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ABSTRACT. The “quantitative problem” of the many worlds inter-
pretation (MWTI) of quantum mechanics is to justify the interpretation
of the Born rule measure |a,|? — the squared norm of the amplitude as-
sociated with the n*" out of N possible results — as a probability. The
essential difficulty is that the basic framework of the MWI would seem
to suggest an alternative probability rule, outcome counting, which is
that each separate outcome should be equally likely. The purpose of
this paper is to illustrate the aesthetic advantages of outcome counting
over the Born rule, and to argue that outcome counting is the most
“natural” definition of probability in the MWI.

RESUME. Le le probléeme quantitatif de l’interprétation des mondes
multiples sera obligé a justifier Uinterprétation de la mesure de régle
de Born |an|? — la norme carrée de l'amplitude associée avec le nt"* de
N les résultats possibles — comme une probabilité. La difficulté essen-
tielle est que le cadre fondamental de l'interprétation des mondes mul-
tiples semblerait suggérer une régle de probabilité alternative, le calcul
d’issue, qui est que chaque issue séparée doit étre également probable.
Le but de ce papier sera obligé a illustrer les avantages esthétiques de
calcul d’issue par-dessus la regle de Born, et disputer ce calcul d’issue
est la définition la plus naturelle de probabilité dans l’interprétation des
mondes multiples.

P.A.C.S.: 01.70.4w; 02.50.Cw; 03.65.Ta

1 Introduction

In the many worlds interpretation (MWI) of quantum mechanics (orig-
inally put forth by Everett as the “relative state formulation”[4]), the
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probability of obtaining a particular experimental outcome is prescribed
by the Born rule. According to the Born rule, a probability measure
my = |a,|? is assigned to each of the N experimental results associ-
ated with a measurement, with a,, being the complex coeflicient of the
nt" result as calculated by the Schrédinger equation. From an empiric
perspective, the success of the Born rule is undisputed.

From an ontologic perspective, the Born rule is not so successful.
Perhaps its greatest ontological weakness is what has been called the
“quantitative problem”[12]. Graham, many years ago, expressed the es-
sential difficulty: “it is extremely difficult to see what significance such
a measure [the Born rule measure] can have when its implications are
completely contradicted by a simple count of the worlds involved, worlds
that Everett’s own work assures us must all be on the same footing” [5].
From this perspective, the essential ontology of the MWI would seem
to suggest an alternative probability rule, which is that each possible
experimental outcome should be equally likely. This alternative proba-
bility rule has gone by various names, including “outcome counting” [13]
(which will be the term used in this paper), “egalitarianism” [6], or the
“alternate projection postulate” [11]. The difficulty with outcome count-
ing, of course, is immediately obvious: if one simply replaces the Born
rule with outcome counting, the predictions are wrong. Any attempt to
fix the model through additional modification, so that predictions are
correct!, would likely — or so the argument goes — be so difficult, or ugly,
or otherwise unappealing, that there is no use even making the attempt.
Better it would be not to worry so much about ontology.

Nevertheless, for those of us who worry about ontology, this situation
is unsatisfying. It feels as if there is a form of double-speak behind the
interpretation of the Born rule, whereby each world is “equally real” —
except that some worlds are “more real” (more probable) than others.

The purpose of this paper is to illustrate why it is that this state of
affairs is unsatisfactory, the purpose being to motivate the construction
of a model based on outcome counting. This will be performed through
the analysis of an experiment commonly encountered in quantum me-
chanics: a spin measurement. This analysis will define and make use of

n such a model, we would expect outcome counting, as the fundamental prob-
ability rule, to operate at the fine-grained level, and the Born rule to operate at a
coarser-grained level. The Born rule would not be wrong, per se; but its implementa-
tion would be such that it no longer plays the role that it does in our understanding
of “what probability really is.”
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an axiom labeled here the “probability criterion,” which — loosely (and
somewhat facetiously) stated — is that it is better to be more frequently
right than more frequently wrong. The argument recapitulates but also
expands upon a similar argument by Graham [5]. For a more abstract
philosophic analysis, the reader is referred to a growing literature[12] [6]

(9] [10] [1].
2 A simple experiment

Consider an experiment in which M identically prepared spin-1/2 par-
ticles are prepared, with their spins being measured sequentially. Using
the Born rule, each particle is predicted to be observed to be spin up or
down with probabilities 7, 0 Mgown, respectively. Since each individ-
ual spin measurement produces two separate branches (worlds), there
will be a total of 2™ worlds at the end of the M measurements. In
each of these worlds, upon the completion of the M measurements, the
observer is imagined to calculate the frequency p,, with which the par-
ticles were observed to be in the spin up state. In other words, m,
is what the theory predicts, and p,, is what is actually observed (with
my,;, being calculated once prior to experiment, and p,,, being calculated
separately in each of the 2™ worlds, after completion of the experiment).
From a practical perspective, the prediction is tested by comparing the
prediction m,,, with the observation p,, (and likewise for spin down),
using as large a value for M as is practically feasible. In particular, it is
hoped that as M — oo, the physical measure of the number of worlds in
which the Born rule appears to be false — that is, in which p,,, deviates
from m,,, by an arbitrarily chosen (small) number ¢ — approaches zero.

The notion of testing a “probability rule” by comparing the predicted
frequency to the observed frequency may be stated more generally for
any arbitrary quantum mechanical experiment, using the following defi-
nitions:

Definition 1 Ezperiments M. M 1is the number of times that the ex-
periment 1S run.

Definition 2 Outcomes N. N is the number of mutually exclusive pos-
sible outcomes for one experimental trial.

Note the assumption that the spectrum of experimental outcomes
is discrete. This assumption may be made without loss of generality,
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and is necessary for the purpose of defining a measure over the number
of worlds in which a particular outcome is observed. A quantum me-
chanical experiment with a continuous spectrum of outcomes, such as a
position measurement, can be conceptualized as a theoretical (perhaps
unattainable) limit as the number of discrete elements of the position
measurement apparatus approaches inﬁnityz.

Definition 3 Observed probability measure p,. For any individual
world (of which there are NM ), P, € [0, M] is the number times that the
ntt outcome was observed, with p, = P,/M € [0,1] being the frequency
of this outcome among the M measurements.

Definition 4 Predicted probability measure m,. m, is the predicted
probability associated with the n*" outcome, n € [1,..., N].

Note that p, is an attribute of an individual world, whereas m,, is
a predicted quantity that is independent of any individual experimental
result. The expression for m, will depend on which probability rule
we choose; e.g., the Born rule m,, = m2°™ = |a,|?, outcome counting
m, =m%% = 1/N, or some other rule.
Definition 5 Error €,. The difference between the predicted probabil-
ity measure m, and the observed quantity p, will be referred to as the
“error” €, that is, €, = |pn — My

Definition 6 Measure of belief F,,. F, € [0,1] is the proportion of the
NM worlds in which the observer concludes that the probability mea-
sure is valid, as determined by the error being less than or equal to an
arbitrarily chosen cutoff, €, < 9.

Given these definitions, the probability criterion may be stated in the
following manner:

Axiom 1 Probability criterion. For any arbitrary §, limy; .o F,, = 1.

2For example, the photographic plate used in a two slit experiment could be
modeled as a two dimensional array of detector elements. Mathematically, we can
imagine the number of detectors to approach infinity; practically, it is difficult to see
how the number of detectors could exceed, say, the number of atoms in the plate.
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The probability criterion is essentially a mathematical statement of
the notion that “most” of the worlds will produce an observer who con-
cludes that the theoretical prediction is correct, to within some arbitrarily
chosen cutoff. In a sense, the probability criterion may be interpreted
as a definition of the very notion of probability: it is a requirement that
must be met by the probability measure m,,. It therefore may come as
a surprise that the probability criterion is not generally met if m,, is
calculated by the Born rule, m,, = mZ°™ = |a,|?. That is to say that
in most of the N™ worlds, the observer will conclude that the Born rule
is false! The probability criterion is met, however, if m,, is calculated
by outcome counting, m,, = m&¢ = 1/N.

By way of illustration, suppose my, = 0.9, Mgown = 0.1, § = 0.1
and M = 100. These 100 measurements result in 2'%° worlds, and it is
asked: in what proportion of these worlds does the observer find that
Duyp falls within the interval mf;m + 60?7 A quick calculation (using the
formulae derived in the next section) shows that the answer is a miniscule
5.58 * 1078 percent. In contrast, the probability criterion is met if the
probability measure is calculated using outcome counting, mgpc =1/N.
In this case, mgpc = 1/2, and the proportion of worlds in which the
observer finds that p,,, falls within the interval mgpc 4§ is a much larger
96.4 percent.

In summary: in the spin measurement described above, the propor-
tion of worlds in which the observer finds that the Born rule is wrong
is a rather large 99.9999999442 percent. Conversely, the proportion of
worlds in which the observer finds that the outcome counting rule is right
is 96.4 percent. And for any fixed J, these percentages get closer and
closer to one hundred percent as M approaches co. Our experience, of
course, is the opposite: our experiments tell us that the Born rule is
right, and outcome counting is wrong. Therefore, according to current
formulation, the probability criterion is not met, and we are forced to
conclude that the vast magority of Everettian worlds, somehow, just don’t
matter. This is the essence of the quantitative problem.

3 Generalization

It is not so difficult to see that outcome counting is a general solution
to the probability criterion, and so is generally immune to the above
difficulty. Assume the definitions above. It is further assumed that
m, can be expressed as a function of N. (Compare this to Everett’s
assumption [4], discussed in [11], that m,, can be expressed as a function
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of a,.) The goal is to find a general expression that tells us whether a
given m,, does or does not satisfy the probability criterion.

The number of ways to make P, observations of the n'” outcome is

_1)(M—Py)
calculated to be %, as follows. There is only one way to get

the n* result on P, out of P, trials. Next, the number of ways to get
anything other than the n'" result on M — P, out of M — P, trials is
(N—1)M=PFn Next, the number of ways to mix an ordered sequence with
P, elements and an ordered sequence of M — P,, elements, i.e. the number

of ways of distributing P,, elements over M elements is M choose P,,
M! (N—1)M=Pn) pp1
P, (M—P,)!" P, \(M—Py,)!

Dividing this expression by the total number of worlds N yields the

1) (M—Pp)
proportion f(p,) € [0,1] of such worlds: f(p,) = %. The

integrated proportion F(my,,d) € [0, 1] of worlds in which the observed
frequency p, is close to the predicted frequency m,,, i.e. falls anywhere
within the closed interval m,, + 4, i.e. falls within [m, — §, m, + d],
is calculated as the sum: F(m,,d) = Zz:zzzfg f(pn). The probabil-
ity criterion states that for any 6, limp; o0 F(my,,d) = 1. By setting
m, = 1/N in the above expression, it is readily seen that the outcome
counting rule does in fact satisfy this equation. Computerized numeric
calculations confirms this solution. Therefore, it can be concluded that
outcome counting is a general solution to the probability criterion.

ie. Multiplying these expressions yields:

The essential similarity between outcome counting and the proba-
bility criterion is that in both cases, each of the IV possible “branches”
associated with a single measurement — or equivalently, each of the N™
distinct worlds resulting from M measurements — is considered to be, on-
tologically speaking, on an “equal footing.” The Born rule, on the other
hand, does not seem to offer a clear ontological picture of the “reality”
of alternate worlds. The fact that outcome counting, but not the Born
rule, is a solution to the probability criterion is precisely what makes it
the more natural choice for a probability rule.

4 Discussion

The purpose of this paper has been to present the aesthetic appeal of
outcome counting as an alternative to the Born rule for the calculation
of probabilities in the MWI. We have seen that if a theory is based
on outcome counting, then the measure of worlds in which prediction
matches observation approaches unity, so the probability criterion is met.
On the other hand, if a theory is based on the Born rule, then the measure
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of worlds in which prediction does mot match observation approaches
unity, so the probability criterion is not met. This state of affairs is the
quantitative problem, and it forces us to reject the majority of Everettian
worlds as nonexistent or (perhaps more charitably?) irrelevant.

Whether or not this state of affairs is troubling is, perhaps, no more
than a matter of taste. As it now stands, many people, including Everett
himself, have dedicated much effort towards the demonstration that the
Born rule is a natural consequence of the essential structure of the MWI
— thus rendering outcome counting not even an option, and hence “solv-
ing” the quantitative problem. Hartle has contributed to these attempts
[8]. More recently, Deutsch-Wallace decision theory [12] [3] has been
proposed to demonstrate the inevitability of the Born rule, essentially
by deriving it a priori. Others, however, have criticized derivations of
these types on the grounds that they are based on circular reasoning,
because they contain hidden probabilistic assumptions that effectively
“sneak” the Born rule into the formalism, so that they in fact assume
what they have set out to prove [11] [1] [2]. The ontological status of
the probability interpretation of the MWI, therefore, continues to be a
subject of controversy.

There is another option: to accept outcome counting as fundamen-
tal, and around this to build a reformulation of quantum mechanics so
that it makes correct predictions. The reason that a reformulation is
necessary is that a simple replacement of the Born rule with outcome
counting yields a theory that makes predictions that are inconsistent
with experiment. The goal of reformulation is therefore to identify some
additional modification (besides replacing the Born rule with outcome
counting) so that the observed quantum statistics may be restored to
the overall programme. If the resulting scheme were to make exactly the
same predictions as standard quantum mechanics, then its (proposed)
justification would be nothing beyond the philosophic: that it solves
the problem of probability. One might imagine, however, the existence
of an outcome counting-based reformulation that is consistent with all
currently known experimental data, yet still makes novel predictions (in
situations that have not yet been tested). Such a theory, in principle,
would be testable against the standard formulations, in the same sense
that general relativity was testable against Newtonian mechanics. In
this hypothetical scenario, it is at least conceivable that outcome count-
ing could play the role of a symmetry principle, analogous to that of the
principle of relativity.
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Although the construction of such a formulation is well beyond the
scope of the present paper, there are several schemes that may be men-
tioned in brief. The first scheme is trivial, and is based upon a simple
redefinition of the term “outcome.” According to this scheme, what is
typically thought of as a single outcome — say, the n*"® out of N pos-
sible results, with associated probability |a,|?> — is redefined so that it
corresponds to a multitude of distinct outcomes, the number of which
is proportional to |a,|?. The difficulty with this scheme — the reason
it is trivial — is that there is nothing in the theory to distinguish any
one of the |a,|? outcomes from another; nothing to justify the existence
of multiple copies of the same outcome. Ideally, such a scheme would
define “distinct” as physically distinct, would describe this distinction in
some detail, would tell us how to enumerate them, and would do so in
independent fashion; that is, without simply setting the count equal to
la,|? by fiat. Without an independent justification, this scheme simply
uses circular reasoning to solve the quantitative problem.

There are several non-trivial counting schemes that have been put
forth in the literature.® One is the “mangled worlds” model [7], accord-
ing to which the memory of observers in “small” worlds is destroyed or
somehow converted to remember events from “large” worlds. (This gives
us a reason for the elimination of the 99.9999999442 percent of worlds,
discussed above, in which the Born rule appears to be false.) A second
proposal [13] assumes nonlinearity in the time-dependent evolution of
the observer state, as well as an exponential time dependence for the
nonlinear effects, in a fashion that effectively generates |a,|* Everettian
branches for each experimental outcome. A third model (the work of the
author, to be published separately) is similar to the scheme of the pre-
ceeding paragraph, except that setting the count equal to |a,|? turns out
to be an approximation of a completely different scheme that hopefully
meets the above criteria to be nontrivial.

The main point of this paper is to suggest that these efforts to base a
theory on outcome counting have been too few and far between. Instead
of taking an empirically successful rule — the Born rule — and trying to
demonstrate that “it could be no other way,” we should at least consider
a different approach: to assume outcome counting as fundamental, to
do whatever reformulation is necessary to make the scheme empirically
successful, and see where it leads us. It could just be that this is — or

3Graham [5] introduced his own model; unfortunately, I have failed to understand
how it works.
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will help to identify — one small, yet essential ingredient to a theory of
quantum gravity.
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