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ABSTRACT. In a hyperbolic universe the 4-vectors and subspaces of 
velocity and position are isomorphic examples of Lorentzian symmetry and 
pseudospherical geometry. Light is shed on this connection by examining a 
hyperbolic 3-space as the subspace of an O(1,3) 4-space subject to the 
constraint of a pseudosphere of imaginary radius R = i! . This symmetry 
persists if the hyperradius of position space expands with cosmological time, 
as in the Hubble distance !H = ctH . Such an expanding noneuclidean space 
with a negative curvature changing in time leads automatically to the 
appearance of a differential 4-vector with an imaginary timelike component 
icΔt. This provides a new understanding of the origin of the time-varying 
coordinate in the Minkowski space-time four-vector. The position-velocity 
symmetry supports an enlarged Lorentz group based on the direct product of 
separate Lorentz subgroups in position and velocity spaces. The geometric 
isometry of negative curvature in both position and velocity spaces now 
provides additional evidence for a previously demonstrated reciprocal 
relationship between the Lorentz transformation phenomenology and the 
Hubble velocity-distance law. 

 
 

1. Special relativity in a position space of homogeneous negative 
curvature. 

 
 It is largely through their symmetry behaviors that we can recognize 

the isomorphism that links the Lorentz group properties of relativistic 
velocity space with those of a hyperbolic position space. To exploit these 
effectively, it is necessary to express the geometries and kinematics on both 
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sides of the phase space in a common, symmetrical notation, so they can be 
compared and used together smoothly. Historically, in special relativity the 
Lorentz group properties of both velocity and position-time spaces have been 
expressed in the conventions of 4-vector and tensor expressions, and the 4-
dimensional space-time of the Minkowski world is necessarily taken as flat. 
On the other hand, the understanding of hyperbolic space in mathematics 
came about through the development of the non-Euclidean geometry of the 
hyperbolic plane and three-space founded in the work of Gauss, Bolyai and 
Lobatchevskii. This geometry was known to be that of a generalized sphere 
of imaginary radius. The common thread, recognized by Minkowski in the 
electrodynamics of moving media as developed by Lorentz, Einstein and 
Poincaré, is that such operations as the Lorentz transformation or Einstein’s 
addition of velocities have all the properties of generalized rotations in such a 
space. The group of these rotations is O(1,3), the abstract group isomorphic 
with the homogeneous Lorentz group.  

 The 4-vector notation for a flat 4-space universally used in special 
relativity makes no obvious contact with the conceptual notions of a 
hyperbolically curved 3-space used in non-Euclidean geometry, or even in 
cosmological models taking their origin in general relativity.  

 The relationships between the two superficially different 
embodiments of the mathematical group O(1,3) can be expressed in an 
illuminating way by using a vector notation, adapted to geodesic vectors in 
hyperbolic 3-space, and appropriate for both position and velocity space 
expressions. This supplements and connects closely with the 4-space notation 
that is standard for dealing with Minkowski space. The connection will be 
demonstrated and discussed in Sections 1, 3 and 4 of this paper. A number of 
useful expressions of the algebra of hyperbolic vectors will be presented in 
Section 2. 

 Using these concepts, a different light is shed on old relationships. 
In particular, a new understanding emerges of a connection between the 
geometry of a hyperbolic position space expanding in time, and the 
relationships between differential intervals in space and in time as they are 
modified by such processes as the Lorentz transformation under a velocity 
boost. This offers a new explanation for the appearance of the imaginary 
timelike element ic!t in the four-space introduced by Poincaré [1] and 
systematically exploited by Minkowski [2]. It also confirms a reciprocal 
relationship previously demonstrated between the Lorentz transformation and 
the Hubble expansion and reinforces the resulting extension of special 
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relativity to incorporate the direct product of two Lorentz subgroups 
L2 = Lvel ! Lpos  and a modified Poincaré group [5]. 

 
a. Local Minkowski 4-space and hyperbolic geometry:  
 

 The formalism that is now universally used to express the 
relationships of Lorentz symmetry in special relativistic applications exploits 
the pseudosymmetry between space and time in a 4-space with the 
Minkowski metric tensor  

 g!" = gdiag #1,+1,+1,+1( )  (1) 

while assuming that the coordinate x0  is related to time as the other three are 
to space: 

 x0 = !x0 = c" , (2) 

where c is taken to be invariant and !  is a time measured with respect to a 
local, recent origin. Minkowski [2] and Sommerfeld [3] recognized the 
connection between linear transformations in this 4-space geometry and the 
rotations of a hypersphere of imaginary radius i!  with the metric (1): 

 x!x! = g!" x
!x" = #x0

2 + x1
2 + x2

2 + x3
2 = i$( )2 . (3) 

That this is equivalent to an operation in a noneuclidean (hyperbolic) 
geometry was explicitly recognized by others immediately after the 
appearance of Minkowski’s first paper [4].  

 The development of special relativity in practice followed the course 
of treating Minkowski space as a flat 4-space with the metric tensor of Eq. 
(1), and applying it as a local and approximate source of symmetries on a 
microscopic scale in the background of the gravitational universe of general 
relativity. In that case, Eq. (3) is taken in its differential form,  

 ds2 = c2d! 2 " dr2 = c2d! 2 " dx1
2 + dx2

2 + dx3
2( ) , (4) 
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and no particular significance is given to the hyperbolic curvature length !  
implied by Eq. (3). I shall here follow the opposite course, of exploring the 
consequences of the model of a pure hyperbolic geometry when extended to a 
macroscopic and even cosmological scale. 

 
b. Lorentz symmetry and the coordinates of hyperbolic geometry: 
 

 Eq. (3) is a constraint equation, expressing the fact that the four 
variables x!  or x!  are confined to three degrees of freedom orthogonal to the 
pseudoradius ! . The four variables x!  with the constraint then provide a 
parametric description of the entire hyperbolic 3-space, just as the three 
coordinates x1, x2 , x3( )  with the constraint condition !i xi

2 = R2  provide a full 
parametrization of the 2-space of the surface of a sphere of radius R .  

 In the case of a hyperbolic geometry, the coordinates of the three 
degrees of freedom compatible with the constraint of Eq. (3) can be made 
explicit by introducing an orthogonal curvilinear coordinate system 
!,",#,$( )  adapted to the hyperbolic geometry of the constraint: 
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The pseudoradius !  is clearly invariant under Lorentz velocity boosts, under 
rotations, and under geodesic translations (pseudorotations) in the 3-space of 
the hyperbolic variables of arc and axis !,",#( ) . Under all these operations 

the Minkowski 4-vector !"{ }  is covariant, but its variation is subject to the 
invariant constraint of Eq. (3),  

 !"!" = #1 . (6) 
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The hyperbolic constraint is thus compatible with all the symmetries of the 

homogeneous Lorentz group. The hyperbolic 3-space orthogonal to !  can be 

parametrized either by the arc and axis coordinates !,",#( )  or by the 

components !1,!2 ,!3( )  of a hyperbolic three-vector which will here be 

denoted by  
!
! : 
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A special notation  
!
!  is adopted to distinguish hyperbolic 3-vectors from 

Euclidean ones because their squared norm is not ! " ! # !2 , but 

 
!
! "
!
! = sinh2 ! . Like Euclidean vectors, hyperbolic 3-vectors such as  

!
!  are 

not covariant under velocity boosts, they must be transformed as part of the 

4-vector 

 

!"{ } =
!0
!
!

#

$
%
%

&

'
(
(

. They are vectors in the rest system or within any 

constant velocity frame. 

 The description of a hyperbolic position space by the 3-vector 

 
!
! = !1,!2 ,!3( )  or !,",#( ) , Eq. (7), together with a fixed curvature length ! , 

is fully equivalent to the standard treatment by the 4-vectors !"{ }  of Eq. (5) 

with the constraint of Eq. (6). The 4-vector notation !"{ }  provides a 
parametric description of the 3-space subject to the constraint. The 3-vector 
notation is particularly useful in the transition between non-relativistic and 
relativistic geometry and kinematics, because the vector  x = !

!
"  extrapolates 

directly to the non-relativistic Newtonian and Galilean limit. In a hyperbolic 
geometry the fourth Minkowski coordinate x0 = ! cosh"  or !0 = cosh!  is 
redundant, and can always be expressed in closed form as a function of the 
independent variables.  
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 A simple extension of the vector algebra of Euclidean space and 

Galilean kinematics to hyperbolic geometry and to the corresponding 
Lorentzian kinematics, which will be developed in Section 2 below, provides 
tools especially adapted to extend relativistic kinematics into the expanding 
hyperbolic geometry of the open Friedman, Robertson, Walker (FRW) 
cosmological model. 
 
c. Time dependence in an expanding cosmological geometry: 
 

 The Minkowski 4-space structure of Eq. (5) when described by the 
four orthogonal coordinates !,",#,$( )  or !,"1,"2 ,"3( )  is well suited to 
describing the FRW cosmological geometry expanding in time; this can be 
assumed to be spatially isotropic and homogeneous from the point of view of 
any observer at any cosmological time t, 

 ! = ! t( ) " ct , (8) 

with t measured from the big bang. This cosmic time must be carefully 
distinguished from the local, observable, frame-dependent time variable !  of 
Eq. (2). The connection between the variables t and !  is part of a well-
defined change in coordinate systems between the global hyperbolic 
coordinates and the local Minkowski ones. This will be given below, in 
subsection 1.d.  

 In contrast to ! , the cosmic time t itself, like ! , is a Lorentz 
invariant. It is orthogonal to the hyperbolic 3-space described by the 
coordinate system !,",#( )  or !1,!2 ,!3( ) . It is exclusively in that 3-
dimensional subspace of space-time that all the operations of Lorentz 
transformation by velocity boosts, of rotation of axes, and of geodesic 
translations in the position space take effect. 

 In practical applications describing local systems the radial length 
scale !  at the present epoch is measured by the cosmological Hubble length 
!H = ctH , or equivalently by the Hubble age of the universe tH . In the 
laboratory or rest system, the range of variation of the position variable !x  
sets an upper bound on the range of the hyperbolic arc ! :  
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 !"

rest
# !x / $H . (9) 

Being the ratio of a local length to the Hubble distance of cosmology, !  or 

!"  is exceedingly small and cosh! " 1 . This is true, however, only in the 
rest system. When the phenomenology involves relativistic velocity effects at 
large fractions of c, significantly large changes in !  may result from a 
velocity boost between the observer and the system observed,  

 
 

!
! rest( )

boost( )" #""
!
$!obs . (10) 

 The magnitude of an observed time interval can be expressed as: 

 !" ab = c
#1 x0 a[ ]# x0 b[ ]( ) = c#1 $ ta( )cosh%a # $ tb( )cosh%b&' () . (11) 

In the rest system, this will be essentially independent of the factors cosh!a  
and cosh!b  because, by Eq. (9), their arguments !a ,!b( )  in a local region are 
negligibly small. Time intervals in the rest system—proper time intervals—
are therefore governed by the cosmic time variable,  

 !" ab( )rest = !tab . (12) 

If this time interval is being observed in a system in motion with respect to 
the observer, !a  and !b  will both be altered by the velocity boost,  

 !a ,!b( ) boost( )" #"" $!a , $!b( ) , (13) 

and the cosh !"  factors will become greater than 1, thus increasing the 
observed time interval by the usual Lorentz time dilatation; this can be 
evaluated at the average value !"ave : 

 !" ab #$ave( ) = !tab cosh #$ave % !" ab( )rest . (14) 
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d. The connection between cosmological hyperbolic coordinates and 
those of local Minkowski space: 
 

 The natural symmetry-adapted coordinates of time and position in a 
cosmologically expanding hyperbolic geometry are the variables t,!,",#( )  

or t,!( )  of Eqs. (1.5) and (1.8), i.e., of the 4-vector 
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The Minkowski 4-space description uses local coordinates 
! , r( ) = ! , r,"r ,#r( ) , adapted to describing a small local region of space-time, 

with a differential 4-vector of the form  
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 We seek the connection between these two sets of coordinates. The 
dependence on the directions !,"( )  is nonessential, and the connection can 
be examined in the case of a single spatial dimension. The global 4-vector 
Eq. (15) then reduces to 
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while the Minkowski 4-vector of Eq. (16) becomes simply 

 c!
r

"
#$

%
&'

. (18) 

These two expressions allow us to establish a connection between the local 
Minkowski coordinates and the global hyperbolic ones in two alternative 
forms, a general one valid over a wide region, and a local one valid especially 
in the differential limit. 

 
 (1) The connection in its general form: 
 

 While the Minkowski space-time vector, Eq. (18), is usually 
employed locally, the connection implied by a comparison with Eq. (17) can 
be established in such a way as to be valid generally.  

 In the presence of the cosmological expansion, the use of a cosmic 
time coordinate with a remote and approximately datable origin is obviously 
called for. The measure of its remoteness from us is the Hubble time tH , 
about 1.37 !1010  y . The Minkowski origin of time is always assumed to be 
fixed locally at some convenient recent time—a condition that is required for 
precision measurements and estimates. For position space, the space of the 
variables x, r, and ! , a nearby origin x = r = 0  can always be chosen. To 
connect the coordinate sets we are at liberty to choose two matching 
conditions, which I take to be that (a) at r = 0  the zero of !  coincides with 
t = tH , and (b) at the space and local time origin r = 0,! = 0( ) , clocks in 
both time systems must run at the same rate: 

 ! = t " tH = #t( )r=0
,   and   dx0

dt
= dr0
d!

$
%&

'
() r=0,!=0

.  (19) 

These conditions are satisfied if 

 
! = t " tH( )cosh#,
r = $H sinh# = ctH sinh#.

 (20) 
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This allows us to complete the matching conditions for locations remote from 
the local origin. 

 
 
 (2) The connection in the local limit: 
 

 When the Minkowski 4-vector is used locally, in the spirit of Eq.(4), 
Eq. (18) will represent a difference between two events, and in that case can 
be written 

 ! c"
r

#
$%

&
'(
) c!"

!r
#
$%

&
'(

. (21) 

This must be compared not with the global hyperbolic vector of Eq. (17), but 
with its differential form as a vector between two events. If we consider these 
to be observed at the average time and location t = tH , !( ) , i.e., between two 
events at  
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we obtain, to first order, 
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Using Eq. (9) we can set ! " 0  and evaluate Eq. (23) as 
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This is exactly in the form of the Minkowski expression of Eq. (21), and 
requires us to make the identification 

 !" = !t, !r = ctH!# . (25) 

These agree with Eq. (20) in the limit as ! " 0 . 

 We see thus that the Minkowski space-time vector of the form of 
Eq. (21)—or, more generally, Eq. (16)—can be identified with the 
differential expression, Eq. (24), derived from the parametric 4-space vector, 
Eq. (15), of a hyperbolic position space whose curvature length  

 ! = ct = !H + c"t  (26) 

is increasing linearly in cosmic time.  

 This identification of the specific form of the Minkowski space-time 
4-vector with the differential expression of a parametric 4-coordinate 
description of a hyperbolic 3-space in which a negative curvature is changing 
in time is an unexpected conclusion. It implies the view that the Lorentz 
transformation itself carries two important pieces of information: (a) that 
position 3-space is itself on average hyperbolically curved, and (b) that the 
magnitude of that curvature is changing in time. 
 

2. The algebra of 3-vectors in hyperbolic triangles: 

 
 In a hyperbolic geometry the 4-vector structure of the coordinates of 

position and time, Eq. (5), is formally fully adapted to the application of the 
Lorentz transformation under velocity boosts as a linear operation in the 
Minkowski 4-space. However, a full employment of the 4-space apparatus 
associated with Eq. (5) runs into the possibility of calculational difficulties 
because of the extraordinary mismatch of magnitudes between x0 , 
dominated by the cosmological Hubble length !H  itself, and the components 
xi  of the 3-vector x  or !x  appropriate to a local application. It is therefore 
advantageous to make use of a treatment based entirely in the 3-vector space 
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of the hyperbolic vectors  

!
! = !1,!2 ,!3( ) . It is easy to show that all the 

important linear operations of rotation and pseudorotation in the Minkowski 
4-space can be described by a nonlinear extension of the vector algebra of 
Euclidean 3-space to the analogous composition of hyperbolic vectors like 

 
!
! = !1,!2 ,!3( )  in a hyperbolic space. The operations of the resulting 
hyperbolic vector algebra can all be expressed in the language of hyperbolic 
trigonometry as it is applied to the composition of sides and angles in 
hyperbolic triangles.  
 
 
a. Vector addition in hyperbolic triangles: 
 

 We denote as a hyperbolic vector  
!!  a geodesic arc in a hyperbolic 

space, normalized to the pseudoradius of curvature of that space !" as in Eq. 
(7), and with the arc-and-angle coordinates !,"! ,#!( )  and the 3-vector 
components 
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The addition of vectors as the sum of sides in a triangle remains applicable in 
hyperbolic geometry, where it is carried out by the rules of hyperbolic 
trigonometry. Like the addition of sides in spherical triangles, such addition 
is no longer commutative. Hyperbolic vector addition will be identified here 
by the special summation notation +̂ . In the triangle 

  
!! +̂
!
" +̂ !# = 0 , (28) 

where the interior angles opposite those sides are A, B, and C, the addition of 
sides follows the hyperbolic law of cosines: 

 cosh! = cosh" cosh# + sinh" sinh# cosC . (29) 
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In velocity space this vector addition in a hyperbolic triangle 
reproduces the results of Einstein vector addition of velocities. 
This can be supplemented by the hyperbolic law of sines to 
obtain the necessary angles:  

 
sin A
sinh!

= sin B
sinh"

= sinC
sinh#

= $!"# , (30) 

where 

!"#$ =
%1+ cosh2 " + cosh2 # + cosh2 $ + 2 cosh" cosh# cosh$&' ()

1/2

sinh" sinh# sinh$
  

and

!"#$
%1 =

1% cos2 A % cos2 B % cos2 C % 2 cosA cosB cosC&' ()
1/2

sin A sin B sinC
.

 (31) 

 
 
b. The rotations of parallel transport: 

 
In hyperbolic as in spherical trigonometry, a sequence of non-collinear 

translations has a secondary effect in addition to the vector addition in the 
triangle: the transport of a directed object over a finite nongeodesic path 
induces an apparent rotation. In the product of Lorentz matrices  

 
 
K
!
!( )K  !"( ) = L

!
!,0( )L !" ,0( ) = L !#, "$#!"( ) = K !#( )R "$#!"( )  (32) 

the second order rotation  
!!"#$  adjusts for the angular defect of the 

hyperbolic triangle, measured by its directed area. This area can be expressed 
as a hyperbolic vector product, for which we can use the symbol " !̂ ": 
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"" %̂
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#&' () / 2 =

"
# %̂ "$&' () / 2 =

"$ %̂ ""[ ] / 2.  (33) 
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This rotation arises in any curved space as a consequence of the parallel 
transport of a local vector describing the orientation of an infinitesimal test 
body carried over a nongeodesic path. Its exact magnitude !"#$  is given by 
Euler’s formula, 

 cos !"#$ / 2( ) = 1+ cosh" + cosh# + cosh$
4 cosh " / 2( )cosh # / 2( )cosh $ / 2( ) , (34) 

and equivalently by an expression that illustrates the connection with the area 
of the triangle and establishes the sign of !"#$ : 

 sin !"#$ / 2( ) = sinh" sinh# sinC
4 cosh " / 2( )cosh # / 2( )cosh $ / 2( ) . (35) 

In velocity space a similar rotation is responsible for the well-known Thomas 
precession correction in atomic hyperfine spectra. This is a physical 
consequence of the velocity-space rotation:  

 
 
! !" vel =

"
# $̂ d

"
##% / 2 & v $ dv#% / 2c2( ) . (36) 

The rotation factor 
 
R !!"#$( )  in Eq (32) appears in the important product and 

commutator relationship 
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!
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In practice, the induced rotation will be very small, because it contains the 
curvature-dependent factor !" # $x!$x" / %

2( ) . Its role is nonetheless very 
important for an understanding of the physics of the system. In describing the 
effect of displacements in a hyperbolic position or velocity space we shall 
therefore make use of Lorentz matrices of the general form 

 L !,"!( ) = K !( )R "!( ) , (38) 
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where the subscript on the rotation vector !"  identifies its association with 

!  as part of the six-parameter entity !,"!( ) . 

 
c. A corollary: vector algebra in spherical triangles: 
 

 Precisely the same considerations apply in spherical triangles as in 
hyperbolic ones. We shall use the notation  

!!  for a geodesic vector in a 
spherical geometry. The analytic properties  

 sin i! = i sinh!, cos i! = " cosh! , (39) 

make it easy to convert expressions between spherical and hyperbolic 
trigonometry. Some changes in notation must follow. We can now assume a 
spherical triangle   

  
!!
!
+ !"
!
+ !# = 0  (40) 

where the interior angles opposite those sides are A, B, and C, and the 
addition of sides follows the spherical law of cosines: 

 cos! = cos " cos# $ sin " sin# cosC . (41) 

The spherical law of sines is:  

 
sin A
sin !

= sin B
sin"

= sinC
sin#

= $!"# , (42) 

where 

 
!"#$ =

1% cos2 " % cos2 # % cos2 $ + 2 cos " cos# cos$&' ()
1/2

sin " sin# sin$
  and

!"#$
%1 =

1% cos2 A % cos2 B % cos2 C % 2 cosA cosB cosC&' ()
1/2

sin A sin B sinC
.

 (43) 
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 For the spherical vector product we can use the symbol " 

!! ", and 
write 

  
!
!"#$ = !" !% !#[ ] / 2 = !# !% !$[ ] / 2 = !$ !% !"[ ] / 2.  (44) 

It is the area of the spherical triangle, and its magnitude !"#$  is given by 
Euler’s formula, 

 cos !"#$ / 2( ) = 1+ cos " + cos# + cos$
4 cos " / 2( )cos # / 2( )cos $ / 2( ) . (45) 

 

3. Four-vectors and the geometries of velocity and position in curved 3-
spaces: 

 
 The geometries of velocity and position spaces can now be 

presented in a uniform notation. Following Minkowski, this can be based on 
the model of the geometry of negative curvature as the geometry of a sphere 
of imaginary radius. 
 
a. The hyperbolic four-vector of velocity: 
 

 In a 1907 lecture [2c] Minkowski recognized that the velocity vector 
v in the electrodynamics of special relativity can be extended to be part of a 
covariant 4-vector, generating a noneuclidean manifold. He soon improved 
his derivation, showing that the velocity four-vector takes the form  

  
w = w1,w2 ,w3,w4( ) = 1! v2 / c2( )!1/2 vx , vy , vz , ic( ) , (46) 

and that it satisfies the constraint  

 w1
2 + w2

2 + w3
2 + w4

2 = !c2  (47) 
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of a vector to the 3-surface of a 4-sphere of imaginary radius ic  in velocity 
space [2a]. The fact that the geodesics on a sphere of imaginary radius were 
known to generate Lobachevsky and Bolyai’s noneuclidean geometry 
established the connection with the noneuclidean manifold that Minkowski 
made explicit in [2c]. Unable to identify a comparable geometry in position 
space, he displayed these equations prominently in [2a] but omitted any 
textual discussion of this velocity symmetry either there or in [2b]. His 
sudden death in January, 1909, deprived him of any opportunity to take up 
the matter later.  

 The similarity between the structure of relativistic velocity space 
and that of a hyperbolic position space such as that of Eq. (5) is brought out 
by rewriting Eq. (46) in terms of the rapidity variable !  of relativistic 
kinematics, defined by: 

 tanh ! = v / c  (48) 

so that  

 ! = 1" v2 / c2( )"1/2 = cosh #, sinh # = !v / c , 

and  

 
 
w = w c;!,"vel ,#vel( ) = c v̂ "vel ,#vel[ ]sinh !, i cosh !( ) . (49) 

The components of the four-vector can then be written as 

 

 

w =

w1
w2
w3

w4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

= c

sinh ' sin(vel sin)vel
sinh ' sin(vel cos)vel
sinh ' cos(vel
i cosh '

!

"

#
#
#
##

$

%

&
&
&
&&

. (50) 

These are redundant, satisfying the constraint (47). They represent the 
magnitude and direction of a geodesic three-vector of rapidity 
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 ! = !vel = !vel ,"vel ,#vel( )  (51) 

in a homogeneously curved velocity space of negative Gaussian curvature, 

 Kvel = !c!2 . (52) 

 Comparison of the Minkowski velocity 4-vector expression in Eq. 
(50) with the hyperbolic position 4-vector in Eq. (5) shows that they are 
isomorphic in physical content but differ seriously in notation. This is shown 
by the contrast between the absence of the factor “i” in the term 
“ x0 = cosh! ” in Eq. (5) and its presence in “ w4 = i cosh ! ” in Eq. (50). To 
perfect the parallel, I shall reexpress the description of hyperbolic position 
space in Minkowski’s real-and-imaginary notation instead of in the four-
space tensor notation that led to Eq. (5).  
 
b. The hyperbolic four-vector of position: 
 

 I shall now write a position four-vector for a hyperbolic geometry 
characterized by the imaginary spherical radius R = i!  in the form 

 
 
s = s1, s2 , s3, s4( ) = sx , sy , sz , iq( )  (53) 

where the constraint is 

 s1
2 + s2

2 + s3
2 + s4

2 = !"2 . (54) 

The analogue in position space of the rapidity !  in velocity space is the 
separation ! , defined by 

 sinh! = r / " . (55) 

It is numerically equal to the parameter !  in Eq. (5). The fourth component 
of the 4-vector is  
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 !is4 = q = " 1+ r2 / "2 = " cosh# . (56) 

The connection between the variables of Eqs. (53) to (56) and those of Eqs. 
(3) to (6) is  

 x0 = !x0 = !is4 = q = " cosh#, xi = x
i = si i = 1, 2, 3( ), $ = # . (57) 

The four components of the position 4-vector are now 

 

 

s=

s1
s2
s3
s4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

= '

sinh( sin)pos sin*pos
sinh( sin)pos cos*pos
sinh( cos)pos
i cosh(

!

"

#
#
#
#
#

$

%

&
&
&
&
&

. (58) 

They are, of course, redundant, and represent the magnitude and direction of 
a geodesic three-vector of separation 

 ! = !pos = !pos ,"pos ,#pos( )  (59) 

in a homogeneous position three-space whose Gaussian curvature is negative: 

 Kpos = !"!2 . (60) 

In this form the parallel with the velocity four-vector of Eq. (50) is complete. 

 
 
c. Four-vectors and the description of homogeneously curved three-
spaces: 
 

 The four-component structures of Eqs. (50) and (58) have the form 
of four-vectors but are effectively limited by the respective constraints of 
Eqs. (47) and (54) to three degrees of freedom in each case. The situation is 
analogous to the employment of a Cartesian coordinate system to parametrize 
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the surface of a sphere. To represent in a Cartesian framework a space of 
homogeneous curvature, either positive or negative, requires embedding the 
curved space in a Cartesian space of one higher dimension. This dimension 
will appear with real or imaginary signature, depending on whether the sign 
of the curvature is positive or negative. Equivalently, the change in sign in 
the diagonal Minkowski metric tensor is necessarily correlated with the 
appearance of negative curvature in an embedded subspace of spherical 
symmetry. 

 In the established tradition of both special and general relativity, c is 
treated as invariant and all the time-dependence of the red-shift is attributed 
to the cosmological expansion in length, Eq. (26). As a result, the four-vector 
form for the velocity has always appeared to have an anomalous role in 
special relativity, with only three real degrees of freedom. That anomaly now 
takes on a different aspect, and a three-dimensional symmetry between 
negatively curved spaces of both position and velocity can be recognized 
instead. 
 
 
d. The effect of spatial expansion: 
 

 When !  is not constant, but depends on the cosmic time and the 
Hubble expansion, we know that our best approximation to the hyperbolic 
length scale expands linearly in the cosmic time variable, 
! = ct = c tH + "t( ) . Using this the position 4-vector becomes  

 

 

s = ctH 1+ !t / tH( ) r̂ sinh", i cosh"( )
= 1+ !t / tH( ) x, y, z, i c2tH2 + r2#$ %&

1/2( ).  (61) 

This represents an expanding hypersphere of imaginary radius R t( ) = ict .  

 Since all physical observations are made locally at small values of 
the ratios rj / ctH  and !t j / tH , we can use a double expansion in those 
variables,  
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s j = ct r̂j sinh! j , i cosh! j( ) = 1+ "t j / tH( ) rj , ictH cosh! j( )
= ictH + rj + ic"t j( ) + rj"t j / tH + irj

2 / 2ctH( ) +…,
 (62) 

and evaluate the difference 4-vector between two events  s2 and  s1  to first 
order as 

  !s = s2 " s1 = !r, ic!t( ) = !x,!y,!z, ic!t( )  (63) 

where, obviously, 

 !r = !x,!y,!z( ) = r2 " r1  

and 

 !t = t2 " t1 = #t2 " #t1 . 

The local times !t2 ,!t1  are measured from a convenient common local zero 
where the cosmic time is taken as the Hubble time tH . 

 Eq. (63) confirms and provides more detail on the conclusion 
already attained in Eq. (24). The imaginary factor i in fourth component ic!t  
of the Minkoski space-time four-vector is now seen to be a signal of the 
negative curvature of position space, while its magnitude and time 
dependence c!t  describe the effect of the Hubble expansion with the 
velocity c.  
 

4. Lorentz symmetries in a system with twofold negative curvature: 

 
 The strong parallelism that exists between the geometric structure of 

relativistic velocity space and that of the hyperbolic position space of the 
Hubble expanding universe invites further exploitation in the group theory of 
special relativity. It has long been known that the homogeneous Lorentz 
group O(3,1) is also the isometry group of noneuclidean geometry in 
hyperbolic space, but the connection has not been fully exploited in the 
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context of special relativity. I have recently shown [5] that this structural 
symmetry can be incorporated in a new extended form of special relativity 
founded on the direct product of two Lorentz subgroups, one generated by 
the familiar Lorentz velocity boost operator and the other by an analogous 
operator producing geodesic translations in hyperbolic position space. The 
double Lorentz group produced by this direct product is also a symplectic 
group, and leads to a new exploitation of Hamiltonian symmetry in 
relativistic dynamics. A brief summary of some of the consequences can be 
given here. 
 
a. The direct product double Lorentz group: Lorentz transformation 
and Hubble expansion: 
 

 In a hyperbolic position geometry, translations in hyperbolic 
position space generate their own Lorentzian subgroup, with a boost-like 
operator whose parameter is not the velocity ratio !v / c  but a ratio of 
lengths !r / "H = !r / ctH . For this reason we have not just the velocity 
Lorentz group O(3,1)vel  generated by velocity boosts !v / c , but also a 
second Lorentz group O(3,1)pos  generated by translational shifts in the 
curved position space measured by !r / "H . These two Lorentz groups can 
now be taken as subgroups, and a larger group can be formed as their direct 
product,  

 L2 = O(3,1)pos !O(3,1)vel . (64) 

This group, the double Lorentz group, has remarkable symmetry properties 
including that of symplectic symmetry. It is the basis for an enlarged special 
relativity. One of its important features is a reciprocity between the Lorentz 
transformation, where the operator describing a boost in velocity space 
produces observed displacements also in position space, and the Hubble 
effect, where a translational shift in position space produces a change in the 
observed velocity. This reciprocal structure as well as other properties and 
consequences of the enlarged Lorentz group and its associated Poincaré 
group have been developed and studied in considerable detail in [5].  

 To form the hyperbolic Poincaré group the group L2 is extended 
further by a one-dimensional translational subgroup in the cosmic time tcosm ,  
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 Phyp = L

2 ! T 1( )time = O(3,1)pos !O(3,1)vel ! T 1( )time . (65) 

This extended Poincaré group is shown in [5] to extrapolate smoothly to the 
usual Poincaré group in the appropriate limit of flat position space. 

 
b. The matrices of the double Lorentz group: 
 

 A thorough treatment of the double Lorentz group L2  is given in [5]. 
The properties of this direct product group are unfamiliar, so the essential 
steps in its creation will be briefly sketched here.  

 The fundamental matrices representing operators of the direct 
product group O(3,1)pos !O(3,1)vel  can be constructed from those of the 
constituent subgroups by forming larger block-diagonal matrices in the 
pattern 

 

 

Lpos !pos ," pos( ) = Lpos !pos ," pos( ) 0

0 1

#

$
%
%

&

'
(
(
,

Lvel )vel ," vel( ) = 1 0
0 Lvel )vel ," vel( )

#

$
%%

&

'
((
.

 (66) 

In these matrices the first four rows and columns label the coordinates (three 
real and one imaginary) needed to describe the hyperbolic position subspace, 
and the second set of four does the same for the velocity subspace.  

 As in Eq. (38), the matrices of the constituent Lorentz subgroups in 
(66) can each be written as a product of the matrix of a pure hyperbolic 
translation K !( )  in position or velocity, and an associated pure 3-space 
rotation matrix R !"( ) : 

 Lpos !pos ," pos( ) = K !pos( )R " pos( ), Lvel #vel ," vel( ) = K #vel( )R " vel( ) . (67) 
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The variables !pos ," pos( )  and !vel ," vel( )  are those of the respective 
geometries of position and velocity.  

 The usual procedure for forming the general operators of a direct 
product group is to use the product of the matrices of Eq. (66): 

 
 
!geom "pos ,# pos , $vel ,# vel( ) = Lpos "pos ,# pos( )Lvel $vel ,# vel( ).  (68) 

I shall call this a geometric representation of the product group, because its 
parameters are the coordinates of the respective geometries, positional and 
velocity. By the construction of Eq. (66) the operators 

 
Lpos !pos ," pos( )  and 

 Lvel !vel ," vel( )  are seen to commute, and neither of them will have the 
property required of a Lorentz boost operator, of operating both on position 
space, to accomplish a Lorentz transformation, and on velocity space, to 
accomplish the addition of velocities. 

 To form an appropriate velocity boost operator in the double 
Lorentz group, we form a boost operator as the block diagonal matrix 

 

 

Kboost !boost( ) =
K "!boost( ) 0

0 K !boost( )
#

$
%
%

&

'
(
(
.  (69) 

This has the appropriate properties—the first of its subblocks carries out a 
linear transformation on the position subspace, with the appropriate sign for 
the Lorentz transformation, and the second performs an Einstein vector 
addition in the velocity subspace. 

 The operator complementary to the boost of Eq. (69) can now be 
taken as  

 

 

Kshift !shift( ) =
K !shift( ) 0

0 K !shift( )
"

#
$
$

%

&
'
'
.  (70) 
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The first of its subblocks performs the operation of vector addition in the 
hyperbolic position space, and the second subblock adds a positional shift to 
a vector in the velocity subspace—this is the operational description of the 
Hubble effect of distance on an observed velocity. 

 Each of the operators  Kboost  and  Kshift  now acts interactively on both 
the position and the velocity subspaces.They are the generating operators of 
the interactive representation of the double Lorentz group. The coordinates 
parametrizing them are related to the separation and rapidity vector 
coordinates of the geometric representation by hyperbolic vector relations of 
the type described in Section 3 above, 

 !shift = "vel +̂ !pos( ) / 2, "boost = "vel #̂ !pos( ) / 2.  (71) 

 It remains to take into account the rotational portions of the general 
Lorentz operators. We now introduce the following pair of matrix operators: 

 

 

J ! int( ) =
R ! int( ) 0

0 R ! int( )
"

#
$
$

%

&
'
'
, Q (( ) =

R )(( ) 0

0 R (( )
"

#
$
$

%

&
'
'
.  (72) 

Of these,  J  represents the usual angular momentum operator in its 
incarnation in the double Lorentz group, and it generates the usual R(3) 
rotational subgroup. Its parameter vector is a spherical arc-and-angle vector 
! int  of the interaction representation, formally combining the constituent 
subvectors in the expression 

 
 
! int = ! pos

!
+! vel( ) / 2.  (73) 

The operator  Q , on the other hand, is a previously unrecognized type of 
generalized angular momentum (or spin) operator, the contra-angular 
momentum, without an analogue in the kinematics of the usual Lorentz and 
Poincaré groups. The possibilities for its physical role and detection are 
discussed in [5]. The argument of  Q , the spherical vector ! , depends not 
only on the arc-and-angle variable 
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! conj = ! vel

!" ! pos( ) / 2  (74) 

conjugate to ! int  but also on the vector products of the variable pairs 

 
 

! = "pos #̂ $vel( ) / 2 = "shift #̂ $boost( ),
% = & pos

!# & vel( ) / 2 = & int
!# & conj( ).

. (75) 

The variable !  can then be expressed as an expansion beginning with the 
terms 

 
 
! = " conj

!# $ !# 1
2
%
!
+ " int

!& $( )… . (76) 

 The matrix expressing a general operator of the double Lorentz 
group in its interaction representation can now be written as 

  ! int "shift , #boost ,$ int ,%( ) = Kshift "shift ( )Kboost #boost ( )J $ int ( )Q %( ).  (77) 

 

5. Discussion: 

 
 This work was undertaken with the purpose of improving the 

understanding of the underlying group-theoretical similarity in symmetry 
structure between the Lorentz group L as regularly used in special relativity 
in local contexts and as the underlying background to the gravitational 
structure developed in general relativity, and the embodiment of the abstract 
group O(1,3) isomorphic to L as the isometry group of the geometry of 
hyperbolic 3-space and also the embodiment of that geometry in the 
expanding hyperbolic geometry of the open FRW cosmology. The tools of 3-
vector algebra from nonrelativistic dynamics turn out to be particularly useful 
for these purposes, and have been systematically extended in this paper and 
in reference [5] into the hyperbolic domain. 

 An unexpected consequence indicating the value of this alternative 
3-vector viewpoint has immediately been brought to light. The familiar 
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Minkowski construction of a local, differential, 4-vector of position and time 
turns out to be identifiable as the differential increment specifically belonging 
to a hyperbolic spatial geometry expanding with time—thus providing a new 
viewpoint to understand what in 1908, with Minkowski’s announcement that 
an imaginary time was equivalent to a fourth real spatial dimension, was an 
extraordinary source of wonderment [4].  

 As stated earlier, this new insight into the connection between an 
expanding hyperbolic geometry and observable consequences as to local, 
measurable intervals in time or space, can then be turned around. The 
existence of the Lorentz transformation and its observable consequences as 
they can be expressed in Minkowski space now provide a strong argument 
for two important pieces of information: (a) that position 3-space is itself on 
average hyperbolically curved, and (b) that the magnitude of that curvature is 
changing in time.  

 These deductions demonstrate a tight connection between the 
Lorentz transformation and the Hubble expansion. This evidence is 
independent of, and consistent with, the pattern of strict symplectic 
reciprocity which I demonstrated in reference [5] to exist between the Hubble 
effect and the Lorentz transformation in the double Lorentz group L2.  
 
 
References  
 
[1] Poincaré, H., Rend. Circ. Mat. Palermo, 29, 126 (1906). 
[2] Minkowski, H., [a] Goett. Nachr. (1908) p. 53, or Gesammelte Abhandlungen, 

Vol 2, p. 352; [b] Phys. Zeitschr. 10, 104 (1909), or Gesammelte Abhandlungen, 
Vol 2, p. 431; [c] Ann. der Phys., 47, 927 (1915). 

[3] Sommerfeld, A., [a] Ann. d. Phys. 32, 749 (1910); [b] Ann. d. Phys. 33, 649 
(1910).  

[4] See a letter of Jakob Laub to Einstein, May 18, 1908, in Einstein, A., Collected 
Papers, Vol. 5, p. 119. In commenting skeptically on the infatuation of M. 
Cantor, a theoretical physicist, with aspects of the Minkowski formalism, Laub 
says, “I think he has let himself be impressed by the noneuclidean geometry.” 

[5] Smith, F. T., Ann. Fond. L. de Broglie, 30, 179 (2005). 
 
(Manuscrit reçu le 16 mai 2009) 


