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ABSTRACT. By relying on a thread of essential insights and achieve-
ments by Schrödinger, Kurşunoğlu, Lichnerowicz, Hély and Borchse-
nius, sources are appended to all the field equations of Einstein’s Her-
mitian theory of relativity. From the equations and from the contracted
Bianchi identities a sort of gravoelectrodynamics then appears, whose
constitutive equation has a much wider scope than the one prevailing in
Einstein-Maxwell theory. Now the electric and a magnetic four-current
are no longer a physically wrong replica of each other, like it occurs in
Maxwell’s vacuum.

Particular static exact solutions show that, while electric charges with
a pole structure behave according to Coulomb’s law, magnetic charges
with a pole structure interact with forces not depending on their mutual
distance. The latter behaviour is confining for charges of unlike sign,
and was already discovered by Treder in 1957 with an approximate
calculation, while looking for ordinary electromagnetism in the theory.
The exact solutions confirm this finding, already interpreted in 1980
by Treder in a chromodynamic sense.

RÉSUMÉ. Quand on s’attache au fil des résultats atteints par Schrödin-
ger, Kurşunoğlu, Lichnerowicz, Hély et Borchsenius, des sources sont
attachées a toutes les équations de champ de la théorie Hermitien de
relativité d’Einstein. Faisant usage des indentités Bianchi contractées
on trouve une sorte de dynamique gravo-électrique, dont les équations
fondamentales ont une domaine plus étendu que celles de la pure théorie
Einstein-Maxwell. Maintenant, les courants électriques et magnétiques
ne sont plus (physiquement faux) répliques mutuelles, comme on le
trouve dans le vacuum de Maxwell.

Des solutions statiques particulières démontrent que les charges élec-
triques à structure polaire se comportent selon la loi de Coulomb.
Cependant, les charges magnétiques à structure polaire interagissent
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à forces ne pas dépendant de leur distance mutuelle. Ce comportement
conduit à un confinement des charges de signe différente, ce que était
trouvé en 1957 par Treder au moyen d’un calcul approximé, quand il
essayait de trouver une électrodynamique ordinaire. Notres solutions
exactes supportent ses résultats, qui sont déjà interpretées selon la ter-
minologie chromodynamique en 1980 par Treder.

P.A.C.S.: 04.50+h; 04.20.Cv; 04.20.Jb; 12.10.-g; 12.39.Ki

1 Introduction

With their theory of the nonsymmetric field, either in the metric-affine
[1, 2, 3, 4] or in the purely affine version [5, 6, 7, 8], while providing a last
demonstration of their mathematical insight, Einstein and Schrödinger
left as heritage to the future generations the heavy task of trying to at-
tribute a physical interpretation to the very similar field equations that,
by proceeding from different startpoints, both of them eventually ar-
rived at. We shall consider here for definiteness the theory proposed by
Einstein, in its complex, Hermitian version [3]. In this theory, defined
on a real, four-dimensional manifold, one avails, as independent funda-
mental quantities, of the Hermitian tensor gik = g(ik) + g[ik] and of the
Hermitian affine connection Γi

kl = Γi
(kl) + Γi

[kl]. From gik one builds the
Hermitian contravariant tensor gik such that

gilgkl = gliglk = δi
k, (1)

and, since g ≡ det (gik) is a real quantity, the Hermitian tensor density

gik =
√
−ggik. (2)

In Einstein’s Hermitian theory, under quite general conditions [9], the
Hermitian affine connection Γi

kl is uniquely defined by the tensor gik

through the transposition invariant equation

gik,l − gnkΓn
il − ginΓn

lk = 0. (3)

Let the further field equation

g[is]
,s = 0 (4)

be satisfied. From (3) one gets [10] that (4) is equivalent to the injunction

Γi ≡ Γl
[il] = 0 (5)
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on the skew part of the affine connection. From (3) alone it stems further:

Γa
(ia),k = Γa

(ka),i. (6)

The fulfillment of both (3) and (4) is crucial for the properties of the
two generally nonvanishing contractions Ri

kli and Ri
ilm of the Riemann

curvature tensor

Ri
klm(Γ) = Γi

kl,m − Γi
km,l − Γi

alΓ
a
km + Γi

amΓa
kl. (7)

The second contraction reads in general:

Ri
ilm = Γi

il,m − Γi
im,l. (8)

When both (3) and (4) are satisfied, this second contraction just vanishes
due to (5) and (6); hence, like it occurs with the symmetric theory of
1915, also the problem of choosing which combination of the contractions
one should introduce in the field equations simply disappears. Under the
same circumstances, the first contraction

Rkl(Γ) = Γi
kl,i − Γi

ki,l − Γa
kiΓ

i
al + Γa

klΓ
i
ai, (9)

i.e. the Ricci tensor, happens to be Hermitian. Einstein proposed that
its symmetric and skew parts should fulfill the field equations

R(ik)(Γ) = 0 (10)

and
R[ik],l(Γ) +R[kl],i(Γ) +R[li],k(Γ) = 0 (11)

respectively. The field equations (3), (4) and (10), (11) of what Einstein
called the Hermitian generalization of the theory of gravitation can be
deduced from a variational principle, e.g. in the manner shown by Ein-
stein in [3], or in the more transparent way, that avails of the “starred
affinity”, envisaged [6] by Schrödinger.

We have indulged, with these introductory remarks, in expounding
the mathematical structure of Einstein’s Hermitian theory, since the
knowledge of the latter is by no means widespread, while it seems es-
sential for properly understanding what sort of hopes sustained both
Einstein and Schrödinger in their decade-long effort, and what means
they believed to be the most appropriate for trying to fulfill such hopes.
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In the many technical papers written in the decade 1945-1955 on
the subject of the “generalized theory of gravitation”, Einstein spent
very few words on the possible physical content of the theory. In his
“Autobiographisches” [11] he was very clear about the reasons for be-
lieving that the future progress of physical theory could not be based on
quantum theory, due to the statistical character of the latter, and to its
allowance for the superposition principle; to him, any real progress could
only be achieved by starting from the general theory of relativity, since
in Einstein’s opinion,“its equations are more likely to assert anything
precise than all the other equations of physics”. From the discovery
of general relativity he had also learned that no collection of empirical
facts, however extensive, could have been of help in building equations
of such intricacy: equations of such complication can only be retrieved
when one has found a logically simple mathematical condition that de-
termines the equations in a complete or nearly complete way. Hermitian
symmetry or, more generally, invariance under transposition, that both
represent a natural mathematical extension of the symmetry properties
of the general relativity of 1915, could be sufficiently strong formal con-
ditions, upon which one might attempt a generalization of the previous
theory, based on real symmetric quantities.

At variance with the buoyant optimism permeating his first attempt
on the subject [1], in his later work Einstein, while sometimes asserting
that, since (4) had to hold everywhere, g[[ik],l] might have to assume the
rôle of electric four-current [3, 12], became cautious in foretelling what
the possible physical content of his new theory might result to be. In the
autobiographical notes he limited himself to remark that, in his opinion,
equations (3), (4), (10), (11) constituted the most natural generalization
of the equations of gravitation, just adding, in a footnote, that in his
opinion the theory had a fair likelihood of proving correct, provided that
the way to a satisfactory representation of the physical reality on the
basis of the continuum will turn out to be feasible in general. He also
believed that, since these equations constituted the natural completion of
the equations of 1915, no source terms should be appended at their right-
hand sides. His “Autobiographisches” therefore ends with a question
mark, left like a legacy to the posterity: what happens with the solutions
of these equations that are free from singularities in the whole space?

On the possible physical content of the theory, Schrödinger was more
explicit already in his first paper [5], where he clearly shows to have
perceived the complete novelty of a fundamental feature of the theory,
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that had to become a crucial issue in the years to come, and eventually
led to the abandonment of the efforts aimed at the understanding of the
theory, since it constitutes too large a departure from the way we are
used to think about the electromagnetic interaction.

2 Interpreting the theory along a path made possible by
Schrödinger, Kursunoglu, Lichnerowicz, Hély and Borch-
senius

In [5] Schrödinger deals with his own purely affine theory, whose field
equations, if considered from a trivially pragmatic standpoint, differ from
the ones reported in Section 1 only due to the presence of the “cosmolog-
ical terms” λg(ik) and λg[[ik],l] at the right-hand sides of equations (10)
and (11) respectively. His remarks about the possible electromagnetic
meaning of his theory can be extended to the case when λ = 0, and
mean that equations (4) and (11) should be interpreted like a sort of
(modified) Maxwell equations, with g[ik] and R[ik] in the rôles of “con-
travariant density” and “covariant field tensor” respectively. Needless to
say, such an interpretation entails a total departure from the behaviour
that one might expect from the acquaintance with Maxwell’s equations
in vacuo, where the two quantities previously mentioned within quota-
tion marks are mutually related by a simple constitutive equation, that
only entails the metric in the usual tasks of raising indices and form-
ing densities from tensors. g[ik] and R[ik] can play in (4) and (11) the
rôles envisaged by Schrödinger only if the constitutive equation of this
“electromagnetism” is of a kind never heard of before, namely, a highly
involved differential relation, whose content is by no means surveyable
in its explicit form, since its determination requires first solving (3) for
the affine connection, and then substituting the resulting expressions
Γi

kl = Γi
kl(gpq, gpq,r) in R[ik](Γ). It is well known [9] that already the

first step does not yield in general a surveyable outcome, hence no hint
can be drawn a priori about the relation between inductions and fields
dictated by the Hermitian theory.

However, despite the total ignorance about its physical meaning,
there is one thing that can be subjected to a close scrutiny in this sort of
electromagnetism. In keeping with Schrödinger’s and Einstein’s convic-
tion that the theory did constitute the completion of the theory of 1915,
no sources are to be allowed at the right-hand sides of all its field equa-
tions. This holds in particular for (4) and (11): as Schrödinger [5] notes
with some regret, these equations of unmistakable electromagnetic form



226 S. Antoci, D.-E. Liebscher, and L. Mihich

are “used up”; their left-hand sides cannot be availed of for defining,
like it could have been possible in principle, two conserved four-currents
associated with the skew fields. Therefore, and again at variance with
what occurs in Maxwell’s electromagnetism, we have to look elsewhere
for the definition of, say, the electric four-current. Such a further depar-
ture from the known patterns could be welcome and sought for, because,
as complained by Einstein, “Das Elektron ist ein Fremder in die Elektro-
dynamik”. An electric four-current whose continuous distribution were
dictated by the field equations themselves would represent the solution
of many problems that plague theoretical physics. This is why Einstein
suggested that g[[ik],l] might have to assume the rôle of electric four-
current [3, 12]; in [5] Schrödinger added three more candidates to such
a high task. But (4) and (11) are just the electromagnetic equations
that one would write in the absence of charges and currents for some
continuum endowed with a very strange constitutive equation, and the
Hermitian theory of relativity is a natural generalization of an eminently
successful predecessor, whose success was however only possible through
the addition, as source, of the phenomenological energy tensor. There-
fore the shadow of doubt remained, that the new theory might need
phenomenological sources too.

Such a doubt was strengthened by the study of the contracted Bianchi
identities. One may find the derivation of these identities e.g. in [7],
where Schrödinger, in keeping with his conviction that the theory al-
lowed for a merging of gravitational and nongravitational fields in a total
entity, did not split their expression by separating the terms where only
symmetric quantities appear from the terms where only skew quantities
occur, like e.g. Kurşunoğlu did a few years later [13, 14]. When the
field equations (3), (4) hold, the contracted Bianchi identities found by
Schrödinger can be written as[√

−g
(
gikRil + gkiRli

)]
,k

=
√
−ggikRik,l. (12)

Through the above mentioned splitting, the same identities come to read(
2
√
−gg(ik)R(il)

)
,k
−
√
−gg(ik)R(ik),l (13)

=
√
−gg[ik]

(
R[ik],l +R[kl],i +R[li],k

)
.

But in [14] Kurşunoğlu provided an even more allusive writing. He
noticed that, if one introduces a symmetric tensor sik such that

√
−ssik =

√
−gg(ik), (14)
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where s is the determinant of the tensor sik, and siksil = δk
l , the left-

hand side of (13) can be rewritten as follows:(
2
√
−gg(ik)R(il)

)
,k
−
√
−gg(ik)R(ik),l (15)

=
(
2
√
−ssikR(il)

)
;k
−

(√
−ssikR(ik)

)
;l
.

Remarkably enough, the semicolon stands for the covariant differentia-
tion with respect to the Christoffel symbols built with sik. Hence the
contracted Bianchi identities of Einstein’s nonRiemannian extension of
the vacuum general relativity of 1915 admit a sort of Riemannian rewrit-
ing that avails of the tensor sik:(

sikR(il) −
1
2
δk
l s

pqR(pq)

)
;k

(16)

=
1
2

√
g

s
g[ik]

(
R[ik],l +R[kl],i +R[li],k

)
,

provided, of course, that equations (3) and (4) are satisfied. The same
form of the weak identities was arrived at later [15] by Hély, who was even
more prepared to appreciate the suggestions coming from Kurşunoğlu’s
way of expression, thanks to a precious result [16, 17] found in the mean-
time: through his study of the Cauchy problem in Einstein’s new theory,
Lichnerowicz had concluded that the metric lik appearing in the eikonal
equation

lik∂if∂kf = 0 (17)

for the wave surfaces of the theory had to be

lik = g(ik), (18)

or, one must add, any metric conformally related to g(ik). Since sik,
defined by (14), just belonged to this class of metrics, Hély had one
more reason for critically investigating how the expression (16) might
assume a physical meaning, like it occurs in the theory of 1915, where
the contracted Bianchi identities just say that the covariant divergence
of the energy tensor is vanishing.

When confronted with the weak identity (16), the sort of regret felt
by Schrödinger on noticing that the left-hand sides of (4) and (11) were
“used up” for expressing the vanishing of two four-currents cannot help
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becoming a serious concern. One has to withstand one further disap-
pointment: by adhering to the tenet endorsed both by Einstein and by
Schrödinger, according to which no source terms should be appended at
the right-hand sides of their equations, both sides of (16) simply van-
ish. Are we not missing in this way an occasion offered by the theory?
The very finding of (16) led Kurşunoğlu to modify [14] Einstein’s field
equations in order to provide the weak identities with physical meaning
in a field theoretical way. In a less daring mood, Hély appended [18]
phenomenological sources at the right-hand sides of both (10) and (11),
with the tentative physical meaning of energy tensor for matter and of
electric current respectively. In such a way, (16) comes to assert that the
nonvanishing of the covariant divergence of the energy tensor density of
charged matter is due to the Lorentz coupling of its electric four-current
with the electromagnetic field density g[ik].

In the same mood, one may well ask what hinders appending phe-
nomenological sources to all the field equations. The question is even
more justified, since a class of exact solutions to the equations of the
Hermitian theory has been found [19], that intrinsically depend on three
coordinates. Solutions belonging to this class appear endowed with phys-
ical meaning when sources are appended at the right-hand sides of both
(11) and (4).

There is indeed one hindrance, because, as shown in Section 1, the
satisfaction of (4) is just one of the necessary conditions for getting a
Hermitian Ricci tensor. The remedy was found [20] by Borchsenius; one
needs substituting the symmetrized Ricci tensor

R̄kl(Γ) = Γi
kl,i −

1
2

(
Γi

ki,l + Γi
li,k

)
− Γa

kiΓ
i
al + Γa

klΓ
i
ai, (19)

for the plain Ricci tensor (9). The substitution does not affect the origi-
nal field equations of Einstein and Schrödinger in vacuo, since there the
modified Ricci tensor of Borchsenius is equal to the true Ricci tensor,
but is effective in obtaining a set of equations with sources that is always
Hermitian. When sik is adopted as metric, in the footsteps of Hély, this
set, whose derivation is reported e.g. in [21], reads:

gqr
,p + gsrΓq

sp + gqsΓr
ps − gqrΓt

(pt) =
4π
3

(jqδr
p − jrδq

p), (20)

g[is]
,s = 4πji, (21)
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R̄(ik)(Γ) = 8π(Tik −
1
2
siks

pqTpq), (22)

R̄[[ik],l] = 8πKikl. (23)

In this way the two conserved four-currents ji and Kikl, and the symmet-
ric energy tensor Tik are appended to the original equations in a manner
that does not spoil their Hermitian character, and uniquely defines the
phenomenological sources in terms of their geometric counterparts. The
relevant contracted Bianchi identities are [21] in this case

−2(g(is)R̄(ik)(Γ)),s + g(pq)R̄(pq),k(Γ) (24)

= 2g[is]
,sR̄[ik](Γ) + g[is]R̄[[ik],s](Γ).

By substituting here the material sources defined above, and by defining
the contravariant energy tensor density as

Tik =
√
−ssipskqTpq, (25)

one eventually extends Hély’s result [18] to the form

Tls
;s =

1
2
slk

(
jiR̄[ki](Γ) +Kiksg[si]

)
, (26)

where the semicolon again indicates the covariant derivative done with
respect to the Christoffel connection built with sik. By completing Hély’s
proposal, this equation asserts that the covariant divergence of Tik does
not vanish in general because of the Lorentz coupling of the conserved
current Kiks with g[si], and also because of the Lorentz coupling of the
conserved current density ji with the field R̄[ki]. But, since the constitu-
tive equation of this sort of electromagnetism represents a total departure
from the one prevailing in the vacuum of Maxwell’s electromagnetism,
we shall not fear that the duality present in the latter shall lead to a
duplicate representation of the same physical behaviour, with electric
and magnetic four-currents both producing the same phenomena under
a duality transformation. In Maxwell’s electromagnetism this occurrence
is avoided by imposing, in keeping with experience, that magnetic four-
currents do not exist. In Einstein’s Hermitian theory this injunction
is neither required, nor helpful. The exact solutions show in fact that
the two four-currents give rise to completely different interactions, both
seemingly needed for the description of nature.
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3 The electrostatics of Einstein’s Hermitian theory

The simple form of equation (26) should deceive nobody: it is evident
that the “particle in field” imagery, already misleading in Maxwell’s
electrodynamics, is totally out of place both in the general relativity
of 1915 and in its Hermitian extension. From such nonlinear theories,
both in exact and in approximate solutions, as well exhibited [22] in
the work of Einstein and Infeld, one must expect a much subtler link
between structure and motion of the field singularities that one uses for
representing masses and charges. A particular example of this occurrence
is evident [23] in a solution of the Hermitian theory, that one cannot
help calling electrostatic in the sense of Coulomb. It can be built by the
method reported in [19]; if referred to the coordinates x1 = x, x2 = y,
x3 = z, x4 = t, its fundamental tensor gik reads:

gik =


−1 0 0 a

0 −1 0 b
0 0 −1 c

−a −b −c d

 , (27)

where
d = 1 + a2 + b2 + c2, (28)

and

a = iχ,x, b = iχ,y, c = iχ,z, i =
√
−1, χ,xx + χ,yy + χ,zz = 0. (29)

The solution is static, and its metric sik can be written as

sik =
√
d


−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 1

− 1√
d


χ,xχ,x χ,xχ,y χ,xχ,z 0
χ,xχ,y χ,yχ,y χ,yχ,z 0
χ,xχ,z χ,yχ,z χ,zχ,z 0

0 0 0 0

 , (30)

hence the square of the line element, in the adopted coordinates, reads

ds2 = sikdxidxk = −
√
d

(
dx2 + dy2 + dz2 − dt2

)
− 1√

d
(dχ)2. (31)

The solution always fulfils the equation g[[ik],l] = 0, and one feels entitled
to call it electrostatic in the sense of Coulomb. The reason is simple,
and geometric in character. It is discussed in detail in [23], to which the
reader is referred. Here we recall it briefly. If one allows for sources at
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the right-hand side of the Laplacian occurring in (29), one notices that
the admission of such sources in the representative space corresponds to
introducing a true charge density at the right-hand side of (21). Imagine
now trying to build localized true charges by starting from localized,
disjoint sources in the “Bildraum”. One finds that, when the charges are
very far apart from each other, they will be both pointlike and spherically
symmetric, with all the accuracy needed to account for the empirical
constraints, only provided that the charges occupy, in the space whose
metric is sik, just the positions dictated by Coulomb’s law of electrostatic
equilibrium [23].

One might object that naming “electrostatic” the charges associated
with ji is wholly premature, since we have not yet explored what happens
when net charges are built from Kikl. But an exact solution allowing
for such charges dispels the objection because, like one might well have
expected, the “magnetostatics” exhibited by such a solution has nothing
to do with Maxwell’s electromagnetism.

4 In Einstein’s Hermitian theory the magnetic charges are
confined entities

One solution of this kind is easily found by the method given in [19];
when referred to polar cylindrical coordinates x1 = r, x2 = z, x3 = ϕ,
x4 = t, its fundamental tensor gik reads:

gik =


−1 0 δ 0

0 −1 ε 0
−δ −ε ζ τ

0 0 −τ 1

 , (32)

with

ζ = −r2 + δ2 + ε2 − τ2, (33)

and

δ = ir2ψ,r, ε = ir2ψ,z, τ = −ir2ψ,t, ψ,rr +
ψ,r

r
+ψ,zz−ψ,tt = 0. (34)
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Its metric sik can be written as

sik =
√
−ζ
r


−1 0 0 0

0 −1 0 0
0 0 −r2 0
0 0 0 1

 (35)

+
r3√
−ζ


ψ,rψ,r ψ,rψ,z 0 ψ,rψ,t

ψ,rψ,z ψ,zψ,z 0 ψ,zψ,t

0 0 0 0
ψ,rψ,t ψ,zψ,t 0 ψ,tψ,t

 ,

hence the square of the line element, in the adopted coordinates, reads

ds2 = sikdxidxk =
√
−ζ
r

(
−dr2 − dz2 − r2dϕ2 + dt2

)
+

r3√
−ζ

(dψ)2.

(36)
Let us consider the particular, static solution for which

ψ = −
n∑

q=1

Kq ln
pq + z − zq

r
, (37)

where
pq = [r2 + (z − zq)2]1/2; (38)

Kq and zq are constants. One obtains

δ = i
n∑

q=1

Kqr(z − zq)
pq

, ε = −i
n∑

q=1

Kqr
2

pq
, τ = 0, (39)

and
ζ = −r2(1 + F ), (40)

with

F =
n∑

q=1

K2
q + r2

n∑
q=1

n(q′ 6=q)∑
q′=1

KqKq′

pqpq′
(41)

+
n∑

q=1

Kq(z − zq)
pq

n(q′ 6=q)∑
q′=1

Kq′(z − zq′)
pq′

.
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Let n = 1, z1 = 0. Then

δ = i
Krz

(r2 + z2)1/2
, ε = −i Kr2

(r2 + z2)1/2
, ζ = −r2(1 +K2), (42)

and the interval reads

ds2 =
√

1 +K2
(
−dr2 − dz2 − r2dϕ2 + dt2

)
+

K2

√
1 +K2

(zdr − rdz)2

r2 + z2
.

(43)
It is easy to ascertain that this interval displays a constant deviation from
elementary flatness along the z-axis. The length dl of an infinitesimal
vector dxi, lying in a meridian plane, orthogonal to the z-axis, and drawn
from a point for which r = 0, z = const. , reads

dl =
(
−s11 +

(s12)2

s22

)1/2

dx1, (44)

while the length of the infinitesimal circle drawn by the tip of the vector
dxi, when it is so rotated around the z-axis that ϕ grows by the amount
2π, is

∆l = 2π
√
−s33. (45)

Since for the circle drawn in this way r = dx1, the value of the ratio R
between length and radius of the elementary circle turns out to be

R = 2π

√
1− δ2

r2
, (46)

hence, for the present particular case with n = 1, one obtains

R = 2π
√

1 +K2. (47)

But, in an axially symmetric solution, a constant deviation from ele-
mentary flatness along the symmetry axis can be removed by simply
modifying the definition of the manifold, since nothing enforces the orig-
inal, tentative choice 0 < ϕ ≤ 2π for the coordinate ϕ.

Let us first rewrite the interval (43) in spherical polar coordinates R,
ϑ, ϕ, t, obtained by performing, in the meridian planes, the coordinate
transformation

r = R sinϑ, z = R cosϑ. (48)
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Then (43) comes to read

ds2 =
√

1 +K2
[
−dR2 −R2

(
dϑ2 + sin2 ϑdϕ2

)
+ dt2

]
(49)

+
K2

√
1 +K2

R2dϑ2.

By the coordinate transformation and fixation of the manifold

ϕ′ =
√

1 +K2ϕ, 0 < ϕ′ ≤ 2π, (50)

the interval becomes

ds2 =
√

1 +K2
(
−dR2 + dt2

)
− R2

√
1 +K2

(
dϑ2 + sin2 ϑdϕ′2

)
. (51)

This manifold, besides displaying elementary flatness everywhere, with
the exception of R = 0, is spherically symmetric too. One recognizes, in
the gik associated with it, one particular case of the spherically symmet-
ric solutions [24] found by Papapetrou. For this particular solution ji is
everywhere vanishing, while this is not the case for Kikl. In fact, let us
consider in this manifold a closed spatial two-surface Σ, and define the
invariant integral

I = − 1
8πi

∫
Σ

R̄[ik]df ik, (52)

where df ik is a surface element of Σ. The integral is always vanishing if
Σ does not surround, say, the origin R = 0 of the spatial coordinates R,
ϑ, ϕ′. In the opposite case one finds

I =
K√

1 +K2
, (53)

i.e. Kikl exhibits a pole of magnetic charge located at R = 0 in the
representative space, which, according to (51), is a point charge in the
metric sense too.

When n = 2, the solution defined by (32)-(41) cannot describe the
field of two isolated poles of magnetic charge, lying on the z axis, what-
ever the choice of K1,K2 and of z1, z2 may be. This negative outcome
happens despite the fact that the integral (52) is nonvanishing when it is
extended to a closed spatial two-surface Σ surrounding either one or the
other of the above mentioned positions, and otherwise arbitrary, thereby
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proving the existence of net charges built with Kikl both at r = 0, z = z1
and at r = 0, z = z2 respectively.

In fact, at variance with what happens when n = 1, the ratio (46)
shows that the deviation from the elementary flatness occurring on the
z-axis is only piecewise constant, hence it can not be made to disappear
by an appropriate choice of the manifold. Therefore, when n = 2, the
solution can not be considered as representing the field of two isolated
bodies, just like it happens, in the general relativity of 1915, with the
Weyl-Levi Civita field for two masses at rest [25, 26, 27].

The n = 3 case is more fruitful, for, if we choose

K1 = K3 = K, K2 = −K, z1 < z2 < z3, (54)

we find that
lim
r→0

F = K2 (55)

along the whole z-axis. Therefore the ratio R, defined by (46), says
that the deviation from elementary flatness, just like in the case n = 1,
can be eliminated through the appropriate definition of the manifold, by
suitably choosing the range of ϕ.

Let us remind that, in the electrostatic case [23], we have found that
the electric charges did occupy the positions of equilibrium dictated by
Coulomb’s law, provided that the charges built with ji were pointlike
in the metric sense, and that the metric sik happened to be spherically
symmetric in an infinitesimal neighbourhood of each charge, with all the
accuracy needed to meet with the empirical facts. Let us study under
what conditions the three aligned magnetic charges happen to enjoy the
same geometric properties.

An inspection of the metric (35) for this solution shows that point-
like charges in the representative space are always pointlike in the metric
sense too. To check for the spherical symmetry in an infinitesimal neigh-
bourhood of each charge, we need evaluating the interval ds, expressed
by (36), in an infinitesimal neighbourhood of each of the points located
at r = 0, z = zi, i = 1, 2, 3. One finds that, in the close proximity to all
the points of the z-axis, the interval (36) can be approximated as

ds2 =
√

1 +K2
(
−dr2 − dz2 − r2dϕ2 + dt2

)
+

1√
1 +K2

(rdψ)2. (56)
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In the close proximity of the three points mentioned above one can use
the further approximation

1√
1 +K2

(rdψ)2 =
K2

√
1 +K2

[(z − zi)dr − rdz]2

r2 + (z − zi)2
. (57)

Therefore, by performing severally, in the meridian planes, the coordi-
nate transformations

r = R sinϑ, z − zi = R cosϑ, (58)

for i = 1, 2 and 3, one will find that in each infinitesimal neighbourhood
the interval will always take the same form, given by (49), i.e. the
very form that holds in the whole space for the solution with n = 1.
As a consequence, if one performs the transformation and fixation of the
manifold (50) also in this case with n = 3, defined by (54), one finds that
the interval is spherically symmetric in the infinitesimal neighbourhood
of each of the pointlike magnetic charges.

The geometrical conditions on the metric field surrounding the
charges, whose fulfillment1, in the electrostatic solution of Section 3,
ensures that Coulomb’s law is an outcome of the theory, in the partic-
ular solution considered here are always satisfied exactly, whatever the
mutual positions of the three magnetic charges may be, provided that
the order z1 < z2 < z3 is respected. One therefore draws the physical
conclusion that these aligned magnetic charges by no means behave like
magnetic monopoles would do, if they were allowed for, in Maxwell’s
electromagnetism. The indifferent equilibrium of the three charges ex-
hibited by this magnetostatic solution of the Hermitian theory is only
possible if the interaction of the charges is independent of their mutual
distances.

One can object to this conclusion, because the fact that the charges
are both pointlike in the metrical sense, and each endowed with a
spherically symmetric infinitesimal neighbourhood for whatever choice
of z1 < z2 < z3, might well mean that these charges are not interacting
at all. But, as soon as the conditions (54) for Ki are not respected, a
deviation from elementary flatness appears on stretches of the z-axis,
that can not be made to disappear through the choice of the manifold,
just like it occurs in the solution with n = 2, and also in the two-body,

1although with the approximation expounded in [23].



Confinement in Einstein’s unified field theory 237

static solutions of the general relativity of 1915. Moreover, approximate
calculations done by Treder already [28] in 1957 both by the EIH method
[29, 22] and by the test-particle method [30] of Papapetrou revealed the
existence, in this gravito-electromagnetism, of a central force between
the poles built with Kikl, that does not depend on their mutual dis-
tance, and that, in the Hermitian theory, is attractive when the poles
have charges of opposite sign.

The same conclusion can be drawn also with an argument that relies
on another exact solution [32] belonging to the class described in [19].
The solution is a Hermitian generalization of the Curzon metric [33]. In
the cylindrical coordinates of its representative space two Curzon masses,
located at r = 0, z = z1 and r = 0, z = z2 respectively, are endowed with
point magnetic charges. For fixed z1 and z2, by choosing appropriately
the values of the constants associated with both the masses and the
charges, one succeeds in obtaining that no deviation from elementary
flatness occur along the whole z-axis. One interprets this circumstance
as showing that the gravitational force between the masses is balanced
by the force that the magnetic charges exert on each other. From the
weak field limit of this exact solution, when the gravitational pull reduces
to the Newtonian behaviour, one concludes too that the force between
the magnetic charges is attractive when the charges have opposite sign,
and that it does not depend on their mutual distance2. In 1980 Treder
interpreted [31] his findings of 1957 in a chromodynamic sense.

5 Conclusion

Talking of conclusions, here and now, sounds ironically premature. We
are still at the very beginnings, since the theory represents such a total
departure from the known paths. Considering g[ik] and R[ik] as elec-
tromagnetic inductions and fields, like Schrödinger first [5] envisaged
sixty years ago, leads to a gravito-electromagnetism endowed with a
range of possibilities so wide and unexplored, thanks to the intricate
differential constitutive relation linking these quantities, that one might
well despair that its content will ever be unraveled, and proved to be
physically meaningful or not. And yet, thanks to approximate and to
exact findings, some glimpses about the possible content of the theory
have appeared during the lapse of the decades. Besides, of course, Ein-

2In the mentioned paper [32], the deviation from the elementary flatness was
calculated by availing of g(ik) as metric. The calculation was repeated with the right
metric sik, and has provided just the same result.
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stein’s gravitation of 1915, the theory appears to contain, according to
particular exact solutions, electric charges that behave as prescribed by
Coulomb’s electrostatics [23], as well as magnetic poles that interact with
forces not depending on their mutual distance. When confronted with
such outcomes, one can not help remembering the hopes expressed by
Schrödinger in the paper quoted above:

“We may, I think, hold out the prospect, that those skew
fields together, whatever may emerge as the appropriate in-
terpretation, embrace both the electromagnetic and the nu-
clear field and their interplay with each other and with grav-
itation.”

and dare suggesting, on the basis of the admittedly scant, but unambigu-
ous evidence gathered until now, that the work on this theory, abandoned
so many decades ago, be resumed in the years to come.
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