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RÉSUMÉ. On considère la possibilité présentée de l’existence d’états
atomiques de l’hydrogène avec une énergie plus basse que la valeur
habituelle de −13.6 eV, en profitant d’une forme nouvelle et plus
générale des relations d’incertitude.

ABSTRACT. We consider the proposed possibility of the existence of
hydrogen atomic states with an energy lower than the usual −13.6
eV ground state energy, taking advantage of a newly proposed more
general form of the uncertainty relations.
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1 Mill’s claims and criticisms

The reported observations, by R. L. Mills and his collaborators ([1], [2],
[3], [4]), of release of energy in devices in which hydrogen atoms interact
with catalytic substances, lead this author to propose the existence of
induced electronic transitions from the ground state of −13.6 eV to even
lower energy states, the so-called hydrino states. The theoretical basis for
such an explanation would be provided by a new description of quantum
phenomena, to be called Classical Quantum Mechanics, of which basic
tenets are a classical wave equation and the non-radiation condition for
distributions of electric current densities.

The underlying interpretation of the published experimental results
has been criticized by several authors [5], [6], [7], based on the fact
that such states are not admissible in standard quantum mechanics (or
even in Mills own theory, see [5]), either non-relativistic or relativistic,



124 M. Gatta

even though the Klein-Gordon equation for a Coulomb potential shows
a lower energy state, as does the Dirac equation in two dimensions; in
fact, consideration of a small but nonzero radius for the atomic nucleus
reveals ([7]) the unphysical character of those solutions.

Mills, in turn [8], criticizes standard quantum mechanics, taking is-
sue, in particular, with an estimate by Feynman [9] of the radius of the
ground state of the hydrogen atom, based on a qualitative, semi-classical
use of the Heisenberg uncertainty relations for the position and momen-
tum of a particle. It seems to us that his observations are, in general,
sound, but it must be kept in mind that the argument was originally
presented in a pedagogical context, with no pretense of quantitative, or
even physical, rigour.

Our aim in the present work is to show that Feynman’s deduction
does allow for the ocurrence of hydrogen states more tightly bound then
the usual electronic ground state, if one employs a more general set of
uncertainty relations, recently proposed.

2 Generalized uncertainty relations

All of the above criticisms are based on the acceptance of the tradi-
tional linear quantum mechanical equations for the electron, either non-
relativistic or relativistic. However, several other authors (among oth-
ers, [10], [11],[12], [13]) have proposed the introduction of some forms
of nonlinear Klein-Gordon and Schrödinger equations. One such equa-
tion was used to deduce, from a new type of acceptable solutions based
on wavelet analysis, a more general expression for the uncertainty rela-
tions, allowing an extension of the available measurement space, in line
with modern advances in microscopy techniques [13]. This was done in
the context of de Broglie’s theory of the double solution, where a real
physical wave Φ(r, t) will be given by the addition of an extended yet
finite guiding wave, Θ(r, t), with a very much localized ξ(r, t) wave rep-
resenting the particle itself, both waves being in phase and in such a
way that the particle will most probably be in the small region where
the Θ wave is most intense. In the linear approximation, this Θ wave
becomes the v wave in de Broglie´s linear version of the double solution
theory, such that both this v wave and the usual Ψ wave satisfy the
traditional Schrödinger equation. However, here Ψ is, as usual, a prob-
ability amplitude wave, whereas v is a real physical, non-normalizable,
wave, both related by Ψ = Cv, C being a normalization constant. As
a consequence, it will be the extended Θ wave that will be ultimately



On the bound energies of the hydrogen atom . . . 125

responsible for the usual, observable, linear superposition, interference
and confinement effects [14]. We will use in what follows a general form
for these Θ waves, specifically an integral over Morlet wavelets, obeying
a nonlinear Schrödinger equation of the form

− ~2

2m
∇2Ψ(r, t) +

~2

2m

∇2(ΨΨ∗)1/2

(ΨΨ∗)1/2
Ψ(r, t) + V (r, t)Ψ(r, t) = i~

∂Ψ(r, t)
∂t

.

(1)
In fact, starting from a spatial Morlet mother wavelet represented by

f0(x) = e−
x2

2σ2 +ikx, (2)

of width σ and wavelength 2π/k, one builds up the extended part (for
t = 0) of the free particle guiding wave, Θ, solution of the nonlinear
equation above in one spatial dimension, as

Θ(x) =
∫ ∫ ∫ ∫

g(k, σ, b, e)e−
(x−b)2

2σ2 +ik(x−e)dk dσ db de, (3)

where b and e are the translational parameters of the mother wavelet.
Now three possible approaches are introduced, viz.,

2.1 first

e = b, σ=const., g(k, b) = g(k)δ(b) and g(k) = A e
− (k−k0)2

2σ2
k , where A and

σk are also constants. Then, one obtains

Θ(x) =
√

2πAσke
− x2

2σ2
x

+ik0x
, (4)
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, (5)

that is
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σ2

. (6)
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2.2 second

e = 0, σ = const., g(k, b) = g(k)e
− b2

2σ2
b , with σb = const., and g(k) =

A e
− (k−k0)2

2σ2
k , leading to
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(
1

σ2 + σ2
b

)−1/2
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or
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(∆px)2 + ~2

σ2+σ2
b

(9)

2.3 third

e = b, σ = Mλ — i.e., now the extended part of the particle is propor-
tional, through the parameter M , to the wavelength λ = 2π/k — such

that the exponential e−
(x−b)2

2σ2 in the integral expression for Θ(x) above

becomes e−
k2(x−b)2

8π2M2 , g(k, b) = g(k)δ(b) and g(k) = A e
− (k−k0)2

2σ2
k , and then
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where β2 = 1/(8π2M2) and

σ2
x =

2σ2
kβ2x2 + 1

σ2
k + 2β2k2

0

. (11)

Representative values for the parameters above are k0 = 10 and M '
100, that is β ' 10−3, for a free particle. However, as we will see below,
they may attain different values for bounded particles. Nevertheless, for
these values, one can take 2σ2

kβ2x2 � 1 [13] and then

Θ(x) =
√

2πA σke
− x2

2σ2
x

+ik0x
(12)
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and also
σ2

x '
1

σ2
k + 2β2k2

0

=
1

σ2
k + k2

0
4π2M2

, (13)

or

(∆x)2 ' ~2

(∆px)2 + ~2

σ2
0

, (14)

where σ0 = 1/(
√

2βk0) = Mλ0 is the width of the central wavelet.

Figure 1: Heisenberg and generalized measurement spaces

It is now obvious, from these more general forms of the uncertainty re-
lations, that the simultaneous precisions of position and momentum mea-
surements are no longer limited by the hyperbola ∆x∆px = ~ (dashed
line in Fig.1 below), but that this product can in fact come closer to the
origin (full line in the same figure), depending on the chosen value for
the various parameters σ such as, in this last case, σ0, the width of the
central wavelet.

3 Minimizing the orbital electron energy

3.1 Feynman’s argument

We briefly review Feynman’s qualitative argument [9], leading to an es-
timate of the Bohr radius from the uncertainty relations. Taking the
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classical expression for the total energy of the orbital electron in a hy-
drogen atom, E = p2/2m − (4πε0)−1e2/r, we consider p ∼ ∆p and
r ∼ ∆r, with ∆p∆r ∼ ~. Then,

E =
~2

2mr2
− 1

4πε0

e2

r
(15)

and the equilibrium condition dE/dr = 0 leads to

req. =
~2

m

4πε0
e2

, (16)

the well known minimum radius aB of 0.53 Å for the hydrogen ground
state |1s〉 orbital, with a binding energy

E1(r = aB) = −1
2

m

~2

(
e2

4πε0

)2

(17)

of −13.6 eV. A similar qualitative reasoning had been previously pre-
sented by D. Bohm [15].

3.2 The new equilibrium condition

We now turn to the computation of an estimate of the possible orbital
radii, taking advantage of the generalized uncertainty relations, obtained
above from the wavelet solutions of the nonlinear Schrödinger equation.
From equation (14) above we get ∆p2 = ~2(1/∆x2 − 1/σ2

0), and still
with ∆p ∼ p, ∆x ∼ r, the total orbital energy acquires an additional
negative term

E(r) =
~2

2m

1
r2
− ~2

2m

1
σ2

0(r)
− 1

4πε0

e2

r
. (18)

Since σ0 represents the width of the central wavelet, it is natural to
suppose that its value will depend on the dimensions of the available
space for the motion of the electron, in the present case of the order of
the radius r of its orbit. Then the equilibrium condition gives us

dE

dr
= − ~2

mr3
+

~2

m

1
σ3

0(r)
dσ0(r)

dr
+

1
4πε0

e2

r2
= 0. (19)

The simplest dependence will be linear, σ0(r) = Mr, where the value
of the parameter M > 1 is to be specified. The condition above for the
smallest, equilibrium radius now gives

req. = aB ×
(

1− 1
M2

)
≤ aB . (20)
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3.3 Checking the more general relation

We note that even if we use the more general relation (11), our results
are not significantly altered. In fact, taking x ∼ σx in the spirit of the
present approach, we obtain

σ2
x =

1
σ2

k(1− 2β2) + 2β2k2
0

(21)

that is,

(∆px)2 =
~2

1− 2β2

(
1

(∆x)2
− 1

σ2
0

)
. (22)

The equilibrium condition now reads

dE
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= 0 = −~2

m
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1
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e2

r
, (23)

and the corresponding radius, with, as before, σ(r) = Mr, becomes

req. = aB ×
1

1− 2β2

(
1− 1

M2

)
≤ aB , (24)

or, with β = 1/(2π
√

2M),

req. = aB ×
M2 − 1

M2 − 0.025
∼ aB ×

(
1− 1

M2

)
≤ aB (25)

once more.

3.4 Resulting energies

Now it is obvious that the radii of one or more possible states with
lower energy, i.e., more tightly bound than the usual ground state, will
depend on the actual numerical values for the parameter M > 1, a
computation that is beyond the scope of the present work. Nevertheless,
we can immediately plug in this result in the expression (18) above for
the orbital electron energy, resulting in

E(req.)=
~2

2m

(
1

r2
eq.

− 1
M2r2

eq.

)
− e2

4πε0

1
req.

=
(

1− 1
M2

)−1

× E1 < E1, (26)

where E1 is, as in (17) above, the traditional ground state binding energy
of −13.6 eV.
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4 Conclusions

The fundamental recourse to the nonlinear Schrödinger equation above
seems to allow for the ocurrence of additional solutions to the Coulomb
problem for a single electron orbiting a proton. The use of integral
wavelet solutions avoids some well known paradoxes of traditional quan-
tum mechanics [13], constituting a promising approach which has been
developed recently, aimed at a realistic description of quantum phe-
nomena by extension of the theory of the double solution, in particular
through the application of wavelet analysis. One of the main outcomes
of this new approach, here applied, is a renewed, generalized form of the
basic position-momentum uncertainty relation which seems to permit,
if applied to an orbiting electron, the recovery of Feynman’s reasoning
criticized by Mills and the existence of energy states below −13.6 eV.
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ondulatoire, Tome I, Paris, Gauthier-Villars, 1971.

[15] David Bohm, Quantum Theory, page 102, Englewood Cliffs, N. J.,
Prentice-Hall, Inc., 1951.
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