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ABSTRACT. We propose an unified model of the electroweak and
strong interactions that is based on underlying SU(3) and SU(2)
symmetries of the fundamental interactions. Breakdown of SU(2)
and parity symmetries is acomplished by means of a proper choice of
bosonic field variables. In this paper we describe fermionic interactions.
This framework allows us to understand the differences and common
features of the interactions of leptons and quarks based on the symme-
tries of the Lagrangian. This model gives an account of the observed
pattern of electric charges of fermions.

The model of S. Weinberg, S. Glashow and A. Salam(1,2) is the most
successful theory in providing the unification of the electromagnetic and
weak interactions. The underlying symmetries of the electroweak inter-
actions, within the GWS theory, are the SU(2)×U(1) gauge symmetries.
Differences in the electric charges of fermions and in the masses of the
particles indicate that this symmetry is broken.

Besides breaking internal symmetries, the weak interactions break
also discrete symmetries. Parity violation is taken into account, in the
Standard Model, by assigning chiral components of fermionic fields to
different representations of the SU(2) group.

As far as the interaction of quarks is concerned, the idea of treat-
ing chiral components of a spinor field as different dynamical variables
(under SU(2) transformations) leads, however, to a not entirely satis-
factory situation from the symmetry point of view. This is so because
in the theory of the strong interactions (QCD), the dynamical variables
are the quark spinor fields themselves. The spinor fields are written,
however, as a sum over two variables having, in the GWS theory, differ-
ent transformation properties under the SU(2) group. Since the strong
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interactions do not violate SU(2) symmetry the theory should, some-
how, incorporate this feature. That is, the Lagrangian of the strong
interactions should be also invariant under SU(2) symmetry.

To treat chiral components as independent field variables requires
two different interactions (and coupling constants). By using the cou-
pling constants g and g′ and the mixings of fields, one gets the charges
of leptons. In order to take into account differences in the interactions of
quarks and leptons one makes use of couplings that depend on quantum
numbers assigned to fermions (the weak hypercharges). Since we need
two different types of hypercharges (hypercharges left, for left-handed
components, and hypercharges right), one increases the number of pa-
rameters of the model.

In spite of the great successes of theories based on the
SU(3) × SU(2) × U(1) gauge group(1−3), there are several aspects of
the physics of elementary particles that call for another formulation of
the Standard Model. We would like to mention, among others, the
problem of neutrino masses(4), the problem of generation mixing(5), the
possible existence of Majorana neutrinos(6) and the still missing Higgs
particles(7,8).

In this paper we propose a different approach to the description of
the strong, electromagnetic and weak interactions. In our approach one
uses only one type of fermionic variables. Fermions belong to doublet
representations of SU(2). No use is made of singlet representations.
This ensures that QCD is also SU(2) symmetric. We shall see that
one can make this choice of variables by changing also the field variables
describing the intermediate bosons. For this reason we shall employ, in
our framework, a set of unusual variables in the description of bosons
and fermions.

The use of new variables has important consequences. As we shall
see, this allows us to introduce a new formulation of an unified theory
of the three interactions. In this formulation we do not treat the strong
and electroweak interactions as distinctive interactions from the very
beginning. We start by writing the most general Lagrangian that is
invariant under SU(3) and SU(2) symmetries. As a result, one needs
only two interactions. One interaction for each symmetry. Since quarks
have electroweak and strong interactions, this aspect of unification is
relevant when one is dealing with quarks.

The reduction in the number or interactions implies a small numbers
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of fundamental constants. As will be shown here, one needs only one
parameter, besides the electroweak coupling constant, for the description
of the electroweak fermionic interactions. The electric charges of leptons
and quarks (and other coupling constants) will be expressed in terms of
this parameter.

Since, in our approach, there is no assignment of chiral components of
fermionic fields to different representations of SU(2), one needs to find
a different way to break parity. The use of a rank 2 spinor field allows
us to do so. We break parity through a proper choice of the components
of this rank 2 spinor field.

Another consequence of using rank 2 spinor fields is that we cannot
introduce, for these variables, the concept of gauge invariance. However,
we can formulate the theory of the three interactions by using global
internal symmetries, besides Lorentz and discrete (C,P ,T and CPT )
symmetries.

In this paper we shall define the variables, introduce new mechanisms
for breakdown of SU(2) and parity symmetries, and propose an unified
theory. As a specific application of our approach we shall deal with the
understanding of differences in the interactions of leptons and quarks
and the problem of charge assignment to fermions.

In the description of fermions we use, for each family F , two sets of
fields. These fields will be denoted by `

(F )
i, a1

and q
(F )
i, k, a1

(the F -family
doublet fields associated to leptons and quarks). We use no singlet fields
for fermions. In our notation the index i is an SU(2) index running
from 1 to 2; k is an SU(3) index, so that k runs from 1 to 3 and
a1 is a spinor index running from 1 to 4. We define also fermionic

variables L(F ) and Q(F ) whose components are written in terms of the
components of ` (F )

i, a1
and q

(F )
i, k, a1

as:
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(1)

These field variables are useful when one is dealing with left-handed
neutrinos.

The intermediate bosons will be described by two rank 2 spinor fields:
ψ

(2)
a1a2, i1i2

(for SU(2) symmetry) and ψ
(3)
a1a2, k1k2

(for SU(3) symme-
try). The use of rank 2 spinor fields introduces, however, a large number
of field components (in the spinor indices). This requires that, in deal-
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ing with spinor fields, we treat the chiral components of these fields as
independent dynamical variables of the theory(9−11).

By definition, the bosonic fields transform as direct products of fun-
damental representations of the groups. By using a basis of orthogonal
matrices we can decompose any such a product as a sum over fields
transforming as irreducible representations. For the Lorentz group, the
basis is formed by a set of 16 γ-matrices(4). By using this basis we de-
compose a rank 2 spinor field in terms of a sum over rank 0, rank 1 and
rank 2 tensor fields. The chiral components are expressed in terms of
these tensors as(10):

ψ
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RR a1a2, i1i2

=

„
(1 + γ5)

2
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«
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+

„
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2
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In our approach all tensor fields are independent variables. The equa-
tions of motion satisfied by the chiral components lead to the usual
relations between Fµν and derivatives of vector fields and, for internal
symmetries, the fields themselves(11,12). In this sense, gauge invariance
can be derived(10,11). The scalar fields give rise to gauge fixing terms in
the Lagrangian(10).

One decomposes the fields GV
µ and GA

µ in terms of singlet fields (a(0)
µ

and a
(0)
5µ ) and triplet fields (a(`)

µ and a
(`)
5µ ) by using the basis formed by

the Pauli matrices σ(`) (` = 1, 2, 3) and the unit matrix as:(
GV

µ

)
i1i2

= − 1
2a

(0)
µ δi1i2 + a

(`)
µ σ

(`)
i1i2(

GA
µ

)
i1i2

= − 1
2a

(0)
5µ δi1i2 + a

(`)
5µ σ

(`)
i1i2

(3)

Since the strong interactions do not break parity, we shall use, in
the case of SU(3) symmetry, only a vector field matrix G

(3)
µ k1k2

. The
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analogue of decomposition (3) for the SU(3) symmetry group is:

(
G3

µ

)
k1k2

=
1
3
A(0)

µ δk1k2 +
8∑

j=1

λ
(j)
k1k2

A(j)
µ . (4)

We call the attention to the fact that the trace of G(3)
µ k1k2

is, by defini-

tion, a singlet field. The 1/3 factor in (4) ensures that A
(0)
µ is such a

singlet field.
The most general, renormalizable and invariant Lagrangian ( invari-

ant under both SU(3) and SU(2) group transformations) describing
the interaction of fermions with the intermediate bosons is:

Lfermions
I =g L

(F )
(
ψ

(2)
RL + ψ

(2)
LR

) (
C−1

)
L(F )

+g Q
(F )
(
ψ
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(2)
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) (
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)
Q(F )

+ g3 q
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(
ψ

(3)
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(3)
LR

) (
C−1

)
q(F ), (5)

where g is the electroweak SU(2) coupling constant and g3 is the
SU(3) interaction coupling constant.

From (5) it follows that there are only two fundamental fermionic
interactions. The electromagnetic and weak interactions of leptons will
emerge from Lagrangian (5) after the breakdown of symmetries. Differ-
ences in the interactions of leptons and quarks will be described by using
the last term of the rigth hand side of (5).

By using expression (2) for the ψRL and ψLR fields, and by using
decompositions (3) and (4), we write the fermionic Lagrangian defined
in (5) as:

Lfermions
I =g L

(F )
γµ
(
GV

µ − γ5GA
µ

)
L(F ) + g Q

(F )
γµ
(
GV

µ − γ5GA
µ

)
Q(F )

+g3 q (F ) γµ

(
A

(0)
µ

3
+A(`)

µ λ`

)
q(F ). (6)

By writting the Lagrangian interaction (6) in terms of the fields L(F )

and Q(F ) , we break parity. This is due to the fact that, from expression
(1), we are coupling chiral components of some fermionic fields.



234 G.C. Marques, D. Spehler

Depending on some fermions being left-handed or Dirac particles the
Lagrangian (6) will assume different forms. This allows us to predict
a difference in the interactions of quarks and leptons that is associated
to the handedness of the neutrinos. In fact, if Gµ is the 2 × 2 matrix
associated to the interaction of left-handed neutrinos, then the matrix
associated to Dirac particles is a Gµ matrix such that the following
identity holds true:

Q
(F )

γµGµQ
(F ) = q (F ) γµ Gµ q

(F ) . (7)

From (1) and (7), it follows that the matrix Gµ can be written as:

Gµ = P Gµ P . (8)

where the matrix Pi1i2, a1a2 in (8) is , from (1), given by:

Pi1i2, a1a2 =

1
2
(
1− γ5

)
a1a2

0

0 1a1a2

 . (9)

One can use identity (7) in order to write the Lagrangian exclusively
in terms of the `

(F )
i, a1

and q(F ) fields.

Since the A
(0)
µ field is necessarily a singlet under both (SU(2) and

SU(3) ) transformations, we write

A(0)
µ = a(0)

µ + a
(0)
5µ . (10)

The above identity implies, from (6), that the electromagnetic and weak
interactions of quarks is a result of two contributions. One contribution
comes from the SU(3) symmetric term whereas the other contribution
comes from the broken SU(2) symmetry term of the interaction La-
grangian .

Considering the identity of fields given by (10), our unified model
can be made simpler and more predictive by noting that at the classical
(zero loop) level one can write the following simple relation:

g3 = 2 g. (11)
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This relation do not holds true, however, when one takes into account
radiative corrections since, in this case, the coupling constants become
energy scale dependent. The way the running coupling constants varies
with the energy scale depends on how the various fields are coupled.
Classical coupling constants (like the fine structure constant of QED)
correspond to low energy limits of running coupling constants. In order
to check if expression (11) is valid at the tree level we have to check if
such a result holds true for the running couplings at some low energy
scale. The experimental value(13) for g is 0.6529. The running coupling
constant of QCD at theMZ mass scale is(13) 1.22. This implies g

g3(MZ) =
0.535. From this result it follows that, due to the assymptotic freedom
property of QCD, the tree level relation (11) is indeed valid at a low
energy scale ( in fact, lower than the MZ mass scale).

Since the last term of (6) describes the strong interactions of quarks
and since quarks are Dirac particles, the Lagrangian for the electroweak
interactions is:

Lelectroweak=g
(
L (F ) (γµGµ)L(F ) + q (F ) (γµ Gµ) q(F )

)
+

2
3
g q (F ) γµ

(
a(0)

µ + a
(0)
5µ

)
q(F ). (12)

The above electroweak Lagrangian is, until this point, SU(2) sym-
metric. We shall break this symmetry by expressing a sum of singlet
fields and the third component of the triplet field as mixings of the neu-
tral electroweak fields Aµ and Zµ . Independently of the details of
such relations one can predict that the electrowek interations of quarks
and leptons are different. Symmetry can be evoked, however, in order to
explain the differences. Quarks differ from leptons because they inter-
act exhibiting an extra SU(3) symmetry. As a result of (12), one can
predict that quarks and leptons have different electric charges. Further-
more, it follows also from expression (12) that electric charge differences
of fermions belonging to a doublet will be the same, for any doublet.

Let us turn now to breakdown of parity and SU(2) symmetries in
the electroweak interactions. We break parity in the charged sector by
choosing:

a
(1)
5µ=a(1)

µ , a
(2)
5µ=a(2)

µ . (13)

The above choices are needed in order to reproduce the V -A theory of
the weak interactions(14). In order to break parity in the neutral sector
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we choose:
a
(0)
5µ=

1
2
√

1 + ξ2 Zµ. (14)

Where ξ is a fundamental parameter of the electroweak model ( ξ =
tan θw ). This is the only free parameter to be introduced in our model.
This parameter is an asymmetry parameter. It gives a measure of an
asymmetry between the neutral and charged sectors resulting from dif-
ferent parity breaking interaction strengths. For ξ = 1 the neutral and
charged sectors break parity with equal strengths.

Let us consider now the breakdown of SU(2) symmetry. In the
GWS theory this symmetry is broken through the use of two distinct
mechanisms(2): spontaneous symmetry breakdown and the electroweak
mixings of fields. Weinberg introduced, in his pioneering work(2), two
mixings involving linear combinations of the electromagnetic and the
neutral weak bosons. Since these mixings imply that a singlet field and
the third component of a triplet field transform in a way that is different
from the one we would expect if the symmetries were realized in nature,
these mixings break global SU(2) symmetry. This is a very subtle aspect
of symmetry breakdown of the electroweak interactions.

In this paper we shall discuss only the electroweak mixings of fields
leaving the discussion of spontaneous breakdown of symmetry, via the
Higgs mechanism, for a future publication. We break SU(2) symme-
try, in close analogy with Weinberg’s approach(2), by introducing the
following ξ dependent electroweak mixings:

a
(0)
µ + a

(0)
5µ=

ξ√
1 + ξ2

(Aµ − ξ Zµ)

a
(3)
µ + a

(3)
5µ=

1√
1 + ξ2

(ξ Aµ + Zµ)

(15)

It follows from the first definition in eq. (15), that the sum over the
singlet fields introduced by us play the role of the U(1) vector field in
the GWS model(2).

One writes the Wµ and W+
µ fields as the linear combinations:

Wµ=
√

2
{
a(1)

µ + i a(2)
µ

}
, W+

µ =
√

2
{
a(1)

µ − i a(2)
µ

}
. (16)

By taking ξ = tan θw , one can see, from (15) and (16), that the
choice:

a
(3)
5µ=0 , (17)
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permit us to identify our vector triplet fields with the triplet fields of
Weinberg(2).

By substituting expressions (13)-(17) in (12), we get the electroweak
interaction Lagrangian for fermions belonging to the F-family. For the
first family one writes this Lagrangian as:

Lelectroweak=g ( νeL , e ) γµ

8><>:
0B@
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0
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«
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´
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8><>: ξp
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0B@2

3
(Aµ − ξ Zµ) 0

0 − 1

3
(Aµ − ξ Zµ)

1CA
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(1− γ5)

4

 p
1 + ξ2 Zµ

√
2 W+

µ

√
2 Wµ −

p
1 + ξ2 Zµ

!)„
u
d

«
.

By substituting ξ = tan θw in the above Lagrangian we get the usual
expressions for the electroweak interaction of fermions in terms of θw .

The conclusion is that, by considering SU(2) and SU(3) as the
symmetries of the fundamental interactions one can provide a model
that accounts for the different charges of leptons and quarks and for the
differences in their interactions. In our model quarks are different from
leptons due to the SU(3) symmetry that is inherent to quark interac-
tions. As pointed out here, their interactions differ only by a singlet
piece (under both symmetry groups) in the interaction Lagrangian. As
a result, relying on symmetries of the fundamental interactions we get
the observed pattern of electric charges of Leptons and Quarks.

Our approach provides for an unification of the three interactions.
That is, the strong, weak and electromagnetic interactions are described
by an SU(3) × SU(2) invariant Lagrangian. Although we have dealt
in this paper only with fermionic interactions, it is also possible to
treat bosonic interactions by using rank 2 spinor fields(12). A more
extended version of this paper and how we deal with the generation



238 G.C. Marques, D. Spehler

mixing problem will be presented elsewhere(15). Bosonic interactions
will be described, by using the set of variables here proposed, in a future
publication(16).

We would like to emphasize that we can foresee various scenar-
ios for endowing particles with masses through the use of the Higgs
mechanism(8). For the masses of the intermediate bosons it is enough
to couple Higgs fields assigned to a doublet representation of SU(2) .
Masses of fermions require, however, Higgs fields transforming as a prod-
uct of two doublet representations of the SU(2) group.
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