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Non-Dispersing Free-Particle Solutions

in a 4-Space Dirac Theory

A. B. Evans

Department of Mathematics and Statistics
University of Otago, P.O. Box 56, Dunedin, New Zealand

ABSTRACT. Free-particle solutions of a 4-space Dirac equation in-
clude soliton-like possibilities not found in conventional theory. Non-
dispersing examples are given of plane waves and spherically symmetric
wave packets.

1 Introduction

In parametrized relativistic quantum theory (PRQT) [1, 2, 3], the space-
time coordinates Xα = (x , y , z , c t) are all on an equal footing, i.e.
both spatial position and time are regarded as observables. An invariant
parameter τ , corresponding to the proper time of classical relativity, is
used instead of t to describe the evolution of the wave function, which
in the spin- 1

2 theory proposed by the author [4, 5, 6] is a bispinor ψ
satisfying a “4-space” Dirac equation that generalizes the conventional
one.

Although this 4-space Dirac equation has solutions formally similar to
all those of the conventional theory, it also allows solutions of a different
nature in which the proper massm0 - an observable in the 4-space formu-
lation - is not sharp. In addition, the 4-space solutions (notably those for
a Coulomb potential) generally require a modified interpretation of their
wave functions, because the 4-space picture includes contributions from
both electrons and positrons, as follows. ψ†(iγ4)ψ ≡ F (X, τ) is an in-
variant expected charge density in space-time, and −ψ†γ4γψ ≡ J(X, τ)
is a particle 4-current, so that J4 = ψ†ψ ≥ 0 implies motion in the
positive time direction. In general, F = F1 − F2, where F1 and F2 are
electron and positron densities, and J is the sum of the particle and
antiparticle currents, which are assumed to have a common 4-velocity
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U given by cJ = (F1 + F2)U. A second invariant, Q ≡ ψ†γ0ψ, where
γ0 ≡ −iγ1γ2γ3, is related to F and J by J · J = −(F 2 + Q2). As a
consequence, one finds F1 = (

√
F 2 +Q2/2 and F2 = (

√
F 2 +Q2−F )/2:

note that F2 = 0 ⇔ Q = 0, and F1 = F2 ⇔ F = 0. These points are
detailed in [4, 5], and illustrated in [6], where the 4-space equation is
applied to Klein’s paradox. It has also been used to describe neutral
particles [7].

The proposed 4-space Dirac equation is in general

γ·[∂ −
(
ie

}c

)
Ω]ψ =

(
i

c

)
∂ψ

∂τ
, (1)

where the 4-component spinor ψ is a function of the spacetime coordi-
nates Xλ = (xk, ct) and the invariant parameter τ . For the present
purpose, the 4-vector potential Ω is assumed zero: we wish to solve

γ·∂ ψ =
(
i

c

)
∂ψ

∂τ
. (2)

The conventions used here are those of Ref. 5; in particular, the Lorentz
metric tensor is ηαβ =diag(1 , 1 , 1 , −1), and a chiral representation
of the Dirac matrices γλ is used unless otherwise specified. In Ref. 4, m
was used for proper mass, but m0 is employed here.

2 General Results for Free Particles

Although more general solutions of (2) can easily be written down, for
the present purpose it will be enough to begin with solutions of the form

ψ = exp{P·(iXI + cτγ)/}} ζ . (3)

where ζ is any constant bispinor. These have sharp 4-momentum P ,
but since the proper mass m0 is not sharp in this case, we cannot use
P = m0c here. (Only later will we need the usual mass-shell condition.)
The expression (3) is bounded for all X and τ provided P is timelike (so
that P is real). To make this boundedness more obvious, we can rewrite
(3) as

ψ = eiP·X/}{I cos(cτP/}) +
P·γ
P

sin(cτP/})} ζ . (4)

We also note that if Ω is constant in (1), then (3) can be generalized to
the form

ψ = exp{(iΠ ·XI + cτP·γ)/}} ζ , (5)
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where Π = P + (e/ c) Ω (kinetic momentum), though this result will
not be pursued here.

A free wave packet in 4-space may be obtained from (3) by superpo-
sition:

ψ(X; τ) =
∫

exp(iP ·X/}) exp(cτP·γ/})ϕ0(P)d4P , (6)

where (apart from any physical constraints we may wish to impose, such
as positive energy) ϕ0 is an arbitrary bispinor. An alternative route
to (6) is via the momentum representation, in which a bispinor wave
function ϕ(P; τ) satisfies (cf. (2))

P·γ ϕ=
}
c

∂ϕ

∂τ
. (7)

This has the general solution

ϕ(P; τ)=exp(cτP·γ/})ϕ0(P) , (8)

where ϕ0 is an arbitrary bispinor, and a 4-space Fourier transform con-
verts (8) to the coordinate representation, as in (6).

We note that (6), (7) and (8) are manifestly invariant: P ·X is an
invariant, while P·γϕ and exp(c τP·γ/})ϕ0 are bispinors, with the
same transformation law as ϕ and ψ. And because the integration in
(6) is over 4-momentum space, it does not pick out a preferred reference
frame.

Though (3) and (4) have plane symmetry, they do not represent the
usual kind of plane wave. However, in the 4-space theory there is a
proper mass operator, m̂0 = (−i}/c2)∂/∂τ , and imposing the condition
m̂0ψ = m0ψ on (3) gives

(P·γ − im0cI) ζ = 0 . (9)

This in turn simplifies (3) to the 4-space form of a conventional plane
wave:

ψ = exp{i(P ·X + E0τ)/}} ζ . (10)

(The usual Dirac plane wave lacks the term E0τ ≡ m0c
2τ in the ex-

ponential.) As in the more familiar 3-space Dirac theory, the constant
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bispinor ζ is now an eigenvector defined by (9): for the chiral represen-
tation we find

ζ =


iαm0c
iβm0c

α(P3 − P4) + β(P1 − iP2)
α(P1 + iP2)− β(P3 + P4)

 , (11)

where α and β are arbitrary complex constants. The existence of ζ
requires the mass-shell condition

P ·P=−m2
0c

2 . (12)

Despite the formal similarity between these 4-space plane waves and
their conventional analogues, there is a notable difference in their ve-
locities of propagation. The phase 4-velocity of the wave (10) is P/m0,
precisely that of the corresponding classical particle, whereas the usual
Dirac plane wave has a phase 3-velocity of magnitude E/|p| > c, where
p is the 3-momentum. We also note that the charge density is strictly
positive (Q = 0, F2 = 0) in any plane wave given by (10) and (11) - this
is easily verified by choosing a frame in which the spatial momentum
components are zero. However, the same is not true of waves given by
(3) or (4) [7].

We can generate wave packets with sharp proper mass by integrating
(10) over a particular mass shell, i.e. by fixing m0 in (12). (We use
(12) to determine P 4 ≡ E/c , while in (11) α and β are functions of the
3-momentum p.) The factor exp(i E0τ /}) can be dropped from ψ at
this point, and then in place of (6) we obtain the usual free Dirac wave
packet in 3-space:

ψ(x; t) =
∫

exp(ip · x/}) exp(−iEt/})ϕ0(p) d3p , (13)

where p is the 3-momentum, x is the spatial position vector, and the
integration is confined to the mass shell. This is made to appear Lorentz-
invariant if we rewrite it in the form

ψ(x; t) =
∫

exp(iP ·X/})χ(p) (m0c
2/E) d3p , (14)

where χ = (E/m0c
2)ϕ0. Here P · X and d3p/E are Lorentz-invariant,

but now we require χ, not ϕ0 , to be a bispinor. It follows that in
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the usual 3-space formulation one cannot combine Lorentz invariance
with symmetry between the coordinate and momentum representations
- which should not be surprising, in view of the special role assigned to
the time coordinate.

Unless E is also sharp, such wave packets are unphysical from the 4-
space viewpoint, since they give a charge distribution that depends on t ,
but not on τ . Thus the distribution is spread out in time (as expected),
but does not move forward in time as the evolution parameter τ changes.
If E0 and E are both sharp, we have a stationary solution that is valid in
both the 3-space and 4-space forms of Dirac’s theory. When interactions
are included, this last type also covers the crucially important Coulomb-
field solutions.

3 Non-Dispersing Plane Waves

Although the four-space plane waves given by (10) are eigenstates of both
P and m0 , they allow the generation of solutions with indeterminate
proper mass. As a simple example, in (10)-(12) let P = λ K, where K
is a fixed timelike 4-vector, i.e. K · K = − K2 < 0 , so that P · P =
−λ2K2 = − m2

0 c
2 and m0 c = λK. Set } = 1, let α = e−λa, β = 0 ,

in (11), where a is any positive real constant, and integrate (10) with
respect to λ, over 0 ≤ λ <∞. The resulting solution describes the flow
of a charge that is distributed in spacetime: to within a constant factor,
we find that the wave function is

ψ=
ζ0

[a− i(K ·X +Kcτ)]2
, (15)

where

ζ0=


iK
0

K3 −K4

K1 + iK2

 . (16)

This gives the charge density

F = F1=
2K(K3 +K4)

[a2 + (K ·X +Kcτ)2]2
, (17)

while F2 = 0, since in this case Q = 0. We find that J = F1K/K,
in agreement with the 4-velocity c K/ K implied by the term K · X +
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Kcτ in (17). (In the absence of antiparticles, J gives both the particle
current and the charge current.) The solution represents a kind of plane
wave, spread out both spatially (in the direction of its 3-velocity) and
temporally.

However, the wave does not disperse as τ increases. This soliton-like
behaviour is explained by the fact that all contributions to the wave
function have the same 4-velocity, because of the relation P = λ K,
where K is fixed. (Thus the non-dispersive property, which is usually
associated with nonlinear wave equations, is a special case in the present
context.) There is no requirement here for m0 to be sharp, since a
free particle has no need for a definite proper mass. We can find 〈m0〉
using the operator m̂0 = (−i/c2)∂/∂τ : by choosing a frame in which
K1 = K2 = K3 = 0 , and integrating only over time to obtain a finite
expression, one can verify that the result is positive.

4 Non-Dispersing Spherical Wave Packets

It is sometimes useful to split the 4-component field equation into two
coupled 2-component equations. Denote the first two components of ψ by
ξ , and the last two by η . Then (2) becomes a pair of coupled equations:
with the chiral representation of the Dirac matrices (see appendix to Ref.
5 for details), we obtain

σk η,k +
1
c

∂η

∂t
=
i

c

∂ξ

∂τ
, (18)

σk ξ,k − 1
c

∂ξ

∂t
=
i

c

∂η

∂τ
. (19)

In terms of the 2-component spinors ξ and η , the invariants F and Q
that determine F1 and F2, the electron and positron densities (see §1),
are, in the chiral representation,

F=i(ξ†η − η†ξ) , (20)
Q=ξ†η + η†ξ . (21)

Recalling that F2 = 0 ⇔ Q = 0 , and F1 = F2 ⇔ F = 0, we can
look for solutions of the system (18), (19) with particular properties. For
example, setting η = −iξ gives Q = 0 , F = 2ξ†ξ ≥ 0, and reduces (18),
(19) to

σk ξ,k=0 , (22)
∂ξ

∂t
+
δξ

∂τ
=0 . (23)
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This implies that ξ is a function of t− τ , so that the charge distribution
moves forward in coordinate time t as the proper time τ increases. The
precise dependence on t − τ is a matter of choice. For the moment we
assume only that the variables may be separated so that ξ = υ(t−τ)µ(x),
where µ is a 2-component spinor and υ is a scalar function.

On the other hand, if η = iξ we get Q = 0, F = −2ξ†ξ ≤ 0, and (18),
(19) are reduced to

σk ξ,k=0 , (24)
∂ξ

∂t
− δξ

∂τ
=0 . (25)

Now ξ is a function of t+τ , and the charge distribution moves backward
in time as the proper time τ increases. This illustrates the point that the
model has been set up to give a natural description of particles rather
than antiparticles [4, 5]. To obtain solutions in which a distribution of
negative density moves forward in time (as τ increases) we may modify
the field equation, changing the sign of the right-hand side in (1) and
(2).

Returning to (22), (23), we can construct examples of non-dispersing
solutions along the lines of the standard solutions for an inverse-square
field. In the first place, we are looking for solutions of σk µ,k = 0, and
we note that any such solution must also satisfy Laplace’s equation.
The simplest case, similar in mathematical form to the ground state of
hydrogen, is (in spherical polar coordinates r , θ, ϕ)

µ =
[
f(r) cos θ

f(r) sin θ eiϕ

]
. (26)

To use this we need to write σk ∂k in spherical form:

σk ∂k=
[

cos θ sin θ e−iϕ

sin θ eiϕ − cos θ

]
∂

∂r

+
[
− sin θ cos θ e−iϕ

cos θ eiϕ sin θ

]
1
r

∂

∂θ
(27)

+
[

0 −e−iϕ

eiϕ 0

]
i

r sin θ
∂

∂ϕ
.

We now find that (22) reduces to

f ′ + 2f/r = 0 , (28)
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and hence gives

f(r) = k/r2 , (29)

where we can assume that the constant k is real and positive. For υ, we
only need to choose a plausible dependence on t− τ ; for example,

υ = eiE(t−τ)/} e−
1
2 λ(t−τ)2/} , (30)

where E and λ are constants. The space-time charge density is now

F (r, t; τ) =
2k2e−λ(t−τ)2/}

r4
. (31)

To ensure the convergence of ∫ Fr2dr , a cut-off at small r is needed, and
we note that this does not contradict Lorentz invariance: the boundary
is r = r0, say, in the rest frame that we are using here, and can be
transformed into a general frame. (By working in the rest frame we en-
sure that every contribution to the wave packet has the same 4-velocity,
and this property, as in the example of Section 3, accounts for the non-
spreading of the packet.) The constants r0 and k may be chosen so that
4π ∫ F (r, t; τ)r2drdt = 1 .

The complex factor in (30) ensures that E is the expected value of
both the total energy and the proper mass-energy, though the present
solution is not an eigenstate of either. These results are found by direct
application of methods and definitions outlined in Ref. 4; e.g.

〈E〉 =
∫
ψ†(iγ4)Êψ d4X , (32)

where as usual Ê = i} ∂/∂t. Similarly for 〈E0〉, using Ê0 = −i} ∂/∂τ .

5 Discussion

The increasing dispersion of free wave packets is a hallmark of conven-
tional quantum mechanics, relativistic or otherwise. The inevitability
of spreading follows immediately from the fixed mass of a particle: if
there is a distribution of momentum, then there is also a distribution of
velocity.

However, we have seen above that (from a theoretical viewpoint!) a 4-
space approach opens up the possibility of non-dispersing wave packets
in relativistic QED. The crucial new property that allows this is the
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observable (rather than parametric) nature of proper mass in the 4-space
theory. In free-particle solutions, if the proper mass is not required to
take a particular value, we can now have distributions of momentum and
proper mass such that all components of the wave packet have the same
velocity - and so it does not disperse. Along with the observable proper
mass, we also have the invariant evolution parameter τ , which allows
wave functions to be distributed in both space and time.

However, these theoretical wave packets raise obvious questions, in
particular: should quantum mechanics encompass wave packets that do
not disperse? Entanglement aside, particles seem to remain well local-
ized, even after travelling long distances over extended time intervals.
But can non-dispersing wave packets be prepared and tested in the lab-
oratory? And how might they be formed?

This last question appears to lie beyond the scope of the scenario
considered here. Although we have found soliton-like behaviour, it has
not been produced by the interaction of dispersion and nonlinearity that
is characteristic of solitons. The wave equation is strictly linear, and the
4-space approach has allowed all dispersion to be eliminated. However,
we can suggest a possible mechanism for limiting dispersion, because one
of the features [4] of the 4-space picture is the appearance of virtual par-
ticles and antiparticles whenever an interaction occurs. Although this
effect (which increases with the intensity of the interaction) is usually
very small, one could expect any polarization within a wave packet to act
against dispersion. As for the source of the interaction, even the quan-
tum vacuum might suffice. Thus solutions of the sort presented above
may bear some resemblance to states existing within a more realistic
interaction model.
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