On the fallacies of Yvon-Takabayasi approaches to Dirac theory and their rectification

Heinz Krüger
Private address : Hasengasse 54
D67705 Trippstadt, Germany

Abstract

Two disjunct universal factorizations of the Clifford algebra Cl_{3} of biquaternions are derived. These respectively generate particle and antiparticle solutions of the Dirac equation. Due to their universality, they also provide parametrizations of every biquaternion $\psi \neq 0$ which is noninvertible, $\psi \widetilde{\psi}=0$, where the approach of Yvon and Takabayasi fails. It is shown that for $\psi \neq 0, \psi \widetilde{\psi}=0$ all vectors of the tetrade of Takabayasi $f_{\mu}=\psi \gamma_{\mu} \widetilde{\psi}, \mu=0,1,2,3$, are lightlike $f_{\mu} \cdot f_{\mu}=0$ but mutually orthogonal $f_{\mu} \cdot f_{\nu}=0, \mu \neq \nu$, and the pseudoscalar $f_{0} f_{1} f_{2} f_{3}$ vanishes. Thus the tetrade of Takabayasi then collapses and leads to wrong conclusions! Making use of the two factorizations, the Dirac equation is solved for plane waves. In the limit of infinite momentum, or, equivalently, of vanishing restmass, the biquaternions of these solutions are non invertible and can not be obtained by Yvon-Takabayasi approaches!

1 Introduction

A biquaternion is the most general element of the Clifford algebra Cl_{3} of the euclidean space $\mathbb{R}^{3} . C l_{3}$ is the even graded subalgebra of $C l_{1,3}$, the Clifford algebra of the lorentzian time-space manifold $\mathbb{R} \otimes \mathbb{R}^{3}=\mathbb{R}^{1,3}$. Basis vectors of degree 1 in $C l_{1,3}$ are $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$, where $\gamma_{0}^{2}=1$, $\gamma_{k}^{2}=-1, k=1,2,3$, and $\gamma_{\mu} \gamma_{\nu}=-\gamma_{\nu} \gamma_{\mu}$ for $\mu \neq \nu=0,1,2,3$. Basis vectors of degree 1 in the even graded subalgebra $C l_{3}$ of $C l_{1,3}$ are defined by $\left\{\vec{e}_{k}=\gamma_{k} \gamma_{0}, k=1,2,3\right\}$, which satisfy the Clifford product rules $\vec{e}_{k}^{2}=1$ and $\vec{e}_{k} \vec{e}_{j}=-\vec{e}_{j} \vec{e}_{k}$ for $j \neq k$. A vector of degree 1 in $C l_{3}$, $\vec{a} \in \mathbb{R}^{3} \subset C l_{3}$ is a linear combination $\vec{a}=\sum_{k=1}^{3} a_{k} \vec{e}_{k}, a_{k} \in \mathbb{R} \subset C l_{3}$,
correspondingly $\vec{b}=\sum_{j=1}^{3} b_{j} \vec{e}_{j}$. With respect to $C l_{1,3}, \vec{a}$ and \vec{b} are vectors of degree 2 . The product $i=\vec{e}_{1} \vec{e}_{2} \vec{e}_{3}=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$, of degree 3 in $C l_{3}$ and of degree 4 in $C l_{1,3}$, has the name pseudoscalar and $i^{2}=-1$, $i \gamma_{\mu}=-\gamma_{\mu} i$, $i \vec{a}=\vec{a} i$. The equation $\vec{a} \vec{b}=\vec{a} \cdot \vec{b}+i(\vec{a} \times \vec{b})$ defines the conventional scalar- and crossproduct in \mathbb{R}^{3} and $i_{1} \stackrel{\text { def }}{=} \vec{e}_{2} \vec{e}_{3}=i \vec{e}_{1}, i_{2} \stackrel{\text { def }}{=} \vec{e}_{3} \vec{e}_{1}=i \vec{e}_{2}$, $i_{3} \stackrel{\text { def }}{=} \vec{e}_{1} \vec{e}_{2}=i \vec{e}_{3}$. The elements of \mathbb{R} and $i_{1}, i_{2}, i_{3}=i_{2} i_{1}, i_{k}^{2}=-1$, $k=1,2,3$ generate the even graded subalgebra $C l_{2}$ of $C l_{3}$, the algebra of quaternions $Q=q_{0}+i \vec{q}, q_{0} \in \mathbb{R}, \vec{q} \in \mathbb{R}^{3}, \gamma_{0} Q=Q \gamma_{0}$ [1]. Thus any element $\psi \in C l_{3}$ may be written in the universal form

$$
\begin{equation*}
\psi=A+i B, \quad A=\alpha+i \vec{a}, \quad B=\beta+i \vec{b}, \quad \alpha, \beta \in \mathbb{R}, \quad \vec{a}, \vec{b} \in \mathbb{R}^{3} \tag{1.1}
\end{equation*}
$$

Because ψ is composed of the two quaternions A and B, the name biquaternion is appropriate. On $C l_{1,3}$ there is an automorphism, which maps two elements $X, Y \in C l_{1,3}$ in $\widetilde{X}, \widetilde{Y} \in C l_{1,3}$ With respect to the Clifford operations it is defined by

$$
\begin{equation*}
(\widetilde{X+Y})=\widetilde{X}+\widetilde{Y}, \quad(\widetilde{X Y})=\tilde{Y} \widetilde{X} \tag{1.2}
\end{equation*}
$$

The automorphism ${ }^{\sim}$ is fixed in $C l_{1,3}$ and hence for the whole sequence of its mutually even-grades subalgebras

$$
\begin{equation*}
C l_{1,3} \supset C l_{3} \supset C l_{2} \supset C l_{1}=\left\{\mathbb{R}+i_{3} \mathbb{R}\right\}=\mathbb{C} \supset C_{0}=\mathbb{R} \tag{1.3}
\end{equation*}
$$

by the definitions

$$
\begin{equation*}
\widetilde{\alpha}=\alpha \in \mathbb{R}, \quad \widetilde{v}=v \in \mathbb{R}^{1.3} \subset C l_{1,3} \tag{1.4}
\end{equation*}
$$

This implies

$$
\begin{align*}
\widetilde{i} & =i=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}=\vec{e}_{1} \vec{e}_{2} \vec{e}_{3} \\
\widetilde{\vec{e}_{k}} & =\left(\widetilde{\gamma_{k} \gamma_{0}}\right)=\gamma_{0} \gamma_{k}=-\gamma_{k} \gamma_{0}=-\vec{e}_{k} \tag{1.5}
\end{align*}
$$

For any quaternion $Q=q_{0}+i \vec{q}, q_{0} \in \mathbb{R}, \vec{q} \in \mathbb{R}^{3}$ one finds

$$
\begin{equation*}
\widetilde{Q}=q_{0}-i \vec{q} \tag{1.6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
Q \widetilde{Q}=q_{0}^{2}+\vec{q}^{2}=\widetilde{Q} Q \geqslant 0 \tag{1.7}
\end{equation*}
$$

The positive quantity $Q \widetilde{Q}$ vanishes only if $Q=0$. One defines therefore

$$
\begin{equation*}
|Q|=\sqrt{Q \widetilde{Q}}=\sqrt{\widetilde{Q} Q} \geqslant 0 \tag{1.8}
\end{equation*}
$$

as the magnitude of Q. In contradiction to biquaternions $\psi \in C l_{3}$, every quaternion $Q \neq 0$ is invertible

$$
\begin{equation*}
Q^{-1}=\frac{1}{Q}=\frac{\widetilde{Q}}{Q \widetilde{Q}}=\frac{\widetilde{Q}}{|Q|^{2}} \tag{1.9}
\end{equation*}
$$

2 Universal factorizations of biquaternions

Let the quaternions $A, B, C, Q \in C l_{2} \subset C l_{3} \subset C l_{1,3}$. Then there are two classes of biquaternions $\psi=A+i B \neq 0$, which admit universal factorizations into a simple biquaternion multiplied from the righthandside by a quaternion $Q \neq 0$. Proof :

$$
\text { 1.) } \begin{align*}
A & \neq 0 \Rightarrow|A|>0, A^{-1}|A|^{2}=\widetilde{A} \Rightarrow \\
\psi & =A+i B=\left(1+i B A^{-1}\right) A=(1+i C) A, \\
C & =c_{0}-i \vec{c}, c_{0} \in \mathbb{R}, \vec{c} \in \mathbb{R}^{3} \Rightarrow \\
\psi & =\left[1+i\left(c_{0}-i \vec{c}\right)\right] A=\left[1+i c_{0}+\vec{c}\right] A= \\
= & \left(\frac{1+i c_{0}}{\sqrt{1+c_{0}^{2}}}+\frac{\vec{c}}{\sqrt{1+c_{0}^{2}}}\right) A \sqrt{1+c_{0}^{2}}= \\
= & \left(e^{i \eta}+\vec{n}\right) Q \stackrel{\text { def }}{=} \psi_{+},-\frac{\pi}{2}<\eta<\frac{\pi}{2}, \vec{n} \in \mathbb{R}^{3}, Q \in C l_{2}-\{0\} . \tag{2.1}
\end{align*}
$$

2.) $B \neq 0 \Rightarrow \psi=i(B-i A), 1.) \Rightarrow \psi=i \psi_{+}=i\left(e^{i \eta}+\vec{n}\right) Q \stackrel{\text { def }}{=} \psi_{-}$,

$$
\begin{equation*}
-\frac{\pi}{2}<\eta<\frac{\pi}{2}, \vec{n} \in \mathbb{R}^{3}, Q \in C l_{2}-\{0\} . \tag{2.2}
\end{equation*}
$$

q.e.d..

In the following section it is shown that in case of plane wave solutions of the Dirac equation the ψ_{+}class describes the particles and the ψ_{-}class describes the antiparticles.

All non-invertible biquaternions $\psi \neq 0, \psi \tilde{\psi}=0$ are obtained from (2.1) and (2.2) by calculating

$$
\psi_{ \pm} \widetilde{\psi}_{ \pm}= \pm\left(e^{i \eta}+\vec{n}\right) Q \widetilde{Q}\left(e^{i \eta}-\vec{n}\right)= \pm|Q|^{2}\left(e^{2 i \eta}-\vec{n}^{2}\right)
$$

or :

$$
\begin{equation*}
\psi_{ \pm} \widetilde{\psi}_{ \pm}= \pm|Q|^{2}\left[\cos (2 \eta)-\vec{n}^{2}+i \sin (2 \eta)\right],-\frac{\pi}{2}<\eta<\frac{\pi}{2} \tag{2.3}
\end{equation*}
$$

So, for $Q \neq 0, \psi_{ \pm} \neq 0$ and $\psi_{ \pm} \tilde{\psi}_{ \pm}=0$ if and only if

$$
\begin{equation*}
\eta=0 \text { and } \vec{n}^{2}=1 \tag{2.4}
\end{equation*}
$$

This ample six-parameter variety is lost in the Yvon [2]-Takabayasi [3] representation of Dirac theory. The same variety was used by G. Lochak [4]. In the next section it is demonstrated that plane solutions of the Dirac equation fulfill (2.4) exactly if the rest mass vanishes (luxons), or equivalently, if the magnitude of the momentum $|\vec{k}|$ tends to infinity.

Let us enumerate some further consequences of (2.4). Equations (2.1) and (2.2) yield the tetrade of Takabayasi

$$
\begin{gather*}
f_{\mu} \stackrel{\text { def }}{=} \psi_{ \pm} \gamma_{\mu} \widetilde{\psi}_{ \pm}=\left(e^{i \eta}+\vec{n}\right) Q \gamma_{\mu} \widetilde{Q}\left(e^{i \eta}-\vec{n}\right) \in \mathbb{R}^{1,3}, \mu=0,1,2,3 \tag{2.5}\\
f_{\mu}^{2}=f_{\mu} \cdot f_{\mu}=\gamma_{\mu}^{2}|Q|^{4}\left[\left(1-\vec{n}^{2}\right)^{2}+4 \vec{n}^{2} \sin ^{2} \eta\right] \tag{2.6}\\
f_{\mu} \cdot f_{\nu}=0 \text { for } \mu \neq \nu=0,1,2,3 \tag{2.7}\\
f_{\mu} \wedge f_{\nu}=|Q|^{2}\left(e^{-2 i \eta}-\vec{n}^{2}\right)\left(e^{i \eta}+\vec{n}\right) Q\left(\gamma_{\mu} \wedge \gamma_{\nu}\right) \widetilde{Q}\left(e^{i \eta}-\vec{n}\right) \tag{2.8}\\
f_{0} f_{1} f_{2} f_{3}=i|Q|^{8}\left[\left(1-\vec{n}^{2}\right)^{2}+4 \vec{n}^{2} \sin ^{2} \eta\right]^{2}=f_{0} \wedge f_{1} \wedge f_{2} \wedge f_{3} . \tag{2.9}
\end{gather*}
$$

This tetrade collapses completely in case of (2.4) and thus leads to wrong conclusions when (2.4) is approached! In particular the Dirac current $j=f_{0}$ becomes lightlike in case of (2.4). The spinvector $s=f_{3}$ behaves in the same way if (2.4) holds :

$$
\begin{equation*}
j \cdot s=0, s^{2}=-j^{2}=0, j \wedge s=0 \tag{2.10}
\end{equation*}
$$

This behaviour, used in [4], is in strong contrast to the widespread belief that always $j^{2}>0, s^{2}<0$ and $j \wedge s \neq 0$. These are some of the most striking mistakes caused by the blind application of the approach of Yvon and Takabayasi!

3 Plane waves.

A formulation of Dirac theory which is independent of matrix representations and invariant with respect to the choice of time-space coordinates was discovered and developped by David Hestenes [5]. In his theory, the Dirac equation for a particle of rest mass

$$
\begin{equation*}
m=\mu m_{0}, \quad o \leqslant \mu<\infty, \quad m_{0}>0 \tag{3.1}
\end{equation*}
$$

and charge $q \in \mathbb{R}$ in an external vector potential

$$
\begin{equation*}
A=A(x)=\left[A_{0}(x)+\vec{A}(x)\right] \gamma_{0} \in \mathbb{R}^{1,3} \tag{3.2}
\end{equation*}
$$

at the point $x=(c t+\vec{r}) \gamma_{0} \in \mathbb{R}^{1,3}$ is given by

$$
\begin{equation*}
\hbar \partial_{x} \psi(x) i_{3}-\frac{q}{c} A(x) \psi(x)=\mu m_{0} c \psi(x) \gamma_{0}, \psi(x) \in C l_{3} . \tag{3.3}
\end{equation*}
$$

When instead of the time $t \in \mathbb{R}$ and the position vector $\vec{r} \in \mathbb{R}^{3}$ the dimensionless variables z_{0} and \vec{z} are introduced by

$$
\begin{equation*}
c t=A z_{0}, \vec{r}=\lambda \vec{z}, \lambda=\frac{\hbar}{m_{0} c} \tag{3.4}
\end{equation*}
$$

the Dirac-Hestenes equation (3.3) is

$$
\begin{align*}
& \mu \psi \gamma_{0}+a \psi=\partial \psi i_{3}, \partial=\lambda \partial_{x}, \tag{3.5}\\
& a=\frac{q}{m_{0} c^{2}} A(\lambda z)=\left[a_{0}\left(z_{0}, \vec{z}\right)+\vec{a}\left(z_{0}, \vec{z}\right)\right] \gamma_{0} \tag{3.6}
\end{align*}
$$

After the gauge transform

$$
\begin{equation*}
\psi=\varphi e^{i_{3} \chi}, \chi \in \mathbb{R}, \varphi \in C l_{3}, \tag{3.7}
\end{equation*}
$$

and a split of time from space variables, (3.5) finally has the form

$$
\begin{align*}
& \mu \gamma_{0} \varphi \gamma_{0}+\left(g_{0}+\vec{g}\right) \varphi=\left(\partial_{0}+\vec{\partial}\right) \varphi i_{3}, \varphi=\varphi\left(z_{0}, \vec{z}\right) \in C l_{3}, \tag{3.8}\\
& \partial_{0} \varphi=\frac{\partial}{\partial z_{0}} \varphi\left(z_{0}, \vec{z}\right)=\lim _{\alpha \rightarrow 0} \frac{\partial}{\partial \alpha} \varphi\left(z_{0}+\alpha, \vec{z}\right), \\
& \vec{\partial} \varphi=\lim _{\alpha \rightarrow 0} \sum_{k=1}^{3} \vec{e}_{k} \frac{\partial}{\partial \alpha} \varphi\left(z_{0}, \vec{z}+\alpha \vec{e}_{k}\right), \tag{3.9}\\
& g_{0}=\partial_{0} \chi+a_{0}, \vec{g}=\vec{\partial} \chi-\vec{a}, \chi=\chi\left(z_{0}, \vec{z}\right) \in \mathbb{R} . \tag{3.10}
\end{align*}
$$

The biquaternion φ may according to (2.1) and (2.2) be factorized in the two universal ways

$$
\begin{equation*}
\varphi_{+}=\left(e^{i \eta}+\vec{n}\right) Q \stackrel{\text { def }}{=} \Omega, \quad \varphi_{-}=i \Omega, \tag{3.11}
\end{equation*}
$$

and with the definition

$$
\begin{equation*}
\varepsilon=+1 \text { if } \varphi=\varphi_{+}, \quad \varepsilon=-1 \text { if } \varphi=\varphi_{-} \tag{3.12}
\end{equation*}
$$

equation (3.8) then becomes

$$
\begin{equation*}
\varepsilon \mu \gamma_{0} \Omega \gamma_{0}+\left(g_{0}+\vec{g}\right) \Omega=\left(\partial_{0}+\vec{\partial}\right) \Omega i_{3} \tag{3.13}
\end{equation*}
$$

Plane wave solutions of (3.13) are obtained by putting

$$
\begin{align*}
& a=0, \chi=k_{0} z_{0}+\vec{k} \cdot \vec{z}, \quad k_{0}=\text { constant } \in \mathbb{R} \\
& \vec{k}=\text { constant } \in \mathbb{R}^{3}, \Omega=\text { constant } \in C l_{2} \tag{3.14}
\end{align*}
$$

This leads in (3.10) to $g_{0}=k_{0}, \vec{g}=\vec{k}$ and hence for $Q \neq 0$ in (3.11) with (3.13) to the biquaternion equation

$$
\begin{equation*}
\varepsilon \mu\left(e^{-i \eta}-\vec{n}\right)+\left(k_{0}+\vec{k}\right)\left(e^{i \eta}+\vec{n}\right)=0 \tag{3.15}
\end{equation*}
$$

which determines \vec{n}, η and k_{0} in terms of ε, μ and \vec{k}. In order to solve for \vec{n} one may write (3.15) in the form

$$
\begin{equation*}
\left(\vec{k}+k_{0}-\varepsilon \mu\right) \vec{n}=-\left[\left(\vec{k}+k_{0}\right) e^{i \eta}+\varepsilon \mu e^{-i \eta}\right] \tag{3.16}
\end{equation*}
$$

For $\eta=0$ and $\vec{k}=\overrightarrow{0}$ this yields $\left(k_{0}-\varepsilon \mu\right) \vec{n}=-\left(k_{0}+\varepsilon \mu\right)$, whence

$$
\begin{equation*}
k_{0}=-\varepsilon \mu, \text { if } \eta=0 \text { and } \vec{k}=\overrightarrow{0} \tag{3.17}
\end{equation*}
$$

Multiplying (3.16) from the left by $\vec{k}-k_{0}+\varepsilon \mu$, one finds after some rearrangement and making use of (3.12), i.e., $\varepsilon^{2}=1$,

$$
\begin{align*}
& {\left[\vec{k}^{2}-\left(k_{0}-\varepsilon \mu\right)^{2}\right] \vec{n}} \\
& =-\left[2 \varepsilon \mu \vec{k} \cos \eta+\left(\vec{k}^{2}-k_{0}^{2}\right) e^{i \eta}+\mu^{2} e^{-i \eta}+2 i \varepsilon \mu k_{0} \sin \eta\right] \tag{3.18}
\end{align*}
$$

The left hand side of equation (3.18) is a vector of degree 1 (in $C l_{3}$). The right hand side of (3.18) in addition contains degree 0 and degree 3
summands, which have to vanish. With $-\frac{\pi}{2}<\eta<\frac{\pi}{2}$ and $\mu k_{0} \neq 0$ this implies $\eta=0$ and

$$
\begin{equation*}
k_{0}= \pm \varepsilon w, w=\sqrt{\mu^{2}+k^{2}} \geqslant \mu, k=|\vec{k}| \geqslant 0 . \tag{3.19}
\end{equation*}
$$

The sign of k_{0} in (3.19) may be fixed by comparison with (3.17) for $k=0$. In this way, one finally obtains the result

$$
\begin{equation*}
\vec{n}=\frac{\varepsilon \vec{k}}{\mu+w}, \eta=0, k_{0}=-\varepsilon w, w=\sqrt{\mu^{2}+k^{2}}, k=|\vec{k}| \tag{3.20}
\end{equation*}
$$

which with (3.14), (3.12), (3.11), (3.7) leads to the particle solution ψ_{+} and antiparticle solution ψ_{-}

$$
\begin{align*}
& \psi_{+}=\left(1+\frac{\vec{k}}{\mu+w}\right) Q e^{i_{3}\left(-w z_{0}+\vec{k} \cdot \vec{z}\right)} \\
& \psi_{-}=i\left(1-\frac{\vec{k}}{\mu+w}\right) Q e^{i_{3}\left(w z_{0}+\vec{k} \cdot \vec{z}\right)} . \tag{3.21}
\end{align*}
$$

Note the different signs of energies w and momenta \vec{k} in $\psi_{ \pm}$!
This section ends with a discussion of (3.21) in the infinite momentum limit $k=|\vec{k}| \rightarrow \infty$, or, equivalently rest mass $m=\mu m_{0} \rightarrow 0((3.1))$. In these cases, according to (3.20), $|\vec{n}|=1$, whence $\psi_{ \pm}$in (3.21) then are of the form (2.4). Although this limit behaviour is an exact result of the Dirac equation, it is excluded in all Yvon-Takabayasi approaches to Dirac theory because they presume $\psi_{ \pm} \widetilde{\psi}_{ \pm} \neq 0$!

References

[1] Leonard Euler published his quaternions in a letter to Goldbach at 4.5.1748. (57 years before W.R. Hamilton was born)
[2] J. Yvon : Equations de Dirac-Madelung, J. Phys. et le Radium, VIII, 18 (1940).
[3] T. Takabayasi : Relativistic Hydrodynamics of the Dirac Matter, Supp. of the Prog. Theor. Phys., 4, 1 (1957).
[4] G. Lochak: Un monopôle magnétique dans le champ de Dirac (Etats magnétiques du champ de Majorana) Ann. Fond. Louis de Broglie, 17 $n^{\circ} 21992$
[5] D. Hestenes: Mysteries and Insights of Dirac Theory, Ann. Fond. Louis de Broglie, $28 n^{\circ} 3-4,367$ (2003), Section III, eqs. (8)-(15) and the comment on page 375 about Takabayasi

