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ABSTRACT. We recall how the quantum theory explains the rela-
tivistic invariance of the Dirac theory, introducing SL(2,C) which is a
subset of the Pauli algebra. We study that algebra, which is also the Clif-
ford algebra of the physical space. There is an homomorphism from the
group Cl∗3 of the invertible elements of the algebra, into the group of the
Lorentz dilations. The kernel of the homomorphism is the chiral gauge
group of the G. Lochak’s monopole theory. The Dirac equation, and all
the electromagnetism, even with magnetic monopoles, is invariant under
Cl∗3. We propose a second gauge invariance for the homogenous wave
equation. The extended invariance is compatible with an oriented time
and an oriented space.

1 - Relativistic invariance of the Dirac equation.

We start from the Dirac equation

[γµ(∂µ + iqAµ) + im]ψ = 0 ; q :=
e

~c
; m :=

m0c

~
(1.1)

where e is the negative electron’s charge, m0 the proper mass and Aµ are
the covariant components of the electromagnetic vector. The study of
the relativistic invariance is generally made in the Weyl’s representation,
with

γ0 = γ0 =
(

0 I
I 0

)
; I =

(
1 0
0 1

)
; ψ =

(
ξ
η

)
; ξ =

(
ξ1
ξ2

)
; η =

(
η1
η2

)
γj = −γj =

(
0 −σj

σj 0

)
; σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
(1.2)
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Using the shorter notation ~A = σ1A
1 +σ2A

2 +σ3A
3 instead of ~σ · ~A and

~∂ = σ1∂1 +σ2∂2 +σ3∂3 instead of ~σ · ~∇, the Dirac equation is equivalent
to the system

(∂0 + ~∂)ξ + iq(A0 − ~A)ξ + imη = 0

(∂0 − ~∂)η + iq(A0 + ~A)η + imξ = 0 (1.3)

To get the relativistic invariance of (1.1), it is necessary to consider the
set SL(2,C) of the complex 2× 2 matrices

M =
(
α β
γ δ

)
; 1 = det(M) = αδ − βγ. (1.4)

It is also necessary to associate to each event, with coordinates (x0, x1, x2, x3),
x0 = ct, the matrix

x =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (1.5)

The transformation R defined by

R : x 7→ x′ := MxM† (1.6)

verifies

det(x′) = (x′0)
2
− (x′1)

2
− (x′2)

2
− (x′3)

2
= det(MxM†)

= det(M) det(x) det(M†) = |det(M)|2 det(x) = det(x)

= (x0)
2 − (x1)

2 − (x2)
2 − (x3)

2
(1.7)

since det(M) = 1. So R is a Lorentz transformation. It is well known
[1] that R conserves the time and space orientation, and is an element
of the restricted Lorentz group L↑

+. If we consider

f : M 7→ R (1.8)

f is an homomorphism from SL(2,C) into L↑
+ and the kernel of f is

{±I}. With

x′
µ = Rµ

νx
ν ; ∂′µ :=

∂

∂x′µ
; ∂ν = Rµ

ν∂
′
µ

M̂ :=
(
δ∗ −γ∗
−β∗ α∗

)
; N :=

(
M 0
0 M̂

)
(1.9)
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we get the general and non trivial relation

Rµ
νγ

ν = N−1γµN. (1.10)

The form invariance of the Dirac equation comes from

ψ′ = Nψ ; ψ = N−1ψ′ (1.11)

that gives

0 = [γν(∂ν + iqAν) + im]ψ

= [γνRµ
ν (∂′µ + iqA′

µ) + im]N−1ψ′

= [N−1γµN(∂′µ + iqA′
µ) + im]N−1ψ′

= N−1[γµ(∂′µ + iqA′
µ) + im]ψ′ (1.12)

We can notice that with (1.2), (1.9) and (1.11) we get, for the Weyl’s
spinors ξ and η

ξ′ = Mξ ; η′ = M̂η. (1.13)

2 - Space algebra

When we use the 2× 2 complex matrices in (1.5), we actually work with
the Clifford algebra Cl3 of the physical space. Since that real algebra
can’t be ignored in the quantum theory, there are only advantages to
understand and to use that tool.

The general element of the space algebra Cl3 reads

u = s+ ~v + i ~w + ip (2.1)

where s is a scalar (real number), ~v is a vector, with three real compo-
nents. i ~w is a pseudo-vector, ~w is an axial vector, and ip is a pseudo-
scalar. As i2 = −1, Cl3 is a generalization of the complex field. If
(σ1, σ2, σ3) is an orthonormal basis of the physical space, that is

σj · σk = 0 , j 6= k ; σ2
j = 1 (2.2)

we can write any vector ~v as

~v = v1σ1 + v2σ2 + v3σ3 (2.3)

If we use the Pauli representation (1.2) for the σj , and if we identify
scalars and scalar matrices, the sum and the product of two terms in the
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space algebra is exactly the sum and the matrix product. This product
has a symmetric and an anti-symmetric part, for instance

~v ~w = ~v · ~w + i ~v × ~w (2.4)

where ~v · ~w is the scalar product and ~v× ~w is the vectorial product. The
space algebra uses the differential operator

~∂ := σ1∂1 + σ2∂2 + σ3∂3 ; ∂j :=
∂

∂xj
(2.5)

which is known as the gradient when applied to a scalar

grad s = ~∂s (2.6)

and gives the divergence and the curl when applied to a vector

~∂~v = ~∂ · ~v + i ~∂ × ~v ; ~∂ · ~v = div ~v ; ~∂ × ~v = curl ~v. (2.7)

The matrix x of (1.5) was named paravector by Baylis [2]. It is the sum
of the scalar x0 and the vector ~x = x1σ1 + x2σ2 + x3σ3,

x = x0 + ~x =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (2.8)

And we recover (1.5). With the Pauli representation (1.2) the differential
operator ~∂ reads

~∂ =
(

∂3 ∂1 − i∂2

∂1 + i∂2 −∂3

)
. (2.9)

The space algebra Cl3 is greater than the complex field and we use here
three conjugations u†, û, u :

u† = s+ ~v − i ~w − ip (2.10)
û = s− ~v + i ~w − ip (2.11)
u = s− ~v − i ~w + ip (2.12)

and we get

(uv)† = v†u† ; ûv = ûv̂ ; uv = v u

u = û† = û† ; û = u† = u† ; u† = û = û (2.13)
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With the Pauli representation the conjugation ̂ verifies also (1.9) and
u† is the adjoint matrix. If v is a space-time vector verifying

v =
(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
= v0 + ~v ; ~v = vjσj (2.14)

and if we identify scalars and scalar matrices, we get

vv = det(v) = v · v = (v0)
2 − (v1)

2 − (v2)
2 − (v3)

2
(2.15)

3 - Invariance under Cl∗3

When we study the relativistic invariance of the Dirac equation we use a
2× 2 matrix M with det(M) = 1. But we can also use any 2× 2 matrix
M and we define again the R transformation by

R : x 7→ x′ = MxM† ; det(M) = reiθ (3.1)

Then we get

det(x′) = (x′0)
2
− (x′1)

2
− (x′2)

2
− (x′3)

2
= det(MxM†)

= det(M) det(x) det(M†) = |det(M)|2 det(x) = r2 det(x)

= r2[(x0)
2 − (x1)

2 − (x2)
2 − (x3)

2
] (3.2)

R is now a transformation which multiplies each scalar product by r2

and each length by r. So we call R a ”Lorentz dilation” and r is called
the ratio of that dilation. If Rµ

ν is the 4 × 4 real matrix of the Lorentz
dilation R, that is

x′
µ = Rµ

νx
ν (3.3)

we get, for any M 6= 0, R0
0 > 0. Consequently R conserves the time’s

arrow. We get also, for any M ,

det(Rµ
ν ) = |det(M)|4 = r4. (3.4)

And if r 6= 0 we get det(Rµ
ν ) > 0 : R is invertible and conserves the

space-time orientation. Consequently R conserves the time and space
orientation. Now we consider

f : M 7→ R (3.5)
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f is an homomorphism from the space algebra Cl3 (which is also the
Pauli algebra) into the set of the Lorentz dilation : If R = f(M) and
R′ = f(M ′) with

R : x 7→ x′ = MxM† ; R′ : x′ 7→ x′′ = M ′x′M ′† (3.6)

we get

R′ ◦R : x 7→ x′′ = M ′(MxM†)M ′† = (M ′M)x(M ′M)†

f(M ′) ◦ f(M) = R′ ◦R = f(M ′M). (3.7)

The restriction of f to the set Cl∗3 of the invertible M , with r > 0, is a
group homomorphism from (Cl∗3,×) into the group (D∗, ◦), where D∗ is
the set of the dilations with a ratio r > 0. Moreover the kernel of the
homomorphism is the set

Ker(f) = {M / M = ei θ
2 I} (3.8)

That kernel is reduced to±I if we reduce f to the case where det(M) = 1.
The two-valued representations of the quantum theory are a particular
case, and if we don’t restrict M , each Lorentz dilation R = f(M) verifies
also R = f(ei θ

2M). That kernel is a U(1) group. It is exactly the gauge
group used by G. Lochak for the magnetic monopole’s theory, and to
explain that fact later, it will be necessary to use the Pauli algebra that
is Cl3.

The first equation (1.3) is equivalent to

(∂0 + ~∂∗)ξ∗ − iq(A0 − ~A∗)ξ∗ − imη∗ = 0. (3.9)

Multiplying by −iσ2 by the left, and using

−iσ2
~∂∗ = ~∂iσ2 ; −iσ2

~A∗ = ~Aiσ2 (3.10)

we get

(∂0 − ~∂)(−iσ2ξ
∗) + iq(A0 + ~A)(iσ2ξ

∗) + im(iσ2η
∗) = 0. (3.11)

The two column matrices ξ and −iσ2η
∗ give one 2× 2 matrix : We use

φ =
√

2(ξ − iσ2η
∗) (3.12)

which gives
φ̂ =

√
2(η − iσ2ξ

∗). (3.13)
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Consequently the Dirac equation (1.1) or the system (1.3) are equivalent
to

(∂0 − ~∂)φ̂+ iq(A0 + ~A)φ̂σ3 + imφσ3 = 0. (3.14)

And with

∇ := ∂0 − ~∂ ; A := A0 + ~A ; σ12 := σ1σ2 = iσ3, (3.15)

we get the Dirac equation, written in Cl3 :

∇φ̂+ qAφ̂σ12 +mφσ12 = 0 (3.16)

The transformation law (1.13) for the spinors ξ and η, with (3.12), im-
plies that, for a Lorentz rotation defined by a M matrix, we must take

φ′ = Mφ ; φ̂′ = M̂φ̂. (3.17)

As a Lorentz rotation is a particular case of a Lorentz dilation, we must
set the preceding relations for any M . With

∇ = σµ∂µ ; ∇′ = σµ∂′µ ; σ0 = σ0 := I ; σj = −σj ; j = 1, 2, 3. (3.18)

and with (3.1), we get, for any M , the relation

∇ = M∇′M̂. (3.19)

The Dirac equation is invariant under the Lorentz dilation defined by
(3.1) if we get

∇′φ̂′ + qA′φ̂′σ12 +m′φ′σ12 = 0 (3.20)

The gauge invariance of the Dirac equation implies that A transforms as
∇ :

A = MA′M̂. (3.21)

Consequently (3.16) gives

0 = (M∇′M̂)φ+ q(MA′M̂)φ̂σ12 +mφσ12

= M(∇′φ̂′ + qA′φ̂′σ12) +mφσ12

= M(−m′φ′σ12) +mφσ12

= (−m′MM +m)φσ12. (3.22)
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But MM = det(M) = reiθ, so the Dirac equation is invariant under a
Lorentz dilation if and only if

m = reiθm′. (3.23)

As a Lorentz dilation R multiplies each space-time length by r, and as
a proper mass is, with the Planck constant, the inverse of a space-time
length, we can understand the relation m = rm′. The factor eiθ is
unexpected, but necessary to get the form invariance of the linear Dirac
equation. That factor may be avoided if we use the non-linear equation
[3]

∇φ̂+ qAφ̂σ12 +me−iβφσ12 = 0 (3.24)

where β [4] is the Yvon-Takabayasi angle, verifying

det(φ) = Ω1 + iΩ2 = ρeiβ (3.25)

So we can say that the wave equation (3.24) is invariant under any
Lorentz dilation coming from the M matrix such as

x′ = R(x) = MxM† ; x′
µ = Rµ

νx
ν

∇ = σµ∂µ = M∇′M̂ ; ∇′ = σµ∂′µ (3.26)

φ′ = Mφ ; det(M) = reiθ ; m = rm′

We get also

ρ′eiβ′
= det(φ′) = det(Mφ) = det(M) det(φ) = reiθρeiβ = rρei(θ+β)

ρ′ = rρ ; β′ = θ + β. (3.27)

which gives
mρ = (rm′)ρ = m′(rρ) = m′ρ′ (3.28)

Consequently that is the productmρ which is invariant under the general
transformation (3.26), not m and ρ separately.

There is no difference between the 2× 2 matrix M giving a Lorentz
dilation R and the 2× 2 matrix φ of the electron’s wave. φ is a function
from space and time with value into the algebra Cl3. Moreover there
is no difference between the product M ′M in (3.7), which induces the
product of two dilations, and the product Mφ in (3.17), which gives the
transformation of the φ wave under a Lorentz dilation. Therefore we can
associate to φ the dilation f(φ), in each point of the space-time. f(φ)
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applies the local tangent space-time into the observer’s space-time. If
we call y the general element of the tangent space-time and D = f(φ) :

y = yµσµ ; x = xµσµ = D(y) = φyφ† (3.29)

we get also

x′ = MxM† = M(φyφ†)M† = (Mφ)y(Mφ)† = φ′yφ′
† (3.30)

Therefore we get x = D(y) and x′ = D′(y) with D′ = R ◦ D and the
same y. The tangent space-time is intrinsic to the wave and independent
from the observer.

4 - Invariance of the electromagnetism

The laws got by Louis de Broglie [5] for the electromagnetism with a
photon are

−1
c

∂ ~H

∂t
= curl ~E ; div ~H = 0 ; ~H = curl ~A

1
c

∂ ~E

∂t
= curl ~H + k2

0
~A ; div ~E = −k2

0V ; ~E = −1
c

∂ ~A

∂t
− grad V

(4.1)
1
c

∂V

∂t
+ div ~A = 0

where k0 = m0c
~ , m0 being the very small proper mass of the photon.

With

x0 := ct ; A0 := V ; A := A0 + ~A ; F := ~E+ i ~H ; ∇̂ := ∂0 + ~∂ (4.2)

the seven equations (4.1) are equivalent to

F = ∇Â ; ∇̂F = −k2
0Â (4.3)

These equations are invariant under the dilation R = f(M) if we get

F ′ = ∇′Â′ ; ∇̂′F ′ = −k′0
2
Â′ (4.4)

We know, after (3.21) and (3.26) that

∇ = M∇′M̂ ; A = MA′M̂ ; k0 = rk′0 (4.5)
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Consequently (4.3) gives

F = ∇Â = (M∇′M̂)M̂A′M̂ = M∇′M̂MÂ′M

= re−iθM(∇′Â′)M = re−iθMF ′M

F = re−iθMF ′M (4.6)

which gives

∇̂F = (M†∇̂′M)(re−iθMF ′M) = M†∇̂′r2F ′M

= r2M†(∇̂′F ′)M = r2M†(−k′0
2
Â′)M

= −(rk′0)
2M̂A′M̂ = −k2

0Â (4.7)

We can say that the laws of the electromagnetism with photon are in-
variant under Cl∗3, a greater group than the relativistic invariance group,
if and only if the electromagnetic field transforms as

F = re−iθMF ′M (4.8)

We get a r factor, because the electromagnetic true field coming from
the de Broglie’s theory is not F but a tensor F verifying

F = k0F ; ∇Â = k0F ; ∇̂F = −k0Â (4.9)

So the laws are invariant under Cl∗3 if

F = e−iθMF′M (4.10)

The presence of the e−iθ factor implies that F is invariant under the
kernel of f , that is the set of the M = ei θ

2 which gives

F = e−iθei θ
2 F′ei θ

2 = F′ (4.11)

The laws of the electromagnetism with electric and magnetic charges
are [6]

~E = − grad V − 1
c

∂ ~A

∂t
+ curl ~B ; ~H = curl ~A+ grad W +

1
c

∂ ~B

∂t

0 = ∂µA
µ =

1
c

∂V

∂t
+ ~∂ · ~A ; 0 = ∂µB

µ =
1
c

∂W

∂t
+ ~∂ · ~B

curl ~H − 1
c

∂ ~E

∂t
=

4π
c
~j ; div ~E = 4πρ

curl ~E +
1
c

∂ ~H

∂t
=

4π
c
~k ; div ~H = −4πµ (4.12)
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where ~j is the density of electric current, ρ is the electric charge density,
~k is the density of magnetic current, µ = k0 is the magnetic charge
density, W = B0 and ~B are the potential terms of Cabibbo-Ferrari (
first found by Louis de Broglie). 1 The eight equations are resumed, in
the space algebra, and with B = B0 + ~B, k = k0 + ~k, into

F = ∇(Â+ iB) ; ∇̂F =
4π
c

(ĵ + ik) (4.13)

The existence of the magnetic monopoles simply corresponds to the re-
placement of A by A+ iB and the replacement of j by j + ik. As B is
linked to A we will set, under a Lorentz dilation

B = MB′M (4.14)

and we get in (4.13)

4π
c
ĵ + ik = ∇̂F = (M†∇̂′M)(re−iθMF ′M) = M†∇̂′r2F ′M

= r2M†(∇̂′F ′)M = r2M† 4π
c

̂j′ + ik′M

j = r2Mj′M̂ ; k = r2Mk′M̂ (4.15)

There are r2 terms which can be avoided if we use

F = k0F ; j = k2
0j ; k = k2

0k. (4.16)

The electromagnetic laws with electric and magnetic charges and cur-
rents read then

∇Â+ iB = k0F ; ∇̂F =
4πk0

c
ĵ + ik (4.17)

and are invariant under Cl∗3 with (4.10) and if A, B, j and k transforms
as ∇.

So it is possible that the electromagnetic laws are invariant under a
greater group than the Lorentz group, with new involvements : on the
true tensors of the theory, on the presence of mass terms in the laws.
And we must distinguish the ”contravariants vectors” transforming as
x, and the ”covariant vectors” transforming as ∇.

1We use a sign for the magnetic charge different from the G. Lochak’s monopole,
to avoid a minus sign in (4.13).
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5 - Wave equation and invariance of the magnetic monopole

We start with the linear wave equation without mass term of G. Lochak
[6] :

[
1
c

∂

∂t
− ~σ · ~∇− i

g

~c
(W + ~σ · ~B)]η = 0

[
1
c

∂

∂t
+ ~σ · ~∇+ i

g

~c
(W − ~σ · ~B)]ξ = 0 (5.1)

that are, with the preceding notations 2

[∂0 − ~∂ − i
g

~c
(B0 + ~B)]η = 0 (5.2)

[∂0 + ~∂ + i
g

~c
(B0 − ~B)]ξ = 0 (5.3)

Conjugating (5.3) and multiplying by −iσ2 by the left, we get

−iσ2[∂0 + ~∂∗ − i
g

~c
(B0 − ~B∗)]ξ∗ = 0

[∂0 − ~∂ − i
g

~c
(B0 + ~B)](−iσ2ξ

∗) = 0 (5.4)

(5.2) and (5.4) are equivalent to one equation with φ :

(∇− ig

~c
B)φ̂ = 0 (5.5)

The chiral gauge of G. Lochak reads here

B 7→ B′ = B −∇ϕ ; φ 7→ φ′ = ei g
~c ϕφ (5.6)

So the i = σ1σ2σ3 that we get in the pseudo-scalar ip, or in ~E + i ~H, or
in eiθ, or in eiβ , is the generator or the chiral gauge. And the kernel of
f is actually the chiral gauge group.

The non-linear wave equation of G. Lochak :

[
1
c

∂

∂t
− ~σ · ~∇− i

g

~c
(W + ~σ · ~B)]η + i

c

~
m(4|η†ξ|2)(ξ†η)ξ = 0

[
1
c

∂

∂t
+ ~σ · ~∇+ i

g

~c
(W − ~σ · ~B)]ξ + i

c

~
m(4|η†ξ|2)(η†ξ)η = 0 (5.7)

2We have changed the sign of the magnetic charge, as in the preceding paragraph.
And to get the usual Dirac equation (1.1), we have also exchanged ξ and η. Those
differences are the only ones with G. Lochak’s equations.
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is equivalent to

(∇− ig

~c
B)φ̂+

c

~
m(ρ2)

ρ

2
e−iβφσ12 = 0 (5.8)

That equation is homogenous if m(ρ2)ρ
2 = m0, giving

(∇− ig

~c
B)φ̂+me−iβφσ12 = 0 (5.9)

(5.9) is similar to (3.24) because we used (5.9) to build (3.24) [7]. We
can notice that (5.5) is a particular case of (5.9) with m = 0. (5.9) is
invariant under Cl∗3 with

x 7→ x′ = MxM† ; det(M) = reiθ ; m = rm′

φ 7→ φ′ = Mφ ; ∇ = M∇′M̂ ; B = MB′M̂ (5.10)

which gives for any M :

(∇− ig

~c
B)φ̂+me−iβφσ12 = M [(∇′ − ig

~c
B′)φ̂′ +m′e−iβ′

φ′σ12]. (5.11)

6 - A second gauge for the monopole’s equation

If we compare (5.9) to the electromagnetic laws with magnetic monopoles,
we see that (4.13) has two potential terms, A and B, whereas (5.9) has
only a B term and the Dirac equation has only a A term. It is not
possible to add a B term to the Dirac equation, but it is possible to add
a A term to (5.9), giving

[∇− g

~c
(A+ iB)]φ̂+me−iβφσ12 = 0 (6.1)

which is invariant under the gauge transformation (5.6) and under

A 7→ A′ = A+∇ϕ ; φ 7→ φ′ = e
g

~c ϕφ (6.2)

That equation is compatible with the law (4.17) of the electromagnetism
with magnetic charges and currents. A wave following that equation will
see both the potential created by an electric charge and the potential cre-
ated by a magnetic monopole. But the study of that non-linear equation
is not simple. The angular momentum of the wave is not trivial, because
the contravariant vectors J and K of the Dirac theory, J = φφ† and
K = φσ3φ

†, verify

∂µJ
µ = −2g

~c
AµJ

µ ; ∂µK
µ = −2g

~c
AµK

µ (6.3)

So (6.1) cannot be got from a Lagrangian density.



66 C. Daviau

7 - Concluding remarks.

Too often, quantum books forget the {±I} kernel of f and identify the
complex matrix M and the Lorentz transformation R = f(M). Here it
is not possible to identify the Cl∗3 group, which is a 8-dimensionnal Lie
group, and the group of the Lorentz dilations, which is a 7-dimensionnal
Lie group.

f(M) is invertible only if r 6= 0. Physically the main set is not Cl∗3, it
is the full algebra Cl3, because φ may be not everywhere invertible. For
instance the Darwin solutions for the hydrogen atom have places where
det(φ) = 0 (Ω1 = Ω2 = 0), and at those places any observer is on the
light cone of the tangent space-time.

Even in that case R0
0 > 0 and the dilation R conserves the time’s

arrow. The Cl∗3 invariance is compatible with an oriented time and
an oriented space, with the same orientation in each tangent space-time.
That is physically very important, because the time is not invertible, and
because the weak interactions distinguish a left and a right orientation
of the physical space.

To use the space algebra instead of the Dirac matrices is useful : we
see that ρ is a dilation ratio. We may also see the geometrical meaning
of the de Broglie’s wave : there are two space-time varieties, the relative
space-time, which is flat here, but we know that the gravitation curves
that space-time, and the intrinsic space-time, linked to the wave, with
a torsion mρ. And the de Broglie’s wave is the link between those two
space-time, by x = φyφ†.
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