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ABSTRACT. Experimental work in electron channeling in silicon 
crystals has yielded a resonance suggestive of de Broglie’s internal 
clock for the electron, but with a Monte Carlo simulated frequency 
twice that of de Broglie’s. An explanation is provided based on a 
previously developed four-dimensional model of the electron. The 
additional spatial degree of freedom resolves a large number of phys-
ical and mathematical conceptual  issues in traditional relativistic 
particle and wave mechanics including the mechanism for de Brog-
lie’s internal clock and the unexpected simulated channeling frequen-
cy.  
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1 Introduction 

Experimental work in electron channeling in silicon crystals [1,2] has at-
tempted to observe, albeit indirectly, de Broglie’s internal “clock” frequency 
in electrons. Initial results suggested that such a frequency may indeed exist. 
However, Monte Carlo simulations, which accurately fit the well-known 
“rosette motion” resonance profile at near axial directions, suggested that the 
fundamental interaction length is one-half the inter-atomic spacing thereby 
implying that the interaction frequency is twice de Broglie’s clock frequen-
cy.  
 De Broglie’s clock frequency [3] is 
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! cl = ! c"   (1) 
 

where     

 

! c = mc2 / h,   m  is the mass, and 
  

 

! = 1" # 2( )1/ 2
 is the inverse of the 

Lorentz factor. It is easy to see that   

 

! cl  decreases with increasing relative 
velocity, a direct manifestation of time dilation on the clock period 

    

 

! cl = ! c /" . In contrast, the de Broglie wave frequency is given by 
 

     

 

! p = ! c /" ,  (2) 
 
which increases with relative velocity. The difference in the form of these 
frequencies was one of the motivating factors that led de Broglie to develop 
his wave mechanics.  
 A key assumption in his electron model was that of a point particle 
whose rest frequency   

 

! c  in (1) and (2) arises from the same periodic phe-
nomenon, which he identified with his internal clock. One of his arguments 
in this regard was to show that the electron could be modeled as a periodic 
oscillation that obeys the Lorentz transformation 
 

     

 

a0e
i! c " t # a0e

i! t$x /% p( )     (3) 
 
where     

 

! c = mc2 / h ,     

 

! = ! c /" , and     

 

! p = c / " . Here de Broglie identified 
the left side of the transformation as that of a periodic or pulsating phenom-
enon that extends throughout all space while the right side is strictly a 
“phase” wave propagating at the speed     

 

! p = c / " . It was therefore natural 
for him to identify the pulsating amplitude with a clock-like phenomenon 
that behaved relativistically in accordance with (1). However, given the fact 
that the phase wave has been observed while the clock phenomenon has not, 
the internal clock concept has been all but abandoned by the physics com-
munity. Although the channeling experiment is an attempt to revise the con-
cept, the anomalous factor of two in the simulation seems to point to some 
other process as the responsible agent, such as zitterbewegung [1].  
 In this paper it is shown that the internal clock concept can be preserved 
if one generalizes the de Broglie model to that of a four-dimensional guided 
interference wave. In this case the clock and wave frequencies arise due to 
different physical processes that share a common rest frequency, the latter 
reducing to a standing wave in its rest frame. As will be seen, the model 
accounts for not only the observed resonant momentum at the de Broglie 
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clock frequency but also the reason for the anomalous factor of two in the 
simulation.  
 In previous work by the author [4] it was shown that a photon propagat-
ing in a planar waveguide exhibits all of the kinematic and mass related 
properties of an elementary particle, albeit in two dimensions rather than 
three, the third dimension corresponding to the transverse dimension of the 
guide. In a subsequent article [5] it was shown that the traditional three-
dimensional theories of relativistic particle and wave mechanics, both classi-
cal and quantum, can be viewed as incomplete descriptions of four-
dimensional guided wave phenomena, the transverse dimension correspond-
ing to a fourth Cartesian dimension. The resultant kinematics is referred to 
as guided-wave mechanics, a name intended to convey the type of propaga-
tion rather than any particular type of boundary conditions.  
 Although the correspondence between the equations of guided wave 
theory and wave mechanics has been known for some time [6] it has been 
exceedingly difficult to relate the two theories in any meaningful way. The 
difficulty can be traced to the fact that guided wave theory requires the in-
troduction of a preferred direction in space, the transverse guide axis, which 
is incompatible with known particle kinematics, which is isotropic. As will 
be seen guided-wave mechanics removes this restriction by introducing an 
additional degree of freedom into the model in the form of a fourth spatial 
dimension. This in turn leads to intuitive and self-consistent explanations for 
numerous conceptual difficulties inherent in traditional theories while reduc-
ing to the latter in the three dimensions of known space.  
 Most noteworthy in this regard is its ability to provide models for the 
concept of mass, both inertial and gravitational, the equivalence principle of 
general relativity, and wave-particle duality in elementary matter. But just as 
interesting is its ability to lend insight into a variety of well-known postu-
lates and ad hoc mathematical constructs. These include, among others, the 
classical relativistic Lagrangian, Lorentz invariants and four-vectors, the 
differential operator prescriptions of quantum mechanics, the Klein-Gordon 
equation, the Dirac equation, the Foldy-Wouthuysen transformation, zitter-
bewegung, etc. A brief overview sufficient to discuss the channeling exper-
iment is given below. The reader is referred to [5] for more detail. 

2 Overview 

The guided-wave mechanical model of the electron is a generalization of 
traditional wave mechanics, and relativistic quantum mechanics in general, 
to four spatial dimensions. Although the emphasis here is on de Broglie’s 
wave mechanics and his internal clock concept, any reinterpretations of his 
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theory must be shown to be consistent with the Dirac theory as well. To that 
end a unique mathematical approach is taken whereby the Dirac alpha-beta 
matrices of the Hamiltonian formulation are transcribed in terms of a four-
dimensional Clifford geometric elements. This must be contrasted with other 
works that rely exclusively on the covariant or space-time algebras [7,8] 
where the requirement for four spatial dimensions is not manifested. Clearly 
both descriptions are necessary for completeness and self-consistency as was 
demonstrated by Dirac in his matrix formulation. 
 The generalization to four spatial dimensions of the quantum mechani-
cal wave equation for a photon propagating in a three-dimensional planar 
waveguide yields 

 
    

 

!2" # 1
c2

$ 2"
$t 2

= p4
2

!2
" ,  (4) 

 
where   

 

p4 = mc  represents the constant component of the momentum along 
a fourth spatial dimension   

 

x4  and 

 

! = !1
2 + !2

2 + !3
2  is the three-

dimensional Cartesian Laplacian. The waveform 

 

!  in (4) represents a four-
dimensional guided interference wave propagating in the   

 

x1 direction. Its 
Lorentz transformation can be written 
 

 
    

 

a0 f k4 x4( )ei! c " t # a0 f k4 x4( )e
i! t$x1 /% p( )   (5) 

 
which is a straightforward generalization of (3). Here 

  

 

f k4 x4( )  is a harmonic 

function that is invariant with respect to Lorentz transformations since it is 
normal to all directions in three-dimensional space. It is easy to see that 
since

  

 

f k4 x4( )  does not depend on   

 

x  or   

 

t  it can be divided out of (4) such 

that with   

 

p4 = mc  the equation reduces to the Klein-Gordon equation. How-
ever, in its more general form it represents a massless particle confined to a 
region     

 

!c / 2  along a fourth spatial dimension, where     

 

!c = h / mc is the 
Compton-de Broglie wavelength. It follows that the operator equation for the 
scalar momentum is given by 
 

   

 

pd
2 = p||

2 + p!
2 ,  (6) 
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where 
    

 

p|| = p1
2 + p2

2 + p3
2( )1/ 2

 and   

 

p! = p4 .  With     

 

pd = E / c  and   

 

p! = mc  

it is easy to see that (6) is equivalent to the relativistic energy momentum 
equation. Linearization of either (4) or (6) using Clifford geometric elements 
yields the linear momentum of the massless particle or direct wave, which in 
the Heisenberg representation is written 
 

   

 

pd = p||e p + p!e4 , (7) 
 
where   

 

pd
2 = pd

2 and a minus sign yields the solution for the counter-
propagating wave along   

 

x4 . Here   

 

e p  is a unit vector in the three dimensions 
of known space while 

 

e4  lies along the fourth spatial dimension. The former 
is given by       

 

e p = piei / p||  where the operator ratios     

 

pi / p|| represent direc-

tion cosines in the subspace 
  

 

e1,e2,e3( ) . The propagation angle relative to 

 

e4  
is given by 

 
    

 

! = tan"1 p|| / p#( ) . (8) 
 
The basis set of elements 

 

eµ ,   

 

µ = 1,2,3,4 , constitute unit vectors in the 
four-dimensional Clifford space 

 

!4  [9]. They have the algebraic properties 
 

   

 

eµ
2 = 1, eµ ,e!{ } = 2"µ! , µ,! = 1,2,3,4 , (9) 

 
and are therefore isomorphic to the Dirac alpha-beta matrices, a relationship 
that can be written as   

 

ei !" i ,     

 

i = 1,2,3, and 

 

e4 ! "0 . Hence, (7) is the 
geometric equivalent of the Dirac Hamiltonian under the replacement 

    

 

pd = H / c  and   

 

p! = mc . It is easy to see that its identification as linear 
momentum leads to a more physically meaningful relationship with the 
Klein-Gordon equation than is possible in the matrix formulation. The con-
cept of spin manifests itself through minimal coupling to the electromagnetic 
field in the same manner as in the matrix formulation  
 The free-particle Hamiltonian follows from (6) or (7). In the latter case 
we have 
 

 
    

 

Hd = c pd
2( )1/ 2

= ±c p||
2 + p!

2( )1/ 2
. (10) 
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With   

 

p! = mc  this agrees with the Klein-Gordon Hamiltonian where the 

 

±  
signs represent positive and negative energy states, respectively. It should be 
noted that the departure from the linearized form of the Dirac Hamiltonian is 
a necessary consequence of the geometric formulation since if the Hamilto-
nian is to represent energy it must be a scalar not a vector, a distinction that 
is not manifested in the Dirac or space-time algebras.  
 The position of a phase point on the direct wave is given by 
 

   

 

xd = x||ex + x!e4 ,  (11) 
 
where   

 

x||  and   

 

x!  are the longitudinal and transverse components of the 
position operator, the maximum excursion of the latter being     

 

x! = "c / 2 . 
The unit vector     

 

ex  is defined by       

 

ex = xiei / x||  and is therefore parallel to   

 

e p . 
The particle or group velocity follows from (10) and (11) in Heisenberg’s 
equations of motion, obtaining 
 

   

 

! d = !||e! +!"e4 . (12) 
Here 

 
    

 

!|| = ± p||c
2

E
, !" = ± p"c2

E
, (13) 

 
where 

 

!|| and 

 

!"  are the group velocities in the longitudinal and transverse 
directions. Squaring (12) leads to   

 

!d = c as expected for a massless particle. 
Note that there is no Dirac type zitterbewegung in (12), a consequence once 
again of the geometric formulation where the Hamiltonian is necessarily a 
scalar. (Zitterbewegung can be generated in the geometric formulation simp-
ly by using the linear momentum (7), times   

 

c, in Heisenberg’s equations of 
motion for     

 

dx / dt , but clearly this would have little if any physical meaning 
despite having the correct units). 
 Since       

 

xd ,! d , and     

 

pd  are parallel for a massless particle their magni-
tudes can be written as 
 

 

 

! 2 +" 2 = 1, (14) 
 
where   

 

tan! = " /#  in agreement with (8). Care must be exercised in using 
(14) however since the inertial transformation properties of       

 

xd , pd  are dif-
ferent than those for   

 

! d  [5].  



Electron channelling and de Broglie’s internal clock 67 

 In addition to the group velocity there is also the phase velocity that, for 
the direct wave, is given by   

 

!" = c. However, the de Broglie dispersion 

equation   

 

! p!g = c2 generalizes to  
 
   

 

!"!d = !" ||!|| = !"#
!# = c2 , (15) 

  
where     

 

!" || = c / #  and   

 

!|| = c"  are the phase and group velocities of the 
direct wave in the longitudinal direction and     

 

!"#
= c /$  and   

 

!" = c#  are 
the corresponding velocities in the transverse direction. The former are, of 
course, consistent with traditional wave mechanics but the latter suggest that 
the de Broglie expression is incomplete. 
 The relativistic behavior of the direct wave frequency 

 

!"  can be traced 
to that of a transverse Doppler effect as seen by an observer in three-
dimensional space. The purely phase-like behavior of the wave with its 
greater than light speed velocity is the result of the oblique intersection of 
phase fronts with three-dimensional space. The de Broglie matter wave is 
therefore not a real wave in the sense of transporting energy as de Broglie 
originally pointed out. It is only the underlying massless particle that may be 
considered as real, its projected velocity into three-dimensional space being 
less than   

 

c. On the other hand the clock frequency   

 

! cl  has its origins in the 
saw-tooth or linear propagation mode of the direct wave, a process reminis-
cent of Einstein’s optical clock. The wave and clock frequencies therefore 
arise out of different physical processes, the former corresponding to the 
direct wave frequency     

 

!" = ! c /#  and the latter the inverse of its round-trip 
propagation time   

 

! cl = ! c" . Thus, their rest frequencies are identical being 
given by     

 

! c = c / "c  and     

 

! c = c / 2x" , respectively, where   

 

2x! = "c.  
 The corresponding wavelengths are 
 

 
    

 

!d = !c", !|| = !c
"
#

, !$ = !c , (16) 

 
where     

 

!d
"2 = !||

"2 + !#
"2  and   

 

 
    

 

! d = "c
1
#

, ! || = "c
$
#

, !% = "c , (17) 
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where     

 

! d
2 = ! ||

2 + !"
2 . It is easy to see that with   

 

! c"c = c  multiplication of 
(16) and (17) by their respective frequencies yields the phase and group 
velocities given above. 
 The mass-energy equation follows from the geometric product of the 
momentum and velocity, that is 
 

 
  

 

E = pd! d = ± mc2

"
,  (18) 

where 

 
  

 

pd = ± m
!
" d   (19)  

 
and    

 

pd! d = pd "! d . Here the concept of mass is simply that of a parameter 
that relates the velocity and momentum of the massless particle with no 
physical significance beyond that. Note that the scalar product of the tradi-
tional three-dimensional sub-vectors for momentum and velocity do not 
yield the mass-energy equation as do the full four-dimensional vectors sug-
gesting that these sub-vectors are also incomplete. In this manner one finds 
that many of the conceptual difficulties in traditional relativistic particle and 
wave (quantum) mechanics can be traced in part to a failure to include a 
fourth spatial dimension in the definition of dynamical variables [5].  
 Of particular importance to channeling resonance is the Foldy-
Wouthuysen transformation [10] of the Dirac equation, a transformation that 
has never had a physically meaningful interpretation [11]. In the geometric 
formulation the isomorphisms     

 

e4 p ! "0# i pi / p and 

 

e4 ! "0  lead to the 

conclusion that it is a rotation in the 
  

 

e4 , e p( )  plane of the direct wave mo-
mentum, (7), through the propagation angle 

 

!  given by (8). The resultant 
vector is thereby aligned with the positive 

 

e4 -axis while its magnitude as-
sumes a square-root form characteristic of any vector rotation to a coordinate 
axis. On the other hand the Cini-Touschek transformation [12] corresponds 
to a rotation to the   

 

e p  axis. The significance of the transformation angle is 
not limited to the above two examples, however, for it is also related to the 
Minkowski hyperbolic angle of special relativity through the Gudermannian 
functions. We therefore find that the Euclidean geometry of the direct wave 
in guided-wave mechanics implicitly contains the quasi-Euclidean geometry 
of traditional relativistic particle mechanics, the two manifolds being sepa-
rate and distinct mathematical descriptions of a common physical entity. 
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3 Electron channeling 

With the above preliminaries we return to the channeling experiment and 
note that the direct wave executes two traversals of the propagation medium 
(i.e., three-dimensional space) during each clock cycle resulting in two inde-
pendent opportunities for interaction with the crystal lattice. The interaction 
frequency therefore becomes 
 

     

 

! int = 2! cl = 2! c" . (20) 
 
Assuming an interaction length of     

 

L / 2  where   

 

L is the inter-atomic spacing, 
we have at resonance 
 

  
    

 

L = 2!||
" int

= #c
$
%

= & || . (21) 

 
Thus, with     

 

! || = c" / # cl  we find that the clock wavelength matches the 
inter-atomic spacing. The resonant momentum is therefore 
 

 
  

 

p|| = p!
"
#

= p!
L
$c

. (22) 

 
Neglecting the small shift in observed resonance due to calibration errors [1] 
we have     

 

p|| = 80.874   

 

Mev/c  for an inter-atomic spacing of     

 

L = 3.84Å such 
that with     

 

p! = mc = .511   

 

Mev/c  we obtain     

 

L / !c = " /#    

 

= 158.266  where 

    

 

! = "|| / c # 0.99998  and     

 

! = "# / c $ 0.0063. 
 The significance of the distance     

 

L / 2  and its relationship to the Comp-
ton wavelength can be understood by noting that the propagation angle of 
the direct wave is 

  

 

! = tan"1 # /$( ) = 89.638  deg and that   

 

xd  and   

 

! d  are 

parallel. For a maximum transverse excursion of     

 

x! = "c / 2 = .0121Å, cor-
responding to a half clock cycle, the  parallel component of the direct wave 
travels 

      

 

x|| = x! tan" = 1.92  Å, (23)  
 
which is indeed one-half the inter-atomic spacing. The linear segments     

 

x|| , 
which bear a striking resemblance to the propagation segments of the simu-
lation, represent independent scattering regions since the corresponding 
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direct wave segments   

 

xd  define independent propagation paths. In contrast 
to the de Broglie clock, which requires a doubling of its frequency to ac-
count for the     

 

L / 2  interaction length [13], the present model maintains the 
clock frequency while doubling the interaction frequency. In this case inter-
action with an atomic site would occur for every other segment suggesting 
that a stronger resonance should exist for     

 

x|| = L  or   p|| = 161.74    

 

Mev/c , in 
which case an interaction would occur for each segment. Simulation results 
for   

 

dz = L  seem to support such a prediction [1]. Still weaker resonances 
should exist for     

 

x|| = L / 3, L / 4, .... 

4 Summary and conclusions 

It has been shown that de Broglie’s original conjecture of an internal clock 
for the electron may indeed have been correct, but for somewhat different 
reasons. The addition of a fourth spatial dimension to relativistic wave and 
quantum mechanics together with the guided wave hypothesis leads to a 
plethora of new insights including independent physical processes for the 
wave and clock frequencies. The anomalous factor of two in the simulated 
resonance frequency has been shown to be a consequence of the particular 
nature of the clock waveform. Although these findings suggest that a fourth 
spatial dimension may indeed exist, it would be limited to one-half the 
Compton wavelength of the particle. This can be viewed as a lower bound 
on gravitational field measurements that attempt to detect the presence of 
additional spatial dimensions through changes in the   

 

r!2 fall off of the gravi-
tational field [14]. 
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