (TL - 2)|Rm €kl qnel/'

from where we get in agreement with Eq.(34) the formula

1
* pca — Rmakl m 193
cd (n — 2)' €mkld, ( )

which shows explicitly that *R%, are not the components of the Ricci
tensor.

Moreover,

Ww2ix TP (194)
1
T2
=*TPra g,

W2 0% L(*TP" 0, N 6,)

Collecting the above formulas we end with

1 - ca v a v
Da*Taau+§(T}?Q*Tauy_T;;p*TapU—f—T:p*Taup) — (_1)71 1(*R chd _waal;Tba
(195)
which is another expression for the first Bianchi identity written in terms
of duals.

Remark 15 Consider, e.g., the term Dy*T2*Y in the above equation
and write
Do T = Do (g3 TP). (196)

We now show that

Do(q3*T*™) # 3D TP (197)

)7
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Indeed, recall that we already found that
(D T30, = —0xT2*+ (T" e R T T <TG, (198)
and taking into account the second formula in Eq.(111) we can write
0% (Do *T?) = —6xT 2+ (TO‘ AR TR T T TG, (199)
Now, writing xT? = %q;‘ *TPrYG, N8, and get

0% (D,  T%)
1

= §9aJ[Daa (qE*Tp#VH;L A 01/)}

1
= §ﬁaJ[8a(q;‘*T’)“”)9u N8y + TP Do, (0, N 6,)]

1
= S0 l(0ag}) T8 Oy + @30 (T )0 NG, + g3 T Do, (6, 16,)]

1 @ * 14 174
= S0 ((0ag) T 6 A O, + 43 Da(T™)0, A 6]
= (Da@®) TP 620, + 2 Do (*T)520,. (200)

Comparing the Eq.(198) with Eq.(199) using Eq.(200) we get
Do*T?**"0, = Do (g5 T 0,) = (0aq))" T + qp Do ("T7*),  (201)

thus proving our statement and showing the danger of applying a so

called “tetrad postulate” asserting without due care on the meaning of

the symbols that “ the covariant derivative of the tetrad is zero, and thus
using “Dagy; =077

Exercise 16 Show that the coordinate expression of the second Bianchi
identity DR =0 is

> DuR§,, = > ToRs., (202)

(nvp) (nvp)

Exercise 17 Calculate ¥R A 6P in an orthonormal basis.
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Solution: First we recall the xRy A b = 6P A xRy and then use the
formula in the third line of Eq.(35) to write:

6P AARE = — % (P R2)

1
= — % 5e‘DJ(R,;lcdec A 69)

=—x% [Rbacdnbcgd]
= — % [R%q0%] = — % [R*§c07]
= —%[R309] = — xR (203)

Of course, if the connection is the Levi-Civita one we get
0° A*RE = — * (APURR) = —RROP = — « R2. (204)

13 A Remark on Evans 101"" Paper on “ECE Theory”

Eq. (195) or its equivalent Eq.(201) is to be compared with a wrong one
derived by Evans from where he now claims that the Einstein-Hilbert
(gravitational) theory which uses in its formulation the Levi-Civita con-
nection D is incompatible with the first Bianchi identity. Evans con-
clusion follows because he thinks to have derived “from first principles”
that

Dx72 = xR2 A6, (205)

an equation that if true implies as we just see from Eq.(203) that for
the Levi—Ciy}ita connection for which 72 = 0 the Ricci tensor of the
connection D is null.

We show below that Eq.(205) is a false one in two different ways,
firstly by deriving the correct equation for Dx7? and secondly by show-
ing explicit counterexamples for some trivial structures.

Before doing that let us show that we can derive from the first Bianchi
identity that )
R2.4=0, (206)

an equation that eventually may lead Evans in believing that for a Levi-
Civita connection the first Bianchi identity implies that the Ricci tensor
is null. As we know, for a Levi-Civita connection the first Bianchi iden-
tity gives (with R2 — R2):

RE AP = 0. (207)
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Contracting this equation with 6, we get
Oas(RE A OP) = 0a,(6° ARR)
= PR — 6P A (B 0R2)
o 1 o

= R2 — ieb A [Bas(R2 g0 A OY)]

=R2 — R2,40° A 64
Now, the second term in this last equation is null because according to
the Eq.(106), —R2,q = R4q. = Rpq are the components of the Ricci
tensor, which is a symmetric tensor for the Levi-Civita connection. For

the first term we get )
R2.40°N69 =0, (208)

which implies that as we stated above that
R2.4=0. (209)

But according to Eq.(106) the éaaCd are not the components of the Ricci
tensor, and so there is not any contradiction. As an additional ver-
ification recall that the standard form of the first Bianchi identity in
Riemannian geometry is

Rp%d + RePap + Rape. = 0 (210)
Making b = a we get
Ra®ed + R®da + Ra%ac
= Rad — Read + Ra®ac
= éaacd + écd - édc
= Ra%aq = 0. (211)

14 Direct Calculation of D+ 72

We now present using results of Clifford bundle formalism, recalled
above (for details, see, e.g., [22]) a calculation of D x 72.

We start from Cartan first structure equation

T2 = d6® + Wi A OP. (212)
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By definition
DT =dxT?+wd AxT". (213)

2
Now, if we recall Eq.(39), since the 72 € sec /\ T*M — secCl(M, g)
we can write

dxT? =%0T2. (214)
We next calculate 72. We have:

§T® =6 (d6® + wi A 6P)
= 6d0* + dsO* — doO* + 5(wd A 6P) . (215)

Next we recall the definition of the Hodge D’Alembertian which,
recalling Eq.(112) permit us to write the first two terms in Eq.(215) as
the negative of the square of the standard Dirac operator (associated
with the Levi-Civita connection)!®. We then get:

6T® = —§ 26® — doo® 4 6(wd A 6°)

Eq.(115 .
CU) g (nd)0n — doo® + 6w A 0P
Eq.(127 . .
a.(127) —006% — R? — d36* + §(wd A 6P)
= 006 — R®+ T2 — d66> + 5(wi A 6P) (216)

where we have used Eq(107) to write
R® = R0 = (R + J2)0P. (217)
So, we have
Adx T2 = — %002 — xR? + +T > — xd60? + *5(wd A 6)
and finally
DxT? = —x[00% — %R+ x T2 — %d66? + %0 (w2 AOP) + w2 AxT® (218)
or equivalently recalling Eq.(35)

D#T? = —x[00* — %R? + % T2 — xd60> + 46 (wi A OP) —x(wRTP) (219)

19Be patient, the Riemann-Cartan connection will appear in due time.
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Remark 18 Eq.(219) does not implies that D T2 = xR2 A 6P because
taking into account Eq.(203)

*RENO® = —«R® #£ DxT® = —+[00% —«R* 44T > —xd60* +x3 (Wi AO®) —x(wi 1T )
(221)
in general.

So, for a Levi-Civita connection we have that D x 72 = 0 and then
Eq.(218) implies

D#T2=0x -1 — R® — do6> + 6(w2 A 0°) =0 (220)
or since wp A 6P = —d#P for a Levi-Civita connection,
D#*T? =0« —[0* — R® — doh> — 6d6> = 0 (221)
or yet
—062 — R2 = — §2 62 = 66> + 5db?, (222)

an identity that we already mentioned above (Eq.(113)).
14.1 Finstein Equations

The reader can easily verify that Einstein equations in the Clifford bundle
formalism is written as:

o 1.
R* — §R9a =T (223)
where R is the scalar curvature and T® = —T20P are the energy-

momentum 1-form fields. Comparing Eq.(221) with Eq.(223). We im-
mediately get the “wave equation” for the cotetrad fields:

1o o
T = —iRGa — 62 — déo? — 6db?, (224)
which does not implies that the Ricci tensor is null.

Remark 19 We see from Eq.(224) that a Ricci flat spacetime is charac-
terized by the equality of the Hodge and covariant D’ Alembertians acting
on the coterad fields, i.e.,

00> = 062, (225)
a non trivial result.

Exercise 20 Using Eq.(120) and Eq.(121 ) write [102 in terms of the
connection coefficients of the Riemann-Cartan connection.
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15 Two Counterexamples to Evans (Wrong) Equation
“D% T2 =+R2 NGO

15.1 The Riemannian Geometry of S?

Consider the well known Riemannian structure on the unit radius sphere
[12] {52, g, D}. Let {zi}, 2! =09, 22 =9, 0< ¥ < 0< ¢ < 2m, be
spherical coordinates covering U = {S? — [}, where [ is the curve joining
the north and south poles.

A coordinate basis for TU is then {8,} and its dual basis is {6* =
dz*}. The Riemannian metric g € sec T¢ M is given by

g=d¥ ®dy+sin*¥dp ® dp (226)
and the metric g€ sec T9 M of the cotangent space is
1
g=01®01+ —5-0:® 0. (227)
sin” ¢

An orthonormal basis for TU is then {e,} with

ey = 01,ex = Siiﬁag, (228)
with dual basis {#?} given by

01 = dv), 6% = sinVdep. (229)
The structure coeflicients of the orthonormal basis are

[e1, €3] = clex (230)

and can be evaluated, e.g., by calculating df' = f%c}kﬂj A 0%, We get
immediately that the only non null coefficients are

2, = —c3, = —cotd. (231)

To calculate the connection 1-form w§ we use Eq.(92), i.e.,

cd

W k

1 . . .
= 5 (=™ + Gen™ = nown )0

Then,
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1
Wt = 5(—c§2n11 — 1?2920t 3,)0% = cot ¥O2. (232)
Then
w2l = —w1?% = cot Y62,
w? = —w3 = cot ¥h?, (233)
W2, =cot?, W3 =0. (234)

Now, from Cartan’ s second structure equation we have

RY = dok +0F Ao} + 0} AD2 = diod (235)
=6 A 62
and?? L
R2112 = _R2121 = _R1212 = R1221 = 5 (236)

0
Now, let us calculate ¥R3 € sec /\ T*M. We have

<R = Rirg = —(6" A 6%)1(6" A 62) = 0026016
= ()" (67" =1 (237)
and
ARINO2=RINO? =02 4£0. (238)

Now, Evans equation implies that *R1 A 1 = 0 for a Levi-Civita con-
nection and thus as promised we exhibit a counterexample to his wrong
equation.

Remark 21 We recall that the first Bianchi identity for (S, g, D), i.e.,
D72 =R} ABP = 0 which translate in the orthonormal basis used above
in Rp2:q + ReZap + Ra®be. = 0 is rigorously valid. Indeed, we have
é2112 + ]%1121 + ﬁizlzl = 1%2112 — é2112 =0,
]0%1212 + ]i?»1221 + 13?2221 = .1%1212 — 10%1212 =0. (239)

200bserve that with our definition of the Ricci tensor it results that R = R% +}022 =
—1.



Differential Forms on Riemannian (Lorentzian)... 473

15.2 The Teleparallel Geometry of (5’2, g. D)

Consider the manifold $2 = {S2\north pole} C R?, it is an sphere of
unitary radius excluding the north pole. Let g € secTy 52 be the stan-
dard Riemann metric field for $2 (Eq.(226)). Now, consider besides the
Levi-Civita connection another one, D, here called the Nunes (or navi-
gator [17]) connection?!. Tt is defined by the following parallel transport
rule: a vector is parallel transported along a curve, if at any x € 52
the angle between the vector and the vector tangent to the latitude line
passing through that point is constant during the transport (see Figure

1)

R [Qfd\?,q;) [Sfd\g q)erqJ)
s r=rnr
|’
4
i
P q
(8. (S p+dp)

Figure 1: Geometrical Characterization of the Nunes Connection.

As before (z1,2%) = (¥,¢) 0 < U < 0 < ¢ < 2w, denote the
standard spherical coordinates of a 52 of unitary radius, which covers
U = {S5? — I}, where [ is the curve joining the north and south poles.

Now, it is obvious from what has been said above that our connection

is characterized by
De;ei = 0. (240)

21See some historical details in [22].
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Then taking into account the definition of the curvature tensor we
have

Rie,, 6%, e, e;) = 62 ([Deipej — De,De, — D[Cehej]] ek> =0. (241)

Also, taking into account the definition of the torsion operation we
have

T(ei,ej) = Tilj‘ek = Dejei — Deiej — [ei, eﬂ

= [eiaeﬂ = Cﬁek, (242)
T3 = -TZ =cotd , Ty; = —Tis =0. (243)
It follows that the unique non null torsion 2-form is:

T2 = —cot90* A 2.

If you still need more details, concerning this last result, consider Fig-
ure 1(b) which shows the standard parametrization of the points p, ¢, r, s
in terms of the spherical coordinates introduced above [17]. According
to the geometrical meaning of torsion, we determine its value at a given
point by calculating the difference between the (infinitesimal)?? vectors
pry and pro determined as follows. If we transport the vector pg along ps
we get the vector ¥ = sry such that |g(7, 17)|% = sin’¥Ap. On the other
hand, if we transport the vector ps along pr we get the vector gro = gr.
Let w = sr. Then,

(@, @)|? = sin(d — AY)Ap ~ sindAp — cos9AINp,  (244)

Also,

U =rirg = —u(

1 7 a7 —
Smﬁag) . u=|g(d,0)| = cosVAINp. (245)

22This wording, of course, means that this vectors are identified as elements of the
appropriate tangent spaces.
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Then, the connection D of the structure (S 2 g, D) has a non null torsion
tensor ©. Indeed, the component of ¥ = 717y in the direction 99 is
precisely TlfwAﬂA@. So, we get (recalling that Dg 8; = rﬁiak)

J

15, = (15, - T%,) = — cot . (246)
Exercise 22 Show that D is metrical compatible, i.e., Dg = 0.

Solution:

0= De.g(ei,ej) = (De.8)(€i,€;) + g(De.ei, €;) + g(ei, De €;j)
= (De.8)(ei, €;) (247)

Remark 23 Our counterexamples that involve the parallel transport
rules defined by a Levi-Civita connection and a teleparallel connection
in S2 show clearly that we cannot mislead the Riemann curvature ten-
sor of a connection defined in a given manifold with the fact that the
manifold may be bend as a surface in an Euclidean manifold where it is
embedded. Neglecting this fact may generate a lot of wishful thinking.

16 Conclusions

In this paper after recalling the main definitions and a collection of
tricks of the trade concerning the calculus of differential forms on the
Cartan, Hodge and Clifford bundles over a Riemannian or Riemann-
Cartan space or a Lorentzian or Riemann-Cartan spacetime we solved
with details several exercises involving different grades of difficult and
which we believe, may be of some utility for pedestrians and even for
experts on the subject. In particular we found using technology of the
Clifford bundle formalism the correct equation for Dx7?2. We show that
the result found by Dr. Evans [10], “D x 72 = ¥R2 A TP” because it
contradicts the right formula we found. Besides that, the wrong formula
is also contradicted by two simple counterexamples that we exhibited
in Section 15 . The last sentence before the conclusions is a crucial
remark, which each one seeking truth must always keep in mind: do
not confuse the Riemann curvature tensor?? of a connection defined in a
given manifold with the fact that the manifold may be bend as a surface
in an Euclidean manifold where it is embedded.

23The 