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ABSTRACT. Louis de Broglie postulated in his doctor thesis the co-
existence of particles and waves. He assumed that each particle is
accompanied by a physically concrete wave, which is coupled to the
particle via the phase harmony principle. Following Edward Nelson’s
stochastic mechanics approach that each particle is subjected not only
to regular forces derived from external potentials but also to a Brow-
nian motion one can conclude that the space dependence of the wave
is given by the Schrödinger wave function. The new concept has no
consequences on the formalism of quantum mechanics but on the in-
terpretation of the wave function.

RÉSUMÉ. Louis de Broglie a proposé dans sa thèse de doctorat que
corpuscules et ondes coexistent. Il présume que chaque corpuscule
est accompagnée d’une onde, qui est couplée à la corpuscule par le
principe de phase harmonique. En suivant la mécanique stochastique
de Edward Nelson que les corpuscules sont soumis non seulement aux
forces dérivées des potentiels externes mais aussi aux forces fluctuantes
on peut conclure que la dépendance du lieu de l’onde associée au cor-
puscule est identique à la fonction d’onde de Schrödinger. Le nouveau
concept n’a aucun effet au formalisme de la quantum mécanique, mais
à l’interprétation de la fonction d’onde.

1 Introduction

All modern attempts to find a new interpretation of quantum mechanics
such as quantum logics, many worlds theory or consistent histories ap-
proach are subtle philosophical speculations, which try to find solutions
for logical problems of the particle-wave duality [1–6]. Other physicists
want to clarify specific aspects of quantum mechanics. Some of them
study for instance decoherence effects caused by the interaction between
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a quantum system and its environment. This interaction leads to a sup-
pression of interferences [7,8]. All these interpretations and refinements
assume that the probability interpretation of the Schrödinger wave func-
tion is a constitutive element of quantum mechanics. It is not the aim of
the present article to search for a new sophisticated interpretation but
for an explanation of quantum mechanics, which traces back the for-
malism of quantum mechanics to more elementary physical principles.
Surprisingly enough the quest for the roots of the Schrödinger equation
leads to a new, rather simple interpretation of the wave function.

The escort wave concept presented in the following is a modification
of the phase wave concept proposed by Louis de Broglie in his doctor
thesis [9]. In contrast to the original phase wave concept it will be
assumed that all particles are subjected not only to regular forces due
to external potentials but also to fluctuating forces.

The considerations are restricted to spinless particles with non-
vanishing rest mass. Although a realistic wave will presumably be a
higher rank vector field, because it must finally include at least the spin
of particles, it will be assumed that one can reproduce the essential prop-
erties of the wave, especially its time and space dependence, by a complex
valued scalar function. Because the physical nature of such a hypothet-
ical wave is not known the following discussion has the character of a
feasibility study.

2 Fundamental considerations

A realistic explanation of quantum mechanics has to meet at least the
following three requirements:

1. The charge of a particle is concentrated in a small volume of space.
Besides the rest energies of proton and electron the energy of a hydrogen
atom only contains the Coulomb potential. A long-range distribution of
the electron charge according to the probability interpretation of quan-
tum mechanics would lead to a shielding of the nuclear charge.

2. Each particle with non-vanishing rest mass is accompanied by a
wave. In a double slit experiment one finds a characteristic modulation
of the intensity in the detection plane. At the locations with zero in-
tensity no particles are detected although these locations are definitely
reached by particles if only one slit is open. Because these experiments
can be done with such low intensities that only single particles are under
way every particle has to get the information that there exists a second
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slit [10,11]. A possible explanation could be that every particle is accom-
panied by a physically concrete wave, which reflects the configuration of
the diffraction device. The particle is guided by the wave and thus gets
to know that a second slit is open. Thereby it is important to realize
that the rest systems of particle and wave agree. Even if the coherence
length is finite particle and wave will simultaneously arrive behind the
diffraction device.

3. The wave can only get the information about potentials from
the kinematics of the particle. For small displacements from the equi-
librium separation a vibrating diatomic molecule represents one of the
most prominent harmonic oscillators realized in nature, which is nor-
mally handled as a one-particle problem by separating the movement
of the center of mass. In case of a dipolar diatomic molecule electric
and magnetic fields of the molecule have purely dipolar character. On
the other hand the Schrödinger equation describing the rotations and
vibrations of the electronic ground state contains a spherical symmetric
potential [12]. This potential can only be obtained by calculating the
total energy of the molecule as a function of the separation of the nu-
clei. Deviations from the equilibrium distance lead to a restoring force.
In fact, the accelerations and thus also the velocities of the nuclei as a
function of the intermolecular separation are the only physical magni-
tudes, which provide information about the molecular potential used in
the Schrödinger equation. Consequently a wave, whatever its charac-
ter may be, can only obtain the information upon the potential by the
interaction with the particle.

The first two requirements can only be fulfilled if particle and wave
are both concrete physical objects. The coexistence of particle and wave
has already been proposed in 1924 by Louis de Broglie in his doctor
thesis [9]. However, it is important to realize that de Broglie presented
two substantially different models just before and after the discovery of
wave mechanics by Schrödinger in 1926 [13]. The phase wave concept of
the doctor thesis and the guidance wave concept presented in 1927 [14]
have totally different logical implications.

In the phase wave concept the trajectories of particles are the pri-
mary physical quantities. The particles essentially move according to
Newton’s laws. Particle and associated wave are coupled to each other
via the so-called phase harmony principle, which will be explained in
more detail in section 4. The space-time structure of the wave depends
on the kinematics of the particle. As a consequence of the phase har-



146 K. Jung

mony coupling the wave has also influence on the trajectory leading for
example to a quantization of bound states and to a redistribution of
probability densities in the detection plane of scattering experiments.

Contrary to the phase wave model the guidance or pilot wave con-
cept [14] is based on the Schrödinger equation and on the probability
density interpretation of the wave function. The phase coupling princi-
ple, which de Broglie has retrospectively regarded as the most important
achievement of his scientific life [15], has been released. The trajectories,
which are derived from the wave function, have no influence on the struc-
ture of the wave. There is no interrelation between particle and wave and
it is even not clear how particle and wave are coupled to each other and
where the wave comes from. Although the guidance wave concept does
not include the mutual interaction of particle and wave, it has been the
basis of many subsequent research activities. The causal interpretation
of quantum mechanics presented by Bohm [16] has been found to be a
modification of the guidance wave concept. Therefore Bohm mechanics
is often denoted as de Broglie-Bohm theory [17].

Stimulated by Bohm’s new attempt de Broglie began to develop the
double solution model [18–20] in 1952. He comes back to the phase har-
mony principle, which has already been used in the phase wave concept.
Moreover, de Broglie brings in a stochastic element into the particle’s
motion [19]. He assumes that the particle is not only subjected to the
forces derived from external potentials but also to fluctuating forces.
Besides the usual solution ψ(x, t) of the Schrödinger equation, which de-
scribes the probability density of the particle, de Broglie introduces a
singular solution u(x, t). This physically concrete wave has a soliton-like
singularity at the actual location of the particle. Outside of the singu-
larity region the phases of the two waves are identical. Both waves are
coupled to each other by the phase harmony principle. A summary of the
fundamental aspects of the double solution theorie has been given by D.
Fargue [21]. Although de Broglie continuously improves and replenishes
the theory the general logical problem persists. As has been explained
above the information about the potential can only be extracted from
the kinematics of the particle. Therefore the Schrödinger equation has
to be derived from the particle’s trajectories and not vice versa.

Obviously only the phase wave concept affords the opportunity that
the wave gets the information about external potentials from the kine-
matics of the particle. Therefore the phase wave concept will be the
basis of the following considerations.
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3 Is the probability density interpretation an indispensable
element of quantum mechanics?

Soon after the discovery of wave mechanics Max Born [22] formulated
his idea that in case of scattering experiments the wave intensity far
from the scattering zone stands for the probability of finding particles
at this position. This proportionality is one of the best established laws
of physics. Day by day it is confirmed by countless experiments.

However, without any experimental evidence this assignment has
been applied to bound states and for particles in the scattering zone too.
Nobody seems to have realized that this element of the standard inter-
pretation of quantum mechanics has only been tested for the asymptotic
behaviour of waves.

In the phase wave concept a bound particle is assumed to run continu-
ous trajectories between the turning points on both sides of the potential
well. The particle’s local velocity is taken from Newton’s laws. Thus the
probability density will never approch zero between the (classical) turn-
ing points. On the other hand the Schrödinger wave function connected
with an excited state has at least one zero crossing. At such a point
the probability density parabolically approaches zero. Hence, for bound
states the assumption of continuous trajectories is not compatible with
the standard interpretation of quantum mechanics. Before pursuing the
phase wave concept any further it makes sense to find out, whether the
probability density interpretation of the wave function contradicts to
experimental results.

If one tries to determine the probability of finding a particle in a
bound state one performs a scattering experiment. The result of the
experiment is a matrix element, which besides the transition operator
only contains wave functions of the initial and the final state. That
means one does not test the probability density but the amplitudes and
phases of the associated waves. Until now it is not possible to directly
determine the probability density in case of standing waves although two
recently performed experiments with scanning tunnel microscopes and
Bose-Einstein condensates seem to support the probability concept.

Crommie and coworkers [23] have shown that the tunnel current in
quantum corrals exhibits interference structures. But these experiments
do not provide evidence for the probability interpretation because the
tunnel current can be influenced not only by the electron density but
also by the alternating fields of the accompanying wave. Because the
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tunnel current depends exponentially on the exit energy the mean tunnel
current is increased if the wave amplitude is enlarged.

In experiments with magneto-optical traps two correlated Bose-
Einstein condensates are prepared simultaneously [24]. If the trapping
fields are switched off one observes that after a while the atoms are con-
centrated in equidistant plane sheets. However, these regular structures
can only be seen if the particles have covered a large distance in com-
parison with the initial separation of the two Bose-Einstein condensates
in the trap. Therefore the spatial modulation of the probability density
is an asymptotic effect and can be explained analogously to the double
slit experiment when the particular space-time structure of the wave is
taken into account [25].

In fact, the probability density hypothesis has only been tested for
the asymptotics of outgoing waves. The probability density distribution
inside a bound state or in the reaction zone of a scattering process is
not known. Hence, concepts including continuous trajectories do not
contradict to experimental results.

4 The phase wave concept of Louis de Broglie

Louis de Broglie [9] assigns to each particle with non-vanishing rest mass
a periodic phenomenon, in the following called internal oscillation, by
combining Planck’s law E = h̄ω and Einstein’s relation E = mc2. He
postulated that a particle with rest mass m0 and proper frequency

ω0 = m0c
2/h̄ (1)

is accompanied by a wave. Particle and wave are coupled via the phase
harmony principle. That means at the location of the particle the oscil-
lations of particle and wave are in phase.

Because of the phase coupling ω0 is also the frequency of the phase
wave if the particle is at rest. The time dependence of the oscillations
of particle and associated wave can be described in the form eiω0t or
e−iω0t. Here, the minus sign in the exponent is chosen in order to obtain
a positive energy if the energy operator ih̄∂/∂t is applied.

Following the argumentation of de Broglie the phase velocity of the
wave associated with a particle at rest is infinite. That means the wave
is uniform in the laboratory system and can be described in the form

ψ(x, t) = φe−iω0t. (2)
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Figure 1: Movement of a free particle and space-time structure of the
associated wave in a Minkowski diagram. Details are given in the text.

The phase wave of a particle at rest is mathematically equivalent with an
electromagnetic wave in a wave-guide at the cut-off frequency. This wave,
which is usually handled as a complex valued scalar field, has an infinite
phase velocity and a vanishing group velocity as well. In contrast to
guided electromagnetic waves it is not yet possible to attribute concrete
fields to the real and imaginary parts of the phase wave. Despite this
deficiency one will more easily understand the following considerations
with this analogy in mind.

In figure 1 the trajectory of a freely moving particle is shown with the
associated phase wave. Circles in the distance of the internal oscillation
period τ0 = 2π/ω0 subdivide the trajectory. As a consequence of special
relativity the axes of the particle’s rest system (x′, ct′) are tilted with
respect to the axes of the laboratory system (x, ct). The time coordinate
ct as well as the space coordinate x is divided into units of cτE , where
τE = 2π/ωE is the period of the wave in the laboratory frame.

The trajectory coincides with the ct′-axis

ct =
c

v
x. (3)

The lines of constant phase run parallel to the x′-axis

ct =
v

c
x. (4)
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The upper phase line in figure 1 is shifted upwards with respect to the
x′-axis by cτE

ct =
v

c
x+ cτE . (5)

The intersection point of phase line and trajectory has the time coordi-
nate

cτ ′0 =
cτE

1− (v/c)2
. (6)

The internal oscillation period τ0 seems to be dilated in the laboratory
system

τ ′0 = τ0/
√

1− (v/c)2. (7)

Thus the wave frequency ωE is given by

ωE = ω0/
√

1− (v/c)2. (8)

The frequency ratio ωE/ω0 only depends on the velocity v of the
particle. Relation (8) is a direct consequence of special relativity. For
its derivation besides the time dilation effect only the fact has been used
that trajectory and associated phase line have inverse derivatives.

In the laboratory system a phase modulation of the wave is observed.
The wave period, which is commonly called de Broglie wavelength, is
given by the distance between intersection points of two subsequent
phase lines with the x-axis. The middle phase line in figure 1, which
coincides with the x′-axis, crosses the x-axis in the origin. The lower
phase line in the diagram is described by the equation

ct =
v

c
x− cτE . (9)

Thus the de Broglie wavelength λ is given by the space coordinate of the
intersection point of phase line and x-axis

λ = cτE
c

v
= 2π

h̄

mEv
(10)

with mE = h̄ωE/c
2 = m0/

√
1− (v/c)2.

The phase wave

ψ(x, t) = φe−i(ωEt−kx) = φeikxe−iωEt (11)

with the wavenumber
k =

2π
λ

=
mEv

h̄
(12)
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depends on energy and momentum of the particle but not on its position.
(The variable x is an argument of the phase wave and not the position
of the particle at time t.) Thus a multitude of trajectories is in phase
harmony with the wave given above.

In case of particles moving in external potentials de Broglie [9] does
not explicitly follow the phase harmony approach. Instead he compares
Fermat’s principle with the principle of Maupertius. Both principles are
variational methods with the aim to find the path of least action for
rays and particles, respectively. De Broglie comes to the conclusion that
the trajectories of the particles agree with the rays of the associated
phase waves. That means that locally trajectories and phase lines have
reciprocal derivatives or with other words the rest systems of particle
and wave agree with each other.

Because trajectory and phase line have locally the same geometry as
for free particles, relation (8) is also valid in case of particles moving in
potentials. However, at least one of the frequencies ω0 and ωE has to
vary if v is changed. Because the total energy of a particle moving in a
stationary potential without other interactions is constant, the frequency
of the wave ωE = E/h̄ = (m0c

2 +Ekin +Epot)/h̄ has to be constant too.
Thus the frequency ω0, which characterizes the particle outside the scope
of potentials, has to be replaced by a potential dependent frequency ωp.
Hence relation (8) has to be written in the form

ωE = ωp/
√

1− (v/c)2. (13)

It is necessary to realize that the extension of the phase wave principle
to particles in potentials leads to the conclusion that the rest energy of a
particle depends on the potential. De Broglie has perceived this effect too
when he analyzed the motion of particles in space-dependent potentials
[20]. For non-relativistic problems the change of the rest mass has no
decisive consequences, because the rest energy is practically unchanged.
But the effect may become quite relevant in case of high energy collisions.
If particles with opposite charge come very close to each other the rest
mass of the particles may become practically zero.

For non-relativistic velocities the frequency ratio ωp/ωE can be writ-
ten in the form

ωp

ωE
≈ 1− 1

2

(v
c

)2

≈ m0c
2 + Epot

m0c2 + Epot + Ekin
. (14)
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Thus the rest mass of the particle has to change with the potential energy
according to the relation

mp = m0 + Epot/c
2, (15)

i. e. the potential energy reflects the space variation of the particle’s rest
energy. It may be worth while to denote that Einstein has found an
analogous variation of the rest mass in the gravitational field when he
discusses the time dilation in the vicinity of masses [26].

5 Are the trajectories of particles deterministic?

The phase wave concept cannot explain the non-deterministic aspects
of the measurement process. There are serious indications that physi-
cal processes in microphysics can only be fully understood if stochastic
elements are introduced. Several authors suppose that the stochastic
character of quantum theory originates from the contact of particles to
a thermal bath or to fluctuating fields. Details about the achievements
and the failures of stochastic mechanics can be found in the review article
of de la Peña and Cetto [27] and in the references therein.

Bohm [16] and de Broglie [18,19] have already introduced stochastic
elements in the causal theory of quantum mechanics and in the dou-
ble solution model, respectively. Vigier, often in cooperation with other
physicists, published several papers [28–31], where he combined the guid-
ance and even the phase wave concept with a stochastic motion of the
particles. In these articles Vigier mainly discusses diffraction experi-
ments. He shows that even on the assumption that massive particles
follow continuous trajectories the quantum mechanical results can be
reproduced. However, Vigier and his coworkers never tried to derive
the Schrödinger equation from elementary laws of physics. Because he
only looked for scattering states Vigier did not realize that for excited
states the assumption of continuous trajectories is in conflict with the
probability density interpretation of the Schrödinger wave function.

On the other hand Edward Nelson [32] attempted to derive the for-
malism of quantum mechanics from stochastic mechanics of point par-
ticles without recourse to the existence of waves. Only after having
determined the density distribution of the particles he deduced a wave
amplitude thereof. Nelson assumed that any particle constantly under-
goes a Brownian motion with a diffusion coefficient inversely proportional
to its rest mass m0. The influence of external forces F is expressed by
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Newton’s law F = m0a , where a is the mean acceleration of the parti-
cle. In order to preserve Galilean covariance Nelson supposes that there
is no friction. On the assumption that in case of bound states the mean
velocity is zero everywhere Nelson succeeded to derive the Schrödinger
equation. For particles in the ground state the assumption on the van-
ishing mean velocity seems to be adequate. For excited states it seems
to be more appropriate to assume that the velocity distribution splits off
into two separate distributions with opposite mean velocities.

An indication for conceptual problems of Nelson’s approach in case
of excited states could be that the so-called osmotic velocity becomes
infinite in the nodes of the radial probability density distribution. Nel-
son argues that this singularity may be tolerated because the associated
particles will never reach a nodal surface. This implication is not in
agreement with the assumption of de Broglie that particles essentially
move on classical trajectories.

Because the probability density distribution of the ground state can-
not be described by the deterministic phase wave concept it makes sense
to combine the phase wave concept with the stochastic mechanics of Nel-
son. This conclusion has also been drawn by de Broglie when he thor-
oughly studied the consequences of the phase harmony principle [19].
From stochastic mechanics one can calculate the mean velocity and the
probability density distribution of particles in the ground state. With
the phase wave concept one can determine the space-time structure of
the wave. In order to avoid confusion with the guidance wave concept
the combination of phase wave model and stochastic mechanics will be
called escort wave concept. The notion escort wave encloses the two rel-
evant aspects of the concept namely that the wave is accompanying and
guiding the particle.

6 The escort wave associated with a particle in a potential
well

The following considerations are restricted to one-dimensional problems.
For linear motions it is much easier to comprehend the consequences of
the phase harmony principle. The generalization to movements in three
dimensions causes no principally new problems.

If a particle is free the associated travelling wave has a constant
amplitude. The character of the wave changes if the particle is moving
in a space dependent potential. Because particle and associated wave
have equal momentum, flux conservation enforces a partial reflection of
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the wave at potential changes. The interference of the travelling wave
with the reflected wave leads to an intensity modulation of the compound
wave.

If a particle is bound in a potential well particle and associated wave
are totally reflected on both sides of the well. If the wall has a finite
height the wave will exponentially fall off behind the wall. In a smoothly
varying potential a particle subjected to a Brownian motion is not always
reflected just at the classical turning points. Averaged over many cycles
of the trajectory the probability density of the particle is decreasing to
zero beyond the classical turning points. The wave intensity is similarly
decreasing. As for light in case of total reflection the escort wave is
fading out if it can no longer propagate.

The continuity conditions of the wave on both sides of the poten-
tial well can only be simultaneously fulfilled for discrete energies. The
phase difference of the two counterpropagating waves at a given location
depends on the overall shape of the potential. If x is a location where
the two counterpropagating waves have the same time dependence the
travelling waves can be written in the form

ψ±(x, t) = φ(x)e−i(ωEt±ϕ(x−x))/2 (16)

with ϕ(x − x) being the phase difference of the wave at the locations
x and x. The quotient 2 in the formula is only chosen for convenience.
The phase at location x can be assumed to be zero because a constant
phase can always be incorporated in the time dependence term leading
to an irrelevant time shift. Because the velocities of the particle on its
way back and forth are opposite to each other the complex valued ampli-
tudes φ(x)e∓iϕ(x−x)/2 have the same modulus φ(x)/2 and are rotating
oppositely to each other in the complex plane as a function of space.
Thus the sum of the two amplitudes is real and is modulated according
to φ(x) cosϕ(x− x).

The effect of the diluted partial reflections on the phase function
ϕ(x − x) and on the amplitude factor φ(x) can only be properly taken
into account by means of differential equations. Therefore it will be
necessary to find the differential equation which governs the escort wave.
However, for smoothly varying potentials, that means for the majority
of physically relevant potentials, rather good results can be obtained
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within the semi-classical approximation [33], where the phase function

ϕclassic(x− x) =

x∫
x

mv(x′)
h̄

dx′ (17)

and the amplitude factor

φclassic(x) = s
√
c/ |v(x)| (18)

are derived from the particle’s classical velocity v(x). The proportion-
ality factor s is specified by the normalization process. Only the deter-
mination of the escort wave close to the classical turning points needs
special atttention because at these points the classical probability density
has a singularity. Whereas the WKB-approximation uses in the region
of the turning points the Airy function, here the singularity is removed
by convoluting the classical amplitude factor φclassic(x) with a Gaussian
distribution where the standard deviation σ of the Gaussian distribu-
tion is used as a free parameter. Thus the classical probability density
φ2

classic(x) is replaced by a more realistic probability density φ2
approx(x).

The convolution procedure simulates the effect of the Brownian motion
on the probability density.

Because it is the primary aim of the present study to demonstrate
the consequences of the phase harmony principle it will not be tried to
further improve the quality of the approximation. The neglect of higher
order effects does not invalidate the conclusion drawn in this article.

It is important to realize that the particle is only in phase harmony
with one of the travelling waves, namely with the wave, for which tra-
jectory and phase lines have inverse slopes. In this case the frequencies
of wave and internal oscillation agree in the rest system of the particle.
However, the frequency of the wave travelling in opposite direction is in
the particle’s rest system by a factor

G =
1 + (v/c)2

1− (v/c)2
≈ 1 + 2

(v
c

)2

(19)

larger than the internal frequency of the particle. Due to this frequency
shift, which is caused by a special kind of relativistic Doppler effect,
the particle is not in phase harmony with the counterpropagating wave.
The frequency selectivity of the particle-wave interaction is the major
difference between guidance and escort wave concept. In contrast to the
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guidance wave theory a bound particle essentially runs classical trajec-
tories and passes the nodes of the wave function because the travelling
waves show no peculiarities at the nodes. The nodes are just a prop-
erty of the standing wave and have no counterparts in the probability
density of the particle. At each location the momentums of the two
counterpropagating waves compensate to zero just like the momentums
of the particle on its way back and forth.

In the following the interplay of particle and wave will be illustrated
on the example of the third excited state of the linear harmonic oscilla-
tor. Stochastic mechanics is only taken into account by convoluting the
classical wave amplitude with a Gaussian distribution.

The phase at the left turning point ϕ(−x0) is chosen to be zero.
Then the phases of the two travelling waves at the origin are ±3π/2
leading to a destructive interference. The phases at the right turning
point x0 are +3π and −3π, respectively. Together the two waves form
the antisymmetric standing wave

ψ(x, t) = −φ(x) sinϕ(x)e−iωEt. (20)

Figure 2 shows the phase lines of the two components of the es-
cort wave for a particle moving in the harmonic oscillator potential
V (x) = m0ω

2
vibx

2/2 with ωE/ωvib = 20. The solid lines connect
sites with ψ±(x, t) = φ(x)/2. The dashed lines join all points with
ψ±(x, t) = −φ(x)/2. The positions of the interference maximums
(nodes) are indicated in the figure by solid (dashed) vertical lines.

In the diagram three trajectories subdivided by circles, squares and
diamonds in the distance of the internal oscillation period are displayed.
Particle and associated travelling wave are in phase harmony. They
oscillate synchronously and have locally the same rest system as can be
concluded from the fact that at each intersection point trajectory and
associated phase line have inverse derivatives. One can easily realize
that the particle is not in phase harmony with the counterpropagating
wave. For a given energy an infinite number of trajectories is in phase
harmony with the escort wave because from each point of the base line
two trajectories go out in opposite directions. Thus the escort wave
associated with a quantum state stands for a multitude of trajectories.

Figure 3 shows the space dependence of the approximated escort wave
φapprox(x) sinϕclassic(x) (dashed curve) together with the correspond-
ing Schrödinger wave function ψ(x) =

√
3π−1/4(2x3 − 3x)e−x2/2 (solid
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Figure 2: Trajectories of a particle and the space-time structure of the
two counterpropagating waves associated with the back and forth motion
of a particle in the n = 3 state of a harmonic oscillator. Both axes of
the Minkowski-diagram are divided into units of cτE . Details are given
in the text.

curve) with x given in units of c/
√
ω0ωvib ≈ 1.3 cτE . Both functions

are independently normalized. The standard deviation of the Gaussian
distribution is chosen to be σ = 0.5 c/

√
ω0ωvib ≈ 0.65 cτE .

Both functions agree rather well not only for n = 3 but also for lower
and higher vibration states. (For an optimal fit the standard deviation
of the Gaussian distribution is slowly decreasing with increasing quan-



158 K. Jung

Figure 3: Comparison of the approximated space dependence of the es-
cort wave φapprox(x) sinϕclassic(x) (dashed curve) with the Schrödinger
wave function ψ(x) (solid curve) for the n = 3 state of the harmonic os-
cillator. The dashed vertical lines indicate the classical turning points.

tum number.) The agreement is also quite good for the movement of
a particle in a two- or three-dimensional oscillator potential including
trajectories with non-zero angular momentum. In the case of the three
dimensional oscillator the radial and the angular variables can be sepa-
rated by assuming that the wave function is a product of three functions
depending on the radius, the polar and the azimuthal angle. For the
wave components describing the movement of a particle with respect to
the radius and to the polar angle one obtains standing waves. Thereby
the radial standing wave is a superposition of an ingoing and an out-
going spherical wave. For states with non-vanishing magnetic quantum
number there is a preferential orientation of the rotation with respect to
the azimuthal angle. Therefore the associated wave is a travelling wave
and its intensity does not depend on the azimuthal angle.

Although stochastic mechanics and partial reflections are not prop-
erly taken into account the space dependence of the escort wave and the
Schrödinger wave function agree quite well suggesting that both func-
tions are de facto identical. On the assumption that the equivalence of
the space dependence of the escort wave and the wave function can be
rigorously proven, the escort wave ψ(x, t) = ψ(x)e−iωEt is a solution of
the time-dependent Schrödinger equation. However, an additional rest
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energy term m0c
2ψ(x, t) has to be introduced because the frequency of

the wave is ωE = ω0 +(Ekin +Epot)/h̄. This rest energy term is already
well known from the relativistic Dirac and Klein-Gordon equations. Ap-
plying the energy operator ih̄∂/∂t of the time-dependent Schrödinger
equation to the time dependence term e−iωEt one ends up with the usual
time-independent Schrödinger equation(
− h̄2

2m0

d2

dx2
+V (x)

)
ψ(x) = h̄(ωE−ω0)ψ(x) = (Ekin +Epot)ψ(x) (21)

with the space dependence of the escort wave ψ(x).
After all, the Schrödinger equation can still be the starting point

of an axiomatic approach to quantum theory. All results based on the
Hilbert space calculus are unchanged. The wave function is no longer a
pure mathematical tool but denotes the space dependence of a concrete
physical wave. However, the probability density interpretation of the
wave function has to be released.

7 Diverse aspects of the escort wave concept

In the beginning of the last century it has been proposed that electrons
are orbiting the nucleus. But this atomic model has been rejected be-
cause accelerated charged particles emit electromagnetic waves. Thus it
has been concluded that such atoms cannot be stable. However, with
respect to the (non-classical) escort wave model one could argue that
atoms are stable if the electrons are in phase harmony with the asso-
ciated wave. The radiation of accelerated particles is the only known
mechanism suited to compensate the energy, which is absorbed by the
particle from the background field [27]. This argument implies that the
escort wave of electrons, which are only subjected to electromagnetic
forces, must have the character of virtual photons. In case of ground
states electron and virtual photons are in equilibrium. In a limited sense
this statement is even true for excited states.

Traditionally quantum mechanics does not provide any information
about trajectories. The escort wave concept assumes that particles move
on continuous trajectories. It is not possible to find out which trajec-
tory the particle moves on at a given moment because the escort wave
associated with a quantum state is consistent with an infinite number of
trajectories. Position as well as momentum of a particle are only known
within the limits prescribed by the uncertainty relation. A single mea-
surement process does not provide full information about the quantum
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state because the particle is accidentally found in one of the possible tra-
jectories. Only by repeating the measurement process very often on the
same initial conditions the structure of the wave can be fully determined.

If a particle is moving in free space the existence of the escort wave
has no influence on its trajectory. However, in case of diffraction all ele-
mentary waves have to be summed up according to Huygens’ principle.
At the actual position of the particle the resultant wave may not be in
phase with the internal oscillation. Although the frequency of the exter-
nal wave agrees with that of the internal oscillation both oscillations are
usually not in phase. The phase harmony principle induces slight mod-
ifications of trajectory and associated wave leading to a harmonization
of the phases. The moderate adjustment of the trajectory and of the es-
cort wave may be described by the appearance of non-classical quantum
forces.

In the double slit experiment the Brownian motion prevents to pre-
dict through which slit a single particle has passed. The escort wave
with the characteristic de Broglie wavelength passes through both slits.
The two partial waves interfere behind the diffraction device and form
asymptotically the usual interference pattern. In virtue of the quantum
forces the probability density distribution of the particle asymptotically
approaches the wave intensity.

A particle stays in the quantum state as long as it is in phase har-
mony with the escort wave. If the particle leaves the stability regime
accidentally or by a collision with another particle it undergoes a spon-
taneous or a stimulated transition. Hereafter the particle is subjected
to a frequency shifted wave and emits a photon with the difference fre-
quency. The original escort wave, which can no longer be a guide for the
particle, seems to have been collapsed. It is no longer stabilized by the
particle and disappears in the ocean of fluctuating waves. If the photon
has been emitted the particle initializes the formation of a new escort
wave by adjusting the phase of its internal oscillation to external waves,
whose frequencies and rest systems nearly agree with the frequency and
the rest system of the particle.

A pair of conjugated variables cannot be exactly determined at the
same time because the associated operators do not commute and thus the
physical system cannot be in a common eigenstate. In order to determine
the first variable a particle has to transfer a finite amount of energy and
momentum to the detector. By the induced quantum jump the original
ensemble of particle and escort wave is destroyed. If the same particle is
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detected for a second time in order to determine the conjugated variable
the associated escort wave is no longer identical with the original escort
wave. By the adjustment of the particle to the new escort wave the value
of the first variable is appreciably changed.

Because of limited space the peculiarities of many-particle systems
cannot be discussed in such an article. But a few remarks are necessary
in order to indicate how the model might be extended to many-particles
systems. If fermionic particles stay in the same region of space their as-
sociated waves differ with respect to their frequencies or with respect to
internal degrees of freedom (e. g. spin). If the particles are not interact-
ing the escort wave of the compound state is a product of single-particle
waves. This is no longer true if the particles are interacting. In this case
the trajectories of the particles are correlated and thus the associated
waves are correlated too. As a consequence a system of N particles can
no longer be described by a product of N single-particle waves but by
waves depending on 3N coordinates of the configuration space. In case
of bosons the number of coordinates of the escort wave may be smaller
because bosons are not subjected to the Pauli principle.

Thoroughly contemplating the puzzling effects of particle-wave-
duality one will notice that the probability density interpretation is the
root of many logical problems invoked by quantum mechanics. If the
wave function is associated with a concrete physical wave guiding the
particle one can easily understand that the probability density of an
ensemble of equally prepared particles form a wave-like angular distri-
bution in the detection plane of diffraction experiments. The reduction
or collapse of the wave function after a measuring process is no longer
a logical problem because the particle is always well localized. The de-
tection process only leads to an interruption of the particle’s coupling to
the original escort wave and to the reconstruction of a new escort wave.

Even the questions about reality and locality raised by Einstein,
Podolski and Rosen [34] must not be a insurmountable logical obsta-
cle if each particle is accompanied by a concrete wave. The fact, that
the strong spin correlations of particle pairs are correctly described by
quantum theory, shows, that the information about the spin orientation
can in principle be encoded in a wave. It is only necessary that the
output of the detector is proportional to the intensity of the associated
wave component. This property is usual for detectors used in experi-
ments with polarized light. Only if one assumes that the properties are
just hidden as concrete numbers, which can be compiled in a list fully
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characterizing the particle, the results are in conflict with the experi-
mental results [35–37].

I thank many of my colleagues for their valuable suggestions for im-
provements.
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