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ABSTRACT. The Dirac equation for a free electron has a solution
which is a localised field with spin and shuddering. Here we note that
the solution enables us to estimate the spin angular velocity and the
radius of the electron field.
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1 Introduction

This note is a sequel to [10]. In that paper we studied Toyoki Koga’s
solution to the Dirac equation using geometric algebra. We showed that
the Dirac equation for a free electron has a solution with terms exhibiting
spinning and shuddering fields. This solution is a localised field. As Koga
([8]) did, we interpret it as deterministic and consider the electron to be
nothing but its field. Here we mention some implications.

It is worth noting that according to Ohanian ([9]), Belinfante in 1939
established (with the standard interpretation of quantum mechanics)
that the spin could be regarded as due to a circulating flow of energy,
or a momentum density, in the electron wave field. He also states that
Gordon proved in 1928 that the magnetic moment of the electron is due
to the circulating flow of charge in the electron wave field.

In section 2 we describe the solution of the Dirac equation. The
implications are discussed in Section 3 and summarised in Section 4.
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2 The Dirac Equation

Our notation is as in [10]. The Dirac equation in geometric algebra, as
given by Hestenes (see [3]) is (for a free electron)

Viloz = miyg. (1)

Here 1 is an even multivector field (defined below) in the Clifford algebra
of a 4 dimensional real (Minkowski) spacetime, spanned by orthogonal
unit vectors g, 71, 2,73 parallel to the coordinate axes. We take vy to
be timelike with 'yg = 1 and ~; spacelike, with square —1, for i = 1,2, 3.

The Klein-Gordon equation is V¢ + m2¢ = 0 where ¢ is a multi-
vector field. The Laplacian here is the dot product of the gradient V
defined earlier with itself.

From a solution of this equation we can get a solution of the Dirac
equation as follows: if VZp + m2p = 0 then 1 = Vploz + mpy is a
solution of the Dirac equation in STA. If ¢ is odd then % is even and
vice versa ([2], Section 10.1).

Koga ([5], [6], [7], [8]) worked out a solution to the Dirac equation,
starting with a solution to the Klein-Gordon equation. He started from
an idea of de Broglie from the 1920s, but made different assumptions:

¢ = acid (2)

where a and S are real scalar fields in spacetime. (For convenience, we
choose units such that the Planck constant and the speed of light have
the value 1.)

For a free electron, expressions can be written out for @ and S:

S=-Et+p-r,

a = exp(—k[r'|)/[r'|
where r is the position of a general point (in 3-space),
v = (r—ut)/(1—u?)?

where u is the velocity of the electron (in our inertial frame), u = |u],
Kk is a positive constant, p = uFE is the momentum and E? = (m? —

k?)/(1 — u?) where E is the energy.

We now consider a frame in which the electron is at rest: u = 0,
p =0, |r'| = |r|. We take the centre of the electron as the origin.
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We write ¢ = ae®7% for a solution to the Klein-Gordon equation.

Then

Slog

= (Vp)los + meyy where ¢ = ae” 73.

We now have S = —Et and

a = exp(—&r)/r (3)

where r = |r|, r = 21y + 227 + 23753.

In order to get a formula for v, it suffices to observe that Va = aR
1
where R =r (2 + H) and so
r r
¥ =Replos + (E 4+ m)pyo. (4)

3 Implications

If we introduce % and ¢ properly, then our solution to the Dirac equation
can be written as

= heRoplos + (Ec+ mc®) e,
and the term expressing the spinning field is given by

_lsym . 1S, m :
e 2o (gl 4 420y 4 2B0y)ez (BT B0,

Since S = —FEct, the angular velocity is
Ec
w=—-—
h
We have

E2? =m?ct — i2Pk? > 0.
Here Ec stands for the energy of the electron. Thus we obtain

mc
0< < —.
ST

Taking

m =9.1094 x 107%! Kg ,
c=2.9979 x 10° m/S
and h =1.0546 x 1073* J.S.
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We find that x < 2.5896 x 10'2 per metre.

The theory assumes that x is constant but the value of k is not given
by the theory. Now we can roughly calculate the spin angular velocity.
With the above values of mass m and speed of light ¢, the value of m?c*
is of the order of 10727, Similarly the value of A%¢? is of the order of
10752, Taking the value of  in the above range, the spin angular velocity
is roughly of the order of 10?! radians/second, by using the relation

Ec m2c* — h2c?k?
=5 ! h2
Now we come to the well known concept of spin up and down states.

Let ¢ =1 and h = 1. We note that

w )1/2.

¢ = ae™ ™

is a solution of the (original) Klein-Gordon equation.

Then by employing the same procedure as in the last section, we get
another solution to the Dirac-Hestenes equation:

Y =Reploz + (—=E +m)oyo

—Io3S

where ¢ =€ Y0-

This describes a spinning field with angular velocity w = % Thus
we get two values of spin. Koga does not prove that spin is two-valued
(at least for a free electron) and the question as to whether this theory
implies it is open.

Finally, the present theory enables us to put a bound on the size of
the electron field.

Assuming that speeds greater than ¢ do not occur, we must have
wr < c for any point in the electron. Here r is the distance from the
point to the axis of rotation. Thus

r<clw.

4 Conclusions

Both Koga’s theory and the conventional approach to quantum mechan-
ics conclude that spin is due to a circulating flow of energy.

Koga’s theory suggests bounds for the size of the electron and its
spin angular velocity. It suggests that spin can have two opposite values
but does not give a proof.
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