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ABSTRACT. Two disjunct universal factorizations of the Clifford al-
gebra Cl3 of biquaternions are derived. These respectively generate
particle and antiparticle solutions of the Dirac equation. Due to their
universality, they also provide parametrizations of every biquaternion
ψ 6= 0 which is noninvertible, ψ eψ = 0, where the approach of Yvon
and Takabayasi fails. It is shown that for ψ 6= 0 , ψ eψ = 0 all vectors
of the tetrade of Takabayasi fµ = ψγµ

eψ, µ = 0, 1, 2, 3, are light-
like fµ · fµ = 0 but mutually orthogonal fµ · fν = 0, µ 6= ν, and the
pseudoscalar f0f1f2f3 vanishes. Thus the tetrade of Takabayasi then
collapses and leads to wrong conclusions ! Making use of the two fac-
torizations, the Dirac equation is solved for plane waves. In the limit
of infinite momentum, or, equivalently, of vanishing restmass, the bi-
quaternions of these solutions are non invertible and can not
be obtained by Yvon-Takabayasi approaches !

1 Introduction

A biquaternion is the most general element of the Clifford algebra Cl3
of the euclidean space R3. Cl3 is the even graded subalgebra of Cl1,3,
the Clifford algebra of the lorentzian time-space manifold R⊗R3 = R1,3.
Basis vectors of degree 1 in Cl1,3 are {γ0, γ1, γ2, γ3}, where γ2

0 = 1,
γ2

k = −1, k = 1, 2, 3, and γµγν = −γνγµ for µ 6= ν = 0, 1, 2, 3.
Basis vectors of degree 1 in the even graded subalgebra Cl3 of Cl1,3 are
defined by {~ek = γkγ0, k = 1, 2, 3}, which satisfy the Clifford product
rules ~e 2

k = 1 and ~ek~ej = −~ej~ek for j 6= k. A vector of degree 1 in Cl3,

~a ∈ R3 ⊂ Cl3 is a linear combination ~a =
3∑

k=1

ak~ek, ak ∈ R ⊂ Cl3,
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correspondingly ~b =
3∑

j=1

bj~ej . With respect to Cl1,3, ~a and ~b are vectors

of degree 2. The product i = ~e1~e2~e3 = γ0γ1γ2γ3, of degree 3 in Cl3 and of
degree 4 in Cl1,3, has the name pseudoscalar and i2 = −1, iγµ = −γµi,
i~a = ~a i. The equation ~a~b = ~a · ~b + i(~a × ~b) defines the conventional
scalar- and crossproduct in R3 and i1

def= ~e2~e3 = i~e1, i2
def= ~e3~e1 = i~e2,

i3
def= ~e1~e2 = i~e3. The elements of R and i1, i2, i3 = i2i1, i2k = −1,

k = 1, 2, 3 generate the even graded subalgebra Cl2 of Cl3, the algebra
of quaternions Q = q0 + i~q, q0 ∈ R, ~q ∈ R3, γ0Q = Qγ0 [1]. Thus any
element ψ ∈ Cl3 may be written in the universal form

ψ = A+ iB , A = α+ i~a , B = β + i~b , α, β ∈ R , ~a,~b ∈ R3. (1.1)

Because ψ is composed of the two quaternions A and B, the name biqua-
ternion is appropriate. On Cl1,3 there is an automorphism, which maps
two elements X, Y ∈ Cl1,3 in X̃, Ỹ ∈ Cl1,3 With respect to the Clifford
operations it is defined by

(X̃ + Y ) = X̃ + Ỹ , (X̃Y ) = Ỹ X̃. (1.2)

The automorphism ˜ is fixed in Cl1,3 and hence for the whole sequence
of its mutually even-grades subalgebras

Cl1,3 ⊃ Cl3 ⊃ Cl2 ⊃ Cl1 = {R + i3R} = C ⊃ C0 = R (1.3)

by the definitions

α̃ = α ∈ R , ṽ = v ∈ R1.3 ⊂ Cl1,3 (1.4)

This implies

ĩ = i = γ0γ1γ2γ3 = ~e1~e2~e3

~̃ek = (γ̃kγ0) = γ0γk = −γkγ0 = −~ek. (1.5)

For any quaternion Q = q0 + i~q, q0 ∈ R, ~q ∈ R3 one finds

Q̃ = q0 − i~q (1.6)

and hence
QQ̃ = q20 + ~q 2 = Q̃Q > 0. (1.7)
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The positive quantity QQ̃ vanishes only if Q = 0. One defines therefore

|Q| =
√
QQ̃ =

√
Q̃Q > 0 (1.8)

as the magnitude of Q. In contradiction to biquaternions ψ ∈ Cl3,
every quaternion Q 6= 0 is invertible

Q−1 =
1
Q

=
Q̃

QQ̃
=

Q̃

|Q|2
(1.9)

2 Universal factorizations of biquaternions

Let the quaternions A, B, C, Q ∈ Cl2 ⊂ Cl3 ⊂ Cl1,3. Then there are
two classes of biquaternions ψ = A+ iB 6= 0, which admit universal fac-
torizations into a simple biquaternion multiplied from the righthandside
by a quaternion Q 6= 0. Proof :

1.)A 6= 0 ⇒ |A| > 0, A−1|A|2 = Ã⇒
ψ = A+ iB = (1 + iBA−1)A = (1 + iC)A,

C = c0 − i~c, c0 ∈ R, ~c ∈ R3 ⇒
ψ = [1 + i(c0 − i~c )]A = [1 + ic0 + ~c ]A =

=
(

1 + ic0√
1 + c20

+
~c√

1 + c20

)
A

√
1 + c20 =

= (eiη + ~n)Q def= ψ+, −
π

2
< η <

π

2
, ~n ∈ R3, Q ∈ Cl2 − {0}. (2.1)

2.)B 6= 0 ⇒ ψ = i(B − iA), 1.) ⇒ ψ = iψ+ = i(eiη + ~n)Q def= ψ−,

− π

2
< η <

π

2
, ~n ∈ R3, Q ∈ Cl2 − {0}. (2.2)

q.e.d..
In the following section it is shown that in case of plane wave solutions

of the Dirac equation the ψ+ class describes the particles and the
ψ− class describes the antiparticles.

All non-invertible biquaternions ψ 6= 0, ψψ̃ = 0 are obtained from
(2.1) and (2.2) by calculating

ψ±ψ̃± = ±(eiη + ~n)QQ̃(eiη − ~n) = ±|Q|2(e2iη − ~n2)
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or :

ψ±ψ̃± = ±|Q|2
[
cos(2η)− ~n2 + i sin(2η)

]
, −π

2
< η <

π

2
. (2.3)

So, for Q 6= 0, ψ± 6= 0 and ψ±ψ̃± = 0 if and only if

η = 0 and ~n 2 = 1. (2.4)

This ample six-parameter variety is lost in the Yvon [2]-Takabayasi [3]
representation of Dirac theory. The same variety was used by G. Lochak
[4]. In the next section it is demonstrated that plane solutions of the
Dirac equation fulfill (2.4) exactly if the rest mass vanishes (luxons), or
equivalently, if the magnitude of the momentum |~k| tends to infinity.

Let us enumerate some further consequences of (2.4). Equations (2.1)
and (2.2) yield the tetrade of Takabayasi

fµ
def= ψ±γµψ̃± = (eiη + ~n)QγµQ̃(eiη − ~n) ∈ R1,3, µ = 0, 1, 2, 3 (2.5)

f2
µ = fµ · fµ = γ2

µ|Q|4
[
(1− ~n 2)2 + 4~n 2 sin2 η

]
(2.6)

fµ · fν = 0 for µ 6= ν = 0, 1, 2, 3 (2.7)

fµ ∧ fν = |Q|2(e−2iη − ~n 2)(eiη + ~n)Q(γµ ∧ γν)Q̃(eiη − ~n) (2.8)

f0f1f2f3 = i|Q|8
[
(1− ~n 2)2 + 4~n 2 sin2 η

]2 = f0 ∧ f1 ∧ f2 ∧ f3. (2.9)

This tetrade collapses completely in case of (2.4) and thus leads to wrong
conclusions when (2.4) is approached ! In particular the Dirac current
j = f0 becomes lightlike in case of (2.4). The spinvector s = f3 behaves
in the same way if (2.4) holds :

j · s = 0, s2 = −j2 = 0, j ∧ s = 0 (2.10)

This behaviour, used in [4], is in strong contrast to the widespread belief
that always j2 > 0, s2 < 0 and j ∧ s 6= 0. These are some of the most
striking mistakes caused by the blind application of the approach of Yvon
and Takabayasi !
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3 Plane waves.

A formulation of Dirac theory which is independent of matrix re-
presentations and invariant with respect to the choice of time-space co-
ordinates was discovered and developped by David Hestenes [5]. In his
theory, the Dirac equation for a particle of rest mass

m = µm0 , o 6 µ <∞ , m0 > 0 (3.1)

and charge q ∈ R in an external vector potential

A = A(x) = [A0(x) + ~A(x)]γ0 ∈ R1,3 (3.2)

at the point x = (ct+ ~r)γ0 ∈ R1,3 is given by

~∂xψ(x)i3 −
q

c
A(x)ψ(x) = µm0cψ(x)γ0 , ψ(x) ∈ Cl3. (3.3)

When instead of the time t ∈ R and the position vector ~r ∈ R3 the
dimensionless variables z0 and ~z are introduced by

ct =6 λz0 , ~r =6 λ~z , 6 λ =
~
m0c

(3.4)

the Dirac-Hestenes equation (3.3) is

µψγ0 + aψ = ∂ψi3 , ∂ =6 λ∂x , (3.5)

a =
q

m0c2
A(6 λz) = [a0(z0, ~z ) + ~a(z0, ~z )]γ0 (3.6)

After the gauge transform

ψ = ϕei3χ , χ ∈ R , ϕ ∈ Cl3 , (3.7)

and a split of time from space variables, (3.5) finally has the form

µγ0ϕγ0 + (g0 + ~g)ϕ = (∂0 + ~∂)ϕi3 , ϕ = ϕ(z0, ~z ) ∈ Cl3 , (3.8)

∂0ϕ =
∂

∂z0
ϕ(z0, ~z ) = lim

α→0

∂

∂α
ϕ(z0 + α, ~z ) ,

~∂ϕ = lim
α→0

3∑
k=1

~ek
∂

∂α
ϕ(z0, ~z + α~ek ) , (3.9)

g0 = ∂0χ+ a0 , ~g = ~∂χ− ~a , χ = χ(z0, ~z ) ∈ R. (3.10)
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The biquaternion ϕ may according to (2.1) and (2.2) be factorized in the
two universal ways

ϕ+ = (eiη + ~n )Q def= Ω , ϕ− = iΩ , (3.11)

and with the definition

ε = +1 if ϕ = ϕ+ , ε = −1 if ϕ = ϕ− , (3.12)

equation (3.8) then becomes

εµγ0Ωγ0 + (g0 + ~g )Ω = (∂0 + ~∂)Ωi3. (3.13)

Plane wave solutions of (3.13) are obtained by putting

a = 0 , χ = k0z0 + ~k · ~z , k0 = constant ∈ R ,

~k = constant ∈ R3 , Ω = constant ∈ Cl2 . (3.14)

This leads in (3.10) to g0 = k0, ~g = ~k and hence for Q 6= 0 in (3.11) with
(3.13) to the biquaternion equation

εµ(e−iη − ~n ) + (k0 + ~k )(eiη + ~n ) = 0, (3.15)

which determines ~n, η and k0 in terms of ε, µ and ~k. In order to solve
for ~n one may write (3.15) in the form

(~k + k0 − εµ)~n = −[(~k + k0)eiη + εµe−iη]. (3.16)

For η = 0 and ~k = ~0 this yields(k0 − εµ)~n = −(k0 + εµ), whence

k0 = −εµ , if η = 0 and ~k = ~0. (3.17)

Multiplying (3.16) from the left by ~k − k0 + εµ, one finds after some
rearrangement and making use of (3.12), i.e., ε2 = 1,

[~k
2
− (k0 − εµ)2]~n

= −
[
2εµ~k cos η + (~k

2
− k2

0)e
iη + µ2e−iη + 2iεµk0 sin η

]
. (3.18)

The left hand side of equation (3.18) is a vector of degree 1 (in Cl3).
The right hand side of (3.18) in addition contains degree 0 and degree 3
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summands, which have to vanish. With −π
2 < η < π

2 and µk0 6= 0 this
implies η = 0 and

k0 = ±εw , w =
√
µ2 + k2 > µ , k = |~k| > 0. (3.19)

The sign of k0 in (3.19) may be fixed by comparison with (3.17) for
k = 0. In this way, one finally obtains the result

~n =
ε~k

µ+ w
, η = 0 , k0 = −εw , w =

√
µ2 + k2 , k = |~k| , (3.20)

which with (3.14), (3.12), (3.11), (3.7) leads to the particle solution ψ+

and antiparticle solution ψ−

ψ+ =
(
1 +

~k

µ+ w

)
Qei3(−wz0+~k·~z )

ψ− = i
(
1−

~k

µ+ w

)
Qei3(wz0+~k·~z ). (3.21)

Note the different signs of energies w and momenta ~k in ψ± !
This section ends with a discussion of (3.21) in the infinite momentum

limit k = |~k| → ∞, or, equivalently rest mass m = µm0 → 0 ((3.1)).
In these cases, according to (3.20), |~n| = 1, whence ψ± in (3.21) then
are of the form (2.4). Although this limit behaviour is an exact result of
the Dirac equation, it is excluded in all Yvon-Takabayasi approaches to
Dirac theory because they presume ψ±ψ̃± 6= 0 !
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