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ABSTRACT. Four-space Dirac theory permits bispinor wave functions
describing neutral spin- 1

2
particles of generally indeterminate proper

mass. Though the 4-current vector is always null, the 4-momentum
carried by these particles may be timelike, and in this case the wave
function oscillates.

1 Introduction

Evidence of neutrino mass has invalidated the Weyl description, which
requires the proper mass to be zero. A formulation of neutrino flavours
as superpositions of mass eigenstates has been put forward to explain
the observed oscillations, but debate continues, and Lim has suggested
[1] a pseudo-Dirac model incorporating Majorana masses. This may
give better agreement with experiment, though at the expense of extra
parameters. If neutrinos are indeed massive particles, one would expect
them to be subluminal, and an unequivocal, independent demonstration
of this would help to clarify their status, since empirically it still seems
possible at present that they travel at the speed of light. But if neutrino
speeds cannot be clearly distinguished experimentally from that of light
(in vacuo), the revised neutrino theory may itself be questioned, leaving
the Standard Model open to challenge by one or more of the 4-space
theories, sometimes called parametrized relativistic quantum theories
[2, 3, 4].

This paper shows that neutral particles can be described within a 4-
space Dirac theory as a special class of solutions satisfying conditions for
the absence of charge. In the picture outlined below, a neutral particle
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always has a null current, but it may, nonetheless, carry timelike 4-
momentum - this possibility arising because the 4-space theory allows
states that are not eigenstates of the proper mass, m0. If it is sharp,
then m0 must be precisely zero (this case corresponds closely to the
Weyl neutrino), but in general m0 is indeterminate, and the expected
proper mass, 〈m0〉, lies within a non-negative range that depends on
the particle’s 4-momentum. Even a null 4-momentum allows 〈m0〉 to
be positive. Of particular interest are states with timelike 4-momentum
and indeterminate proper mass - in these the wave function oscillates.

The 4-space Dirac formulation used here requires a non-standard
interpretation of the wave function, with both negative and positive
charge contributions, as follows. The 4-component spinor ψ is a function
of the spacetime coordinates Xλ = (xk, ct) and the invariant parameter
τ , which corresponds either to the proper time of classical theory, or to
the affine parameter of a null geodesic. (We use the same symbol τ in
all cases.) The conventions are generally those of [5, 6, 7]; in particular,
the Lorentz metric tensor is ηαβ = diag(1 , 1 , 1 , −1), and the Dirac
matrices γλ have a chiral representation. In [5], m was employed for
proper mass, but m0 is used here. We begin below with an approach
that applies to all free spin- 1

2 particles, but later specialize to neutral
particles.

There is an invariant expected net charge density F (X, τ) ≡ ψ†(iγ4)ψ
in space-time, and an expected particle 4-current density J(X, τ) ≡
−ψ†γ4γψ, so that J4 = ψ†ψ ≥ 0 implies a flow in the positive time
direction. In general, F = F1 − F2, where F1 and F2 are expected den-
sities of negative and positive charge, and J is the sum of the expected
particle and antiparticle currents, which in most cases have a common
4-velocity U given by cJ = (F1 + F2)U. There is also a second invari-
ant, Q ≡ ψ†γ0ψ, where γ0 ≡ −iγ1γ2γ3, which is related to F and J by
J · J = −(F 2 + Q2). As a consequence, F1 = (

√
F 2 +Q2 + F )/2

and F2 = (
√
F 2 +Q2 − F )/2: note that F1 ≥ 0, F2 ≥ 0, and

F1 = F2 = 0 ⇔ F = Q = 0. These points are outlined in [5], and
illustrated in [6], where the 4-space approach is applied to Klein’s para-
dox. The interpretation of the model, especially as regards probabilities,
is given more fully in [7].

However, these earlier papers are concerned only with charged parti-
cles (electrons and positrons): they do not cover the case with which
we are mainly concerned here, viz. F1 = F2 = 0. The relation
cJ = (F1 + F2)U is then no longer directly applicable - though we
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note that it does not imply J = 0. Just as the more familiar relation
P = m0V of relativistic particle mechanics does not imply P = 0 when
m0 = 0, but rather that P is a null vector (P · P = 0), in the present
context we find that J is a null vector, because of an identity mentioned
above: J · J = −(F 2 + Q2) (see Appendix B of [5]). We continue to
suppose that the charge densities F1 and F2 are given as above by the
invariants F and Q, so that F = Q = 0.

2 Free-Particle Solutions

For the present purpose, we wish to solve the free-field equation

γ·∂ψ =
(
i

c

)
∂ψ

∂τ
. (1)

There is a class of solutions of the form

ψ = exp(P· [iXI + cτγ]/}) ζ, (2)

where ζ is any constant bispinor. These have sharp 4-momentum P, but
are not eigenstates of proper mass. Moreover, for timelike P they are
oscillating solutions, as we see on rewriting (2) in the form

ψ = eiP·X/} {I cos(cPτ/}) +
P· γ
P

sin(cPτ/})} ζ. (3)

Here P =
√
−P ·P , but since the proper mass m0 is not sharp, we

cannot use P = m0c . The case P = 0 (i.e. P a null vector) can be
obtained by letting P → 0 in (3):

ψ = eiP·X/} {I + cτ P· γ/})} ζ. (4)

So far, with m0 indeterminate, ψ does not represent the usual kind
of plane wave. However, in the 4-space theory there is a proper mass
operator m̂0 = (−i}/c2)∂/∂τ , and imposing the condition m̂0ψ = m0ψ
on (2) gives

(P· γ − im0cI) ζ = 0. (5)

Applying (5) to (2), we obtain a plane wave closer to the conventional
form:

ψ = exp(i[P ·X + E0τ ]/}) ζ. (6)
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(The usual Dirac plane wave lacks the term E0τ ≡ m0c
2τ in the expo-

nential.) As in standard Dirac theory, the constant bispinor ζ is now an
eigenvector defined by (5): for the chiral representation we find, provided
m0 6= 0 , that

ζ =


iαm0c
iβm0c

α(P3 − P4) + β(P1 − iP2)
α(P1 + iP2)− β(P3 + P4)

 , (7)

where α and β are arbitrary complex constants. The existence of ζ
requires the mass-shell condition

P ·P=−m2
0c

2. (8)

There is an obvious formal similarity between these 4-space plane
waves and their conventional analogues. Wave packets with sharp proper
mass, though with τ (not t) as the evolution parameter, can be generated
from them by superposition in the usual way. And the charge density
is of only one sign (F1 > 0, F2 = 0) - this is easily verified by choosing
a frame in which the spatial momentum components are zero, when we
find

F = 2m2
0c

2(|α|2 + |β|2);Q = 0. (9)

It follows that a neutral particle with sharp proper mass must have
m0 = 0, and this is a separate case, covered below. We note in passing
that linear superposition of wave functions for massive plane waves at
rest (and hence for those with a common 4-velocity) cannot give neutral
particles: we find, as in (9), that F is proportional to |ψ|2 .

In the case of a massive particle, the phase velocity of a 4-space plane
wave contrasts with that of conventional Dirac theory. The 4-velocity
of the wave (6) is just P/m0, as for the corresponding classical particle,
whereas the usual Dirac plane wave has a phase 3-velocity of magnitude
E/|p| > c, where p is the 3-momentum. The phase 4-velocity P/m0

of (6) coincides here also with the 4-velocity U of the particle current
(Section 1). The requirement for a neutral particle to give a null current
is consistent with this, because a neutral plane wave is massless.

We noted earlier that (7) is valid only if m0 6= 0 ; i.e. when P is not
null. If m0 = 0, (5) becomes (P· γ)ζ = 0, and the consequent condition
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det(P· γ) = 0 , required for a non-trivial solution, reduces as expected
to P · P = 0 . However, we do not recover the associated eigenvectors
by setting m0 = 0 in (7): the result for the chiral representation when
m0 = 0 is

ζ =


α(P3 + P4)
α(P1 + iP2)
β(P3 − P4)
β(P1 + iP2)

 . (10)

We need not pursue this in detail, because it is equivalent to the two-
component Weyl description, as is suggested by the form of (10). One
can readily check that (10) implies F = Q = 0 (and hence F1 = F2 = 0):
both F and Q contain a factor P · P = 0. In particular, eigenstates of
helicity are all equivalent to the Weyl neutrino (or antineutrino), with
their distinct and invariant chiralities.

3 Neutral Particles with Indeterminate Mass

Though reassuringly familiar, plane wave solutions with sharp proper
mass are not especially interesting. The type that we first looked at
(equations (2)-(4)), in which m0 is not sharp, offers more possibilities.
Solutions with P = 0 (see (3), (4)) are now obtainable from the general
case, in contrast to the plane wave solutions that are eigenstates of m0

(see (7), (10)). We find (with the aid of the identities γ†γ4 = −γ4γ
and γ†γ0 = γ0γ) that the invariants F and Q determining the expected
charge densities are (if P 6= 0)

F = ζ†(iγ4)ζ; (11)

Q = ζ†γ0ζ cos(2cPτ/}) + (P/P ) · (ζ†γ0γζ) sin(2cPτ/}). (12)

If P = 0 (see (4)), we can get the correct Q by letting P → 0 in (12):

Q = ζ†γ0ζ + (2cτP/}) · (ζ†γ0γζ). (13)

In all cases the expected charge densities F1, F2, are zero if and only if

ζ†γ4ζ = ζ†γ0ζ = P · (ζ†γ0γζ) = 0. (14)

Here we have just three conditions on the eight real components of ζ.



120 A. B. Evans

In general, the proper mass operator m̂0 = (−i}/c2)∂/∂τ is defined
so that an integral over spacetime gives 〈m0〉. In the present case we have
an eigenstate of 4-momentum, so that ψ is not localized in space-time,
and the usual integral is therefore undefined. However, in cases like this
we can regard the integrand, ψ†(iγ4)m̂0ψ, as an expected proper mass.
(A factor involving γ4 is required for Lorentz invariance of inner products
[6].) We now find that the expected proper mass is the invariant (and
constant) expression

〈m0〉 = (P/c) · (ζ†γ4γζ) = (−1/c)P · J. (15)

It is helpful here to write ζ in terms of two 2-component spinors, ξ and
η:

ζ =
[
ξ
η

]
. (16)

Introducing the 3-momentum vector p, so that (in contravariant form)
P = (p, E/c), from (15) we obtain

(c2/2)〈m0〉 = E ξ†ξ + cp · (ξ†σξ) (17)

and

(c2/2)〈m0〉 = E η†η − cp · (η†ση), (18)

where σ represents the “3-vector” of Pauli matrices. Assuming that
E > 0, and using the fact that |ξ†σξ| = ξ†ξ, we can write (from (17))

(E − cp)|ξ|2 ≤ (c2/2)〈m0〉 ≤ (E + cp)|ξ|2, (19)

where p ≡ |p|. Adding this and the corresponding result from (18), we
get

(E − cp)|ζ|2 ≤ c2〈m0〉 ≤ (E + cp)|ζ|2. (20)

If, as seems plausible, we can suppose that ζ is normalized, then the
classical value of m0c

2 is the geometric mean of the bounds in (20). If
P is null, (20) simplifies to

0 ≤ c2〈m0〉 ≤ 2E|ζ|2. (21)
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4 Conclusions and Comments

We have looked at spin- 1
2 particles within the framework of a 4-space

Dirac theory, in which both charged and neutral particles are accommo-
dated in a single unified scheme. This is more restrictive than the usual
approach, since it requires neutrinos to satisfy zero-charge conditions,
and does not introduce new mass parameters, yet it allows a wide range
of behaviour.

Solutions corresponding to the massless Weyl neutrino are still found,
and if we suppose that the proper mass is sharp, there are no other cases:
the proper mass must be zero, and the momentum (if also sharp) must be
null. These solutions do not contain the invariant evolution parameter
τ : their only variable factor is the scalar function eiP·X/}.

But when we allow the proper mass to be indeterminate, as the 4-
space picture implies we can, interesting new possibilities arise. The
4-momentum P (still assumed sharp) need not be null, and if P is time-
like, ψ contains an oscillating function of τ , as in eq. (3). It seems
clear that this function is capable of causing an oscillating probability of
interaction. Although its sine and cosine factors must both be present,
because P would be null if we had (P· γ)ζ = 0, it is possible that (P· γ)ζ
is relatively small, so that the cosine term dominates.

In all cases the particle current J is a null 4-vector: these neutral par-
ticles always propagate at the speed of light. In this respect, the present
model is closer to the Weyl formulation than are the recent massive-
neutrino alternatives, and the characteristic helicities of the Weyl neu-
trino and antineutrino are maintained.

Finally, we should note that the conditions for the absence of charge
were imposed only after we had found oscillating solutions, which there-
fore are not confined to neutral particles. For charged particles, however,
solutions of the oscillating type considered here require a constant po-
tential, which suggests that interactions caused by charges may suppress
the oscillating states.
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