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ABSTRACT. We solve the Dirac equation for a free electron in a man-
ner similar to Toyoki Koga, but using the geometric theory of Clifford
algebras which was initiated by David Hestenes. Our solution exhibits
a spinning field, among other things.
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1 Introduction

The Dirac equation in geometric algebra, as given by Hestenes (see [3])
is (for a free electron)

∇ψIσ3 = mψγ0. (1)

Here ψ is an even multivector field (defined below) in the Clifford algebra
of a 4 dimensional real (Minkowski) spacetime, spanned by orthogonal
unit vectors γ0, γ1, γ2, γ3 parallel to the coordinate axes. We take γ0 to
be timelike with γ2

0 = 1 and γi spacelike, with square −1, for i = 1, 2, 3.
The spacetime algebra (STA) is the real Clifford algebra generated

by γµ (µ = 0, 1, 2, 3), where for µ 6= ν,

γµγν + γνγµ = ηµν .

where ηµν is the Lorentz metric. The gradient ∇ψ is defined to be γµ
∂ψ

∂xµ

(the Einstein summation convention applies). A vector space basis for
STA is given by

{1} ∪ {γµ|µ = 0, 1, 2, 3} ∪ {γµγν |µ < ν} ∪ {Iγµ|µ = 0, 1, 2, 3} ∪ {I}
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where I = γ0γ1γ2γ3 is called the pseudoscalar. The elements γµγν are
bivectors and Iγµ are trivectors. The members of STA are called multi-
vectors. In the basis above, the vectors and trivectors are odd and the
rest are even. The even multivectors form a subalgebra of STA called
the even subalgebra. It is generated by σ1, σ2, σ3 where σi = γiγ0 satisfy
σ2

i = 1 and σiσj + σjσi = 0. Note that I = σ1σ2σ3, Iσ3 = σ1σ2 = γ2γ1

and so on.
STA is called the geometric algebra of (Minkowski) spacetime while

its even subalgebra is the geometric algebra of (3-dimensional Euclidean)
space. We assume that the latter algebra describes the world as seen by
an observer following a timelike path with unit speed, located at the
origin of (3 dimensional) space, and σ1, σ2, σ3 stand for unit vectors
along the coordinate axes of 3 dimensional space.

We now describe the relation between the Dirac equation in its tra-
ditional matrix form and the the version given by Hestenes. Details are
in [1] (and [3]).

Firstly, there is an isomorphism of real vector spaces between 2-
dimensional complex spinor space and the 4-dimensional real vector
space spanned by 1, Iσ1, Iσ2, Iσ3:

|ψ〉 =
(
a0 + ia3

−a2 + ia1

)
↔ ψ = a0 + a1Iσ1 + a2Iσ2 + a3Iσ3.

This extends to an isomorphism between complex 4-spinor space and the
even subalgebra of STA:

|ψ〉 =
(
|ϕ〉
|η〉

)
↔ ψ = ϕ+ ησ3.

The Dirac equation in its standard form is

iγ̂µ ∂

∂xµ
|ψ〉 = m|ψ〉 (2)

where γ̂µ are the Dirac matrices, satisfying

(γ̂0)2 = 1, (γ̂i)2 = −1 (i = 1, 2, 3), γ̂µγ̂ν + γ̂ν γ̂µ = 0 (µ 6= ν).

Note that γ̂µ = ηµν γ̂
µ. The action of the various operators is translated

as follows:

γ̂µ|ψ〉 ↔ γµψγ0,

i|ψ〉 ↔ ψIσ3.

The reader can easily verify the correspondence between (1) and (2).
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2 The solution to the Dirac equation

The Klein-Gordon equation is ∇2ϕ+m2ϕ = 0 where ϕ is a multivector
field. The Laplacian here is the dot product of the gradient ∇ defined
earlier with itself. It is well-known that from a solution of this equation
we can get a solution of the Dirac equation.

In geometric algebra this works out as follows: if ∇2ϕ + m2ϕ = 0
then ψ = ∇ϕIσ3 +mϕγ0 is a solution of the Dirac equation in STA. If
ϕ is odd then ψ is even and vice versa ([2], Section 10.1).

Koga ([5], [6], [7], [8]) worked out a solution to the Dirac equation,
starting with a solution to the Klein-Gordon equation, following an idea
of de Broglie from the 1920s. He started with

ϕ = aeiS (3)

where a and S are real scalar fields in spacetime. (For convenience, we
choose units such that the Planck constant and the speed of light have
the value 1.)

For a free electron, expressions can be written out for a and S:

S = −Et+ p · r,
a = exp(−κ|r′|)/|r′|

where r is the position of the centre of the electron (in 3-space),

r′ = (r− ut)/(1− u2)1/2

where u is the velocity of the electron (in our inertial frame), u = |u|,
κ is a positive constant, p = uE is the momentum and E2 = (m2 −
κ2)/(1− u2) where E is the energy.

We now consider a frame in which the electron is at rest: u = 0,
p = 0, |r′| = |r|. We take the centre of the electron as the origin.

We write φ = aeSIσ3 for a solution to the Klein-Gordon equation.
We can do this because (Iσ3)2 = −1 in STA. However, unlike de Broglie
and Koga, by replacing i =

√
−1 with Iσ3 we are giving a special role

to the x3-axis, as we will see soon.
Since we want ψ to be an even multivector, we make our Klein-

Gordon field odd by multiplying by γ0. Thus

ψ = (∇ϕ)Iσ3 +mϕγ0 where ϕ = aeSIσ3γ0.
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We now have S = −Et and

a = exp(−κr)/r (4)

where r = |r|, r = x1γ1 + x2γ2 + x3γ3.
In order to get a formula for ψ, it suffices to observe that ∇a = aR

where R = r
(

1
r2

+
κ

r

)
and so

ψ = Rϕγ0Iσ3 + (E +m)ϕγ0. (5)

3 Interpretation of the solution

We now turn to the geometrical (kinematical) meaning of the expression
we have obtained for the multivector field ψ.

For the physical interpretation of ψ, its relation to the Maxwell field
etc., see Koga ([5]–[8]).

It should be emphasised that this is neither conventional quantum
mechanics nor the de Broglie-Bohm theory ([4]).

Following Koga, we interpret ϕ and ψ above as indicating that the
electron is a localised field in spacetime, rather than a sizeless particle.
The real field a = exp(−κr)/r has a singularity at r = 0. The physical
meaning of this seems to be that that our expressions are approximate
descriptions of reality; they are reasonably accurate at points that are
not too close to the singular point.

The term (E +m)ϕγ0 is nothing but a Klein-Gordon field (which is

now an even multivector as desired). The other term is a
(

1
r2

+
κ

r

)
rγ0Iσ3.

Here a
(

1
r2

+
κ

r

)
is a spherically symmetric scalar field. So the first term

on the right hand side of (5) is

a

(
1
r2

+
κ

r

)
reSIσ3γ0Iσ3.

We note that γ0 commutes with eSIσ3 = cosS + (sinS)Iσ3 and

rγ0 = (x1γ1 + x2γ2 + x3γ3)γ0

= x1σ1 + x2σ2 + x3σ3.
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We will come to the last factor Iσ3 later. We are now concerned with

(x1σ1+x2σ2+x3σ3)eSIσ3 = (x1σ1+x2σ2)eSIσ3 +x3σ3+x3σ3(eSIσ3−1).
(6)

The first two of the three terms on the right hand side give

e−(S/2)Iσ3(x1σ1 + x2σ2 + x3σ3)e(S/2)Iσ3 (7)

which is the result of rotating the vector x1σ1 + x2σ2 + x3σ3 through
the angle S in the σ1σ2 plane (or, in other words, about the σ3 axis),
where S = −Et (see the discussion of rotations in [3], Sections 2.7 and
4.2). This stands for a field rotating with a constant angular velocity.

The factor Iσ3 = exp(π/2Iσ3) simply rotates the above expression
(6) through a further angle of π/2.

We now consider the expression x3σ3(e(S/2)Iσ3−1)Iσ3. This is a field
whose value at each point (x1, x2, x3) is independent of x1 and x2. It is
proportional to x3 and thus represents an oscillatory motion that gets
larger with |x3|. We conclude that this motion is similar or analogous to
what Schrödinger called Zitterbewegung, which is still controversial in
the sense that there is no agreement on whether it is related to electron
spin or not. In our context, of course, it is multiplied by the scalar factor

a

(
1
r2

+
κ

r

)
and hence is a localised field which vanishes at infinity.

4 Conclusion

Thus, we conclude that the solution ψ of the Dirac equation is the sum
of three fields:

1. a field spinning about the x3-axis (which, because of our choices,
turns out to be the axis of symmetry of the electron),

2. an oscillatory motion similar to Zitterbewegung, and

3. a solution to the Klein-Gordon equation.
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