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ABSTRACT. In this paper, we join two different theoretical approaches
to the problem of finding a classical-like interpretation of quantum ef-
fects : the “fluctuating energy” model and the “hidden variables” model.
We show that they merge together into a more powerful, comprehen-
sive one. A basic assumption in the last is that a “vacuum interaction”
is responsible for energy fluctuations, and splits the classical motion
into two different components. These are as it was first identified, on
general grounds, by Kapitza in a famous theorem : a "super-oscillation”
of the particle position and velocity around a center ; and the motion
of the center itself, respectively. These motions define what we call
the hidden degree(s) of freedom HDF, figuring in the energy theorem
through a peculiar potential that we show correlated with a mass ef-
fect. The implicated functions for each energy level are called "the mass
eigenfunctions”. Classical oscillators submitted to these vacuum pertur-
bations exhibit a quantum-like behavior. We name them the Bernoulli
oscillators, because their properties came out in a frame where the
mass-flow theorem takes a dominant role. A brief historical review and
recent assessments are given in the present Part I of the work. Two
concrete examples will be solved numerically in the following Part IT;
the results will also allow us to give insight into the classical limit pe-
culiar to the model, so that this last will be found there expounded
afterwards.

RESUME. Dans cet article, nous allons joindre deux approches théo-
riques différents au probléme de trouver une interpretation de type clas-
sique & des effets quantiques : le modéle des “fluctuations d’énergie” et
le modéle des wariables cachées”. Nous montrons qu’ils donnent lieu &
un modéle plus puissant. Une hypothése de base dans ce dernier est que
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une “intéraction de vide” cause les fluctuations d’énergie, le mouvement
classiques se partageant en 2 composantes. Celles ci sont comme [’avait
déja trouvé, sur une base générale, Kapitza dans un théoréme connu :
une “super-oscillation” de la position et de la vitesse de particule au
tour d’un centre, et le mouvement du centre lui-meme, respectivement.
Ces mouvements definissent ce que nous appellons les degrés de liberté
cachés HDF, apparaissant dans le théoréeme d’énergie par des potentiels
particuliers dont nous montrons la correlation avec un effet de masse.
Les fonctions impliquées sont appellées “fonctions de masse”. Les oscil-
lateurs soumis a une telle perturbation due au “vide” montrent un com-
portement quantique. Nous les appellons les oscillateurs de Bernoulli,
parce que leur proprietés s’engendrent dans un cadre o le théoréeme du
flur de masse prends un role dominant. Dans la présente Partie I de
Uarticle, on donne une bréve revue hystorique ainsi que des développe-
ments récents. Deux exemples concrets seront résolus numériquement
dans la suivante Partie 11 ; les résultats nous permettrons d’envisager la
limite classique, speciale a ce modéle, que l’on trouvera donc examinée
en fin de travail.

PACS. 45.50.-j - Dynamics and kinematics of a particle and a system of
particles
PACS. 03.65.Ta - Foundations of Quantum Mechanics

1 Introduction

Still in recent years, a number of papers have been dedicated to
discover and discuss relations enlightening the elusive consistency bet-
ween classical and quantum mechanics. Many of these relations are well
known, and historically consolidated, as (orthodox) approximations of
quantum mechanics to the classical (JWKB, quasi-classical approxima-
tions) [1-3]. Many others have recently been produced within modern
theoretical frames, as f.i. random matrix theory, trace formula, periodic
orbits, chaos and recurrence spectroscopy [4+12]. A number of them are
rather heuristic, but interesting findings, with great potential for fur-
ther developments (from the famous Fermi-Pasta-Ulam subject [13] to
the symmetrization rules delivering detailed balance to the classical (in-
elastic) cross-sections [14-15]). A variety of now classical [16-+20] and
original [21-23] approaches is available, and even a quite specific experi-
mental insight has been given into the classical behavior which can be
found embedded into deep quantum phenomena [24]. Amongst other, at-
tention has been drawn to very basic features of classical physics which
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are strictly linked to quantum appearances : e.g. Carati and Galgani [25]
have pointed out that in molecular physics we can find some classical-like
action parameters, which by their recurrence - and (even numerical) si-
milarity to the Planck’s constant, are worth a role as classical precursors
to this last. The same authors have also given models able to reproduce,
at least conceptually, some peculiar quantum effects as tunnelling and
weak reflection. This has been done using classical non-unique solutions
of the Dirac equation of motion [26].

On another hand, the historical framework of the so called old quan-
tum theory has been, since almost one century, abandoned. Yet it looks
having been so only because a much more powerful theory - the matter
wave mechanics - has been developed, and brought to dominance. So the
potential of that incomplete model has been finally neglected.

During the century, another strong “ideology” has also independently
grown, up to shadow closely the now orthodox quantum mechanics. It is
based on the assumption of a (so-called) hidden degree of freedom (HDF')
playing the supplemental actor in classical mechanics, and being respon-
sible for quantum behaviors. This investigation domain has been initia-
ted by de Broglie [27+28]. Energetically carried out by Bohm [29+32],
and nowadays by a number of authors [33], it has given rise to a great
expectation that a classical motion concept and a particle velocity are
hidden in the wave equation, and may be taken out by various techniques
[5, 34=38].

A HDF framework has also been developed [39+42] by the author
of this paper, moving from a number of different observations, and spe-
cifically enclosing elements of the old quantum theory (e.g. the Bohr-
Sommerfeld rules, reinterpreted). Yet the physical model essentially
starts from another one, already available in the history, whose origin
looks dated back to Einstein [43|, Kapitza [44-45] and Vigier [30] . This
is the so-called fluctuation model, based on the assumption that an ex-
ternal perturbation (coming from the quantum “vacuum”) causes the
classical energy of a system to fluctuate; and just aimed at discovering
the action able to bring the system to quantum behavior indeed.

As it will be shown here with more details, the recent developments
of this model have brought indeed the author in the previously quoted
papers to consider the possibility that mass fluctuations are also involved
in particle dynamics and very effective to the end of explaining quantum-
like results by classical reasoning. Actually, from the Higgs boson to the
electromagnetic mass, up to cosmological effects in a Machian scheme,
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the mass concept has lately got wide reconsideration in the literature
[46-50]. That it can be involved as a hidden degree of freedom into both
classical and quantum dynamics has been recently pointed out, with
interesting results in Hydrogen orbital modelling and related magnetic
properties, also by X. Oudet at the de Broglie Foundation [51-54].

Within this quoted framework (which is by now limited to the ana-
lysis of uni-dimensional motions), a definite interpretation of the classi-
cal/quantum physics relations is developed. A specific, classical-like mo-
tion equation is also proposed as a possible issue to what - many people
think - is only paradoxically an antagonism between the two mechanical
theories.

In the present paper, we expound the more complete model that we
have obtained by re-elaborating, and further developing, the most im-
portant amongst previous results. To introduce it here, we first review
the main features of the fluctuation model, reporting its essential ap-
proach. We provide the connection with the HDF model, what brings us
to introduce mass effects and new potentials, both in the classical energy
theorem and in the matter wave equation. We introduce upgraded model
equations, and solve them for the typical cases of the rectangular well
and harmonic potential (Part II of this work).

So we hope having provided the reader with a synthetic view of the
relationships emerging from the assumptions of both - the hidden degree
of freedom and the fluctuating energy models - being used together; in
the attempt to wrap (at least some) basic quantum appearances by the
means of a classical-like formalism.

We start here with, very briefly, recalling Einstein’s interpretation of
Planck’s law (recently well resumed in [25]). The de Broglie, Kapitza,
Vigier and Bohm views are also recalled, followed by a description of
more recent developments and results.

2 Einstein, Kapitza and Vigier : the historical origin
of the fluctuation model

Although very schematically, we might resume Einstein’s view [43,25]
by the following equations :
AE
E,=—F"—F 1
PP exp(AE/T)-1 (1)

2dEBE

2 _ —
0} =By (B + AF) = 222 2

E
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Here E,, is the Bose—Einstein energy distribution expression, AE/h =
v.is the classical oscillator frequency, and O'?E is defined as a variance.
Einstein interpreted equation (2) indeed as a peculiar relationship bet-
ween the mean value E,, of the distribution and the variance. Then he
thought that a deep interpretation of quantum mechanics should involve
a fluctuating energy model.

Later in the history, Kapitza gave a famous theorem [44—45] where
the mean effect of a fast fluctuating force, perturbing a classical oscilla-
tor, was calculated. The fast force imposes a’super-oscillation”, of ampli-
tude n(t), to the particle motion around a center. This is at a position
X in a uni-dimensional space. The energy theorem given by Kapitza has
the form

1 1 1

ngQ + P(x) + Ppert(x) = imv2 +P(x)+ < imn(t)2 >=E, (3)
Here ®(x) is the classical potential energy characterizing the oscillator,
mass m, (absolute) velocity v. The additional potential ®,.,;(x) acting
on the particle is shown by Kapitza to be a time-averaged value, at the
position x, of the kinetic energy pertaining to the super-oscillation (*).

Approximately in the same period, Vigier [30] expressed the sound
opinion that quantum behaviors might be explained by the effects of
some chaotic perturbation coming from the "vacuum”.

3 De Broglie and Bohm : the search for “hidden pa-
rameters”’ subtending quantum mechanics

On more general grounds Vigier and Bohm [30], basing upon for-
mer ideas by de Broglie [27,28], started with investigating the possibility
that vacuum fluctuations may reverse into classical motions in the form
of “hidden” parameters. Actually Bohm [29-+32], since 1952, has syste-
matically developed a wide reference framework for the very definite idea
that an hidden degree of freedom should be accounted for, within classi-
cal mechanics, to explain quantum behaviors ; and possibly be brought to
evidence. We report here the key relations funding this view, in the form
useful to our paper (based on the Madelung equations, uni-dimensional
stationary case) :

1To our purposes, we since now identify the energy constant as the n-state eigen-
value E,,.
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2 x)" 2(x
Bo) = - g G = Bao 000 - o @)
AMPYS(x) = p() VS () = I () )
v(x) € Vifx) (6)

As is well known, these typical equations subtend a quantum mecha-
nical wavefunction (space-dependent part) of the form

(x) = A(x)exp(iS(x) /h) (7)
}{ VS(x 27(n — 1)h (8)

with S(x) = phase function and J(x)/m = probability current density
(?). They are submitted to the Bohr postulate (we have a comment
on this matter, in the conclusive section of the paper in Part II). The
potential ®p(x) is the Bohm potential, or quantum potential. The func-
tion p(x) is the nth-state quantum density, m the particle mass, E,
the energy eigenvalue. Apices stand for x-derivatives. As is clear, all the
quoted quantities pertain to a quantum state n : but for the sake of
simplicity, we omit the index when no confusion may arise. We have re-
sumed Bohm’s view by the means of equation (6), stating that a particle
velocity field v(x) is implicated into the quantum framework. Very often
in the literature, one finds actually v(x) defined as VS(x)/m; but in
this paper, different roles will be given to these two quantities.

Following Bohm’s perception of the physical problem, it can be said
that discovering the "implicated order” within these equations (i.e. ta-
king out the particle velocity field expression) is the challenge for people
believing into a causal interpretation of quantum mechanics.

It is not to say here that by ”causal interpretation” a restored - al-
though differently featured - determinism, and Newtonian-like motion
concept, are intended as the possible “explication of order” subtending
the matter wave behavior.

2In standard quantum mechanics of stationary states, the divergence of the current
density is zero. In our theory, we introduce a "mass eigenfunction” concept implying
an additional Hamiltonian term in the wave equation. It causes a dependence of the
current on x. These circumstances will be found better discussed in a next section.
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A number of techniques [23,26,34--38] have been developed to calcu-
late fields (6) and to show consistency of the Bohm’s view. A number
of now historical results as in [16+-20,55-+57] produced even by different
approaches or viewpoints (stochastic mechanics, quantum macrodyna-
mics, measurement theory, dissipation theory, classical electrodynamics)
are also useful, and available in the literature.

To the same end, in papers [39+42,58-+60] the (mechanical and ther-
modynamical) properties of the so-called Bernoulli oscillators have been
investigated, and correlated to both classical and quantum behaviors. In
the next section, we will review the essential results of that work : this
also provides a reassessment to the advantage of the upgraded model
next introduced.

4 The Bernoulli oscillators model
4.1 Basic features

The Bernoulli oscillators are classical entities, submitted to a (gene-
ralized) Kapitza (or Vigier)-like external force producing energy fluctua-
tions. It excites locally a sort of parametric ”super-oscillation” of both
the particle position and velocity around a central position, so driving
the motion of the center itself. We specifically intend, in our model, that
the perturbation comes from the quantum vacuum and is responsible for
quantum behaviors. All the motions components are treated classically
in the fluctuation model. The super-oscillation is assumed classical-like
and harmonic in a first approximation ; in a statistical sense, it is able
to fit the Heisenberg incertitude relations [40]. We leave out here the
question whether it is "realistic” to approach the Heisenberg principle by
a classical-like description (). We rather stress that the super-oscillation
forms some kind of physical interface between the vacuum and the oscilla-
tor, behaving as a supplemental potential. In this way, the perturbational
components of the oscillators motion form what we have called the "hid-
den degree(s) of freedom” HDF. On a stationary point of view, turning
to eq.(3), the perturbational potential energy ®,..+(x) there appearing
can be now identified with the potential ®upp(x,£;,;4(x)) as defined in
[39-+-42](*). This was calculated by a procedure where - essentially - the
Bohm potential in eq. (4) is identified with an indicated work (which is

3 A number of very interesting discussions of this subject have left historical traces;
one may f.i. refer to [3].
4We name here £, the same variable called ¢ in [39+42].
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the reason for emblematically entitling the model to D. Bernoulli). So
our reference expression of the energy theorem from the quoted papers
is

S () + 2(0) + Prrpe(8,14(x)) = E (9)
e (5 63(3) =~y () Vi) — 5 o) (a0

Here v(x) is the velocity field pertaining to a single particle and dm(x)
is the induced mass due to the vacuum action. The HDF nature can be
reported indeed to a mass effect. C(v?) is a function to be enlightened
in the next section.

Note that equations (9) and (10) bring us to define the effective mass
meys(x), which we call "the mass eigenfunction” :

mess(x) = m — dm(x) (1)

In the section entitled to it, a primary model to express this function
and its properties will be drawn out.

In order to approach the basic quantum-mechanical equation star-
ting with equation (9), two branches of the model now appear : we have a
many particles (MP) or statistical-ensemble frame, and a single-particle
(SP) frame. The statistical ensemble will be found defined in the next
section. Some outlines of the SP view are also given in the sequel, be-
cause they are essential to our model; in this paper, however, only the
stationary energy theorem expression and the ensemble properties will
be actually expounded with details and brought to numerical solution.
Giving explicit solutions to the time-dependent SP equations does not
imply conceptual difficulties but is a task demanded to future papers.

4.2 Mechanical and Statistical framework

4.2.1 Energy theorem and single-particle densities

The term named C(v?) in eq. (10) has an expression we have now
available by new investigations. In principle, it reveals rather involved
- but we are also able to produce here a very simple approximation,
stressing the physical effect.

As seen in [42, eq.(53)] already, the term including the second deri-
vative of the squared velocity in eq. (10) implies solving equation (9)
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by a family of functions v(x,xo,(E)) (°) for each quantum number.
They correspond to an ensemble of stopping points xg,(E) where dif-
ferent energy values E are involved, depending on the value assigned to
v(x)?" /v(x)? when v— 0. Then as a main effect, that term correlates
to the energy broadening, and actually defines the fluctuation interval.
For a simple description of this fact, taking into account an appropriate
energy constant, we are brought to write

Dxon () = B — 22 P (12)

P e, (B)T o o gy B Bar
2 v(xx,, (B)) +O(V) =By —E+ ———+9(x) (13
£ Mg () Vo, (B) 4000 + 0(x) + 2P B (14)

Comparing with eq. (10), we see that the function ¢(x) is a residual
component of the potential Pupr(x,£;,;4(x)), and will be determined in
a next section. By now we define a total effective potential energy

Enf - Enz

O(x) = (x) + p(x) + —

(15)

This is to the purpose of conciseness.

To define the statistical ensemble, we can think to the fluctuation
energies E (each of them playing the motion constant) as distributed
to a particles packet. These energy values range across the fluctuation
interval (E,; < E <E,y), where E,y and E,; are the maximum and
the minimum energy values attainable by the fluctuation, respectively.
Then a collection of energy states, with probability density (see eq.(18))
normalized to unity, defines the statistical properties of an "average” re-
presentative particle in the ensemble view. If we name v, (x) the velocity
of this particle (it is coincident with the center of mass or group velocity
of the packet), and v, (x) the numerical flow function characterizing the
ensemble in the n-th state, we have the constitutive equation

V(%) = Vp ()p(x) (16)

5Since now, we may use the expression v(x,xo(E)) in place of v(x) to stress that
every velocity field at energy E ends in a specific turning point xo(E).
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Starting with the same equation (14), a single-particle approach can
be also taken ; but then the quantity E must be considered a fluctuating,
time-dependent energy affecting the particle. The correlation between
the statistical ensemble and the SP case is obtained through the ergodic
assumption (in a next section).

Each of the energy states (14) is characterized by a period T(E), a
frequency v(E), and a density p_, (x, xon(E)) (classically defined quan-
tities).

Taking the v(x) expression out of eq.(14), we find easily

B 2 o 2m, (X)
psp (60, (H)) = @)~ v(E) E%é(x)

(17)

4.2.2 Statistical properties

In our model, the nth quantum state is thought as a statistical en-
semble of E-states, each of them represented with probability P(E). The
quantum-state density is a statistical superposition of the classical-like
densities (17) included in the microcanonical ensemble. Each of the ve-
locity fields pertaining to the ensemble is submitted to the classical-like
energy theorem of the form (14).

For consistence with the corresponding SP time-dependent frame-
work, an ergodic assumption must be used to determine the probability
density. The density P(E) must be taken proportional to the lifetime of

every state E. Then we assume that it is just proportional to the period
T(E) (°) :

1
n
Eny Eny
/ P(E)dE = —— T(E)dE = 1 (19)
En'i Cnh Eni

The normalization condition here implies that all the statistical averages
we may take over the statistical ensemble are intended "per particle”. As
far as the period T(E) is concerned, note that it is always a classically

6The density given here is an upgraded form compared to the one given in [41],
with an additional coefficient c,,. This normalization coefficient is to be determined
when solving the equations numerically case by case.
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calculated quantity, but relates to the effective potential appearing in
equation (14) and is not coincident in principle with the period T.(E)
corresponding to the classical potential ®(x) except when we actually go
to the classical limit.

The theory implying an effective mass concept, we have now to un-
derstand the relationship of this last with the classical mass m; and the
reason why - if a physical reality - the mass effect may have escaped to
experimental observation until now. The very reasonable interpretation
seems to us that the induced mass dm in equation (11) probably consists
in a fluctuation around a zero value. We ask therefore to our model that
the statistical mean value of m.fs(x) is kept equal to the classical mass
m.

This requirement brings us to the following condition :

1
< Megp(x) >= 3 ?{p(x) m,;(x)dx = m (20)
We also ask that the mean statistical value of the fluctuation energy
(both in the SP time-dependent view and in the ensemble scheme) are
kept equal to the corresponding quantum energy eigenvalue, for each of
the quantum states of interest. So we write as a second condition

1 Ens En Eni
<E>,= — T(E)EdE:En:L
Cnh Eni 2

(21)

On general grounds, we would ask to our theory that all the phy-
sical quantities take the correct (i.e., as given by quantum mechanics)
average values during the fluctuation. But here important remarks must
be done. The fluctuation model rests on the very definite interpretation
that the space co-ordinate x is the center position of the super-oscillation
induced by the vacuum. In orthodox quantum mechanics, the space co-
ordinate is instead a (probabilistic) variable representing the effective
particle positions in space. Moreover, as enlightened in the sequel, we
join our classical-like theory to a modified quantum-mechanical scheme,
where variable current-density effects are accounted for. Specifically, we
use a non-standard Hamiltonian (see next eq.(39)) in our calculations to
find out the wavefunction ¥, (x) and the density p(x). These quantities
will turn out (although not too much) different from the ones calculated
by the use of the standard Hamiltonian. Therefore one should not expect
that the model is able to reproduce exactly all the orthodox quantum
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mechanics results. This is a very important point when searching sound
differences to be brought to evidence, and possibly submitted to experi-
mental checks. So many developments and tests for this expectation are
still to come in the future.

We can integrate the density (17) with the energy distribution (18)
and we obtain the statistical average

1 Ens
< pgp(xxe,(E)) > = PN Re/E T(E)p,, (%X, )dE =
2y/2m,
= milff(x) ( Ent —O(x) —Re VE,; — @(x)) (22)
cn

To be clear, note explicitly that we submit the previous expression to
the Bohr condition

< Py (%0, (B)) > = p(x) = A(x)? (23)

Now the following remark must be done. Equation (22) cuts the space
in 2 Regions.

This is because in the particles ensemble only the ones with greater
energy will go further in space before stopping and turning back; the
particle flow then starts with decreasing (see eqs. (29),(30)) at the space
position x,, where the particle with minimal energy E,,; stops (7) :

O(x,,) = En; (24)
We call Region I or "internal region” the part of space where
x:0(x)<E,; = (0<x<x,) < x¢€ {RegionI} (25)

We name instead Region II or "external region” the part where the
contrary occurs :

x:0x) >E, = (x, <x<%xj;) < x€ {Region I} (26)

Note that in refs. [39+42], "Region I” and "Region II” were defined dif-
ferently. But in the present paper, we find that is more appropriate to

"For the sake of simplicity, we assume symmetry of all potentials and other func-
tions around x = 0. So only the "right-half-space” with x > 0, and the "right hand”
specifications xg, xn, etc. are essentially referred to in this paper.
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turn to equations (25) and (26) (see a comment to the next equations
(29) and (30)). The coordinate x§ is actually the extreme boundary at-
tainable by the density. For a rectangular well of length L, centered in
0, x§ = L/2. In the harmonic oscillator case, x§; — oo (8). The abscissa
x,, divides the two regions : all the stopping points x¢, (E) are obviously
located in Region II. In this context, we also define a quantity

Emin(x) = (Ep; — ©(x)) UnitStep[x,, — x] + O(x) (27)

This is for use as an integration limit when calculating local averages over
the energy interval. So it is easily seen that many of the functions we
deal with in this paper assume different expressions in the two regions.
For instance, as far as the flow function is regarded, we have :

Enf
<I/(E)>:Vn(x):/E,()PEIé;dE 2
_ [T P(E)
Vi (%) = vn1 (x) = /Em, T(m) " (29)
_ W =v,0 {Region I}
_rem
Vn (X) = v (x) = /@(X) T(E) a5 (30)
_ E"fcfif(x) {Region IT}

Note here that, when the flow v, (x) is a constant as in Region I, the par-
ticles packet is a closed one. The contrary occurs when the flow gradient
is different from zero, as in Region II. Referring to a previous remark,
we see that it is appropriate to define the two regions of space in terms
of the flow behavior : in the whole Region I the flow takes a constant
value and the packet is ("dynamically”) closed; in Region II the flow is
a variable function and the particles packet is open.

8Note here already that in the classical limit, (see eqgs.(22)+(25) in Part II), the
wavefunction will come uncoupled from the particles density. It can be shown that

the last will then be exhausted at the finite point x§ = ,/ﬁ in the harmonic

mTmuvc
oscillator case.
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Concerning the expression of the flow function in Region II, we have
found a well refined one in [42, eq.(80)] already. Yet in the present pa-
per, for the sake of direct physical insight, we want to give another one,
which is also simpler on a mathematical point of view. To this end, first
consider the following. In a "second solution” (de Broglie-like) scheme,
we assume egs. (9) and (10) to hold not only for a single particle case,
but also for the statistically equivalent particle with average square ve-
locity <v(x,%,(E))? > . This means that, provided the function C(v?)
is uninfluential (what happens in Region II [42, eq.(65)]) we can iden-
tify the second-order derivative terms in (10) and (4) by means of the
substitution

v(x,%,, (E))? = < v(x,x,,(E))? > = const\/p(x) {Region IT}  (31)

Now since the difference between $m <v(x,x0,(E))? > and 3m v2 (x) is

well represented by the incertitude interval ¢, hv, (x), we can write easily

(*)
%mvi (x) + 7 cphv,(x) = p, v/ p(x) {Region IT} (32)

where 7,, and p,, are appropriate constants so that

{Region II}  (33)

—Tenh p(x)? + /8 1,p(x)° + 72¢AR2p(x)"
vn(x) =
4m
This expression also satisfies, as it must [42], the asymptotic behavior
Vn(x)— p(x)%/* when x—xj; (1°). The coefficients v, Tp , 1, must be
determined for each specific case when solving the equations by numeri-
cal techniques.

Note now that using equations (16), (29), (30), equation (22) can also
be put in the form (holding in both Regions)

1 2

gMes s ()v,, (x) +

c2 h?p(x)*
32meff (X)

+B(x) +(x) + %"(X) =B, (34)

9Note that the turning point corresponding to the group velocity is always the
farest one at the space border, i.e. xgn(Ey ).

10The exponent changes from 5/4 into a value 2 in the classical limit, see eq.(20)
in Part II of this work, and eq. (13) in [41].
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Using a procedure similar to the one shown in equations (12)=(31)
of ref.[41] (1), this equation can be usefully compared to what we get
by performing a statistical average of eq.(14) :

Kem (%) + <K'> + Kymre + O(x) = E,, (35)

This is actually the general form taken by the classical energy theorem
when statistically averaged over a particles ensemble. Here K., (x) is
the center of mass energy of the particles packet, <K’> the residual
kinetic energy in the c.o.m. frame and K, the reactive potential due
to inflow-outflow of particles from the open packet in Region II. Now the
<K’> and Kypre expressions actually depend on the specific particles
statistics inside the packet traveling with velocity v, (x), and moreover
are affected by the fluctuating mass assumption we have done. So their
precise constitutive expressions are actually unknown to us, still wanting
extensive analysis in this direction ; but taking all the particles over space
as belonging to the packet [42], we have in any case :

1

Kem (x) = gme s (x)V, (36)

" EP(E)dE
<K'> +Kymre — En + ng‘"(")
[nr P(E)E

Eineo (37)
2 h2p(x)?
= 2 ion I+1I
32me s () {Region I+IT}
and specifically
2 h2 2
K> P {Region I} (38)

32mejp(x)

These equations are enough to pursue up a consequent physical in-
terpretation in the sequel.
A number of other different properties or findings add to the scheme

reported in the present section. Next (and crucial) to say, is that the
(classical-like) energy theorem (9) and the Madelung equations (4)+(6)

HThe essential differences with the quoted analysis in [41] are that we have to put
mes¢(x) in place of m and ©(x) in place of ®(x).
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can be made consistent with each other, provided we assume appropriate
functions m.ff(x), ¢(x), J(x) in all these equations. With specific refe-
rence to eq. (5), this is tantamount to consider "variable-current quantum
states”. They can be produced by inserting an extra Hamiltonian term
as a divergence source in the quantization procedure. We illustrate the
matter with details in the very next section.

4.2.3 Variable current-density quantum states and source potential

Probability current densities of unperturbed stationary states have
zero divergence in the orthodox quantum mechanical formalism. But
the point here is that accounting for the mass effect identified in eq. (10)
makes a difference. Then with reference to the quantization procedure
we propose to consider an Hamiltonian :

A2

= ;’—m + B(x) + i By () (39)
Here p is the known quantum momentum operator ¢ h/(27)V,. When
compared to the standard Hamiltonian, expression (39) includes an ad-
ditional imaginary term, actually the source of the divergence. The new
potential ®;,,(x) is to express physically the deviation from the constant
mass model. By our investigations, we have found an expression for it
and we want to show in this paper, by the numerical calculations given in
Part II, that this is quite the one able to insure good physical consistence

to the model.

The expression is

hv,(x) d ey, (x)
q)im =—2"7 e a5 7 N0 4
) = 1200 (im0 - et (10)
Now we use expression (40) in the quantum Hamilton equation
HY,(x) = E, U, (x) (41)
and obviously equations (4) and (5) are recovered. Moreover we obtain :
h
5 (p()'VS() +p(x)5"(x)) = p(x)Pim (x) (42)

or explicitly, in both Regions I and II :

(43)

I () = pIVS(x) = 200 (x) (meff<x> - h<X>>

2v, (x)?
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To insure validity of this equation, also note the following. In a next
section, we will give the expression (54) for m.yf(x), to hold in Region
II. This expression is exactly the one bringing current density and ima-
ginary potential to be both zero. Then the known quantum-mechanical
stationary (i.e. with constant phase S) solution of (41) is recovered by
our model in Region II. As a last remark here, is easily seen by eq. (43)
that in the purely classical limit, when m.s(x)—m and h is assumed
negligeable, the current density becomes a constant as it must.

4.2.4 Wave momentum and energy

Equation (43) can be written in the form

VS(x) = mesp(x)v, (x) = %p(X) =pi(x) = p2(x) (44)

We interpret this as the constitutive equation for VS(x) in terms of
two characteristic momenta. Then the quantum wave with wave-vector
VS(x)/h interacts with two other waves (wave-vectors m.s;(x)v, (x)/h
and ¢,mp(x)/2) much alike, for instance, three waves are coupled in a
phonon interaction. Then we can calculate the propagating energy E,, of
the quantum wave as follows :

2 2 21,2 2
p1(x pa(x 1 ¢, hp(x
L= 1(x) - 2(x) _ *meff(X)Vi _ # (45)
2mepp(x)  2mepp(x) 2 32me 5 (x)
The same equation can also be written
2
|4V, (m, () = e hp(x)
E,=VSx)v_(x)— (46)

b 32meff (X)

This expression is interesting because it defines the matter wave group

velocity in the form
JE,
= 4
avs VD (X) ( 7)

Concerning equation (45), the remarkable fact here is that in Region
I (see equation (38)) the propagating energy E, appears to us as the
difference between the center of mass energy K.,,(x) and the residual
energy in the group velocity frame <K’'>. Since each of these quanti-
ties correlates to a classical degree of freedom, we conclude that the
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matter wave propagates the amount of energy exceeding the balance ty-
pical of classical equipartition. Equation (37) shows us that in Region
II, however, different potentials merge all together into the expression
p2(x)?/(2mesf(x)). Yet by the very form of this last term, still we can
think to it as the mean energy taken by a single, "equivalent” degree of
freedom in the open packet ; thus reinforcing the previous interpretation.
These circumstances also seem to indicate a physical explanation for the
current density divergence : when equipartition is not achieved, an ex-
tra current flows out of the volume and the wave is a traveling one with
VS #£ 0. As far as physical parameters change along the way, the current
density decreases down to the zero value attained in Region II, where
both the propagated energy and the wave-vector VS/h are zero and the
wave turns into a stationary tail. Incidentally, the traveling wave coming
from Region I merges with continuity into the stationary one, right at
the boundary x,, defined in equation (24).

As a general rule, all the quantities we produce in this paper are
everywhere continuous with their first and second derivatives, with the
exception of v,(x) (and of m.f¢(x), depending on it) suffering a small
discontinuity in their second derivative when crossing the border at the
abscissa x,. This is only because we chose in this work to rest on ex-
pression (33) instead of the more elaborated [42, eq.(80)]. Then even
this discontinuity could be easily eliminated either by upgraded model
or simply a mathematical refinement of eq. (32) around x,, ; at present,
conclusively, we keep it as it stands due to simplicity and direct physical
insight provided to the reader by this last equation.

4.2.5 Explicit expression for the mass eigenfunction

In reference [42] we outlined a model of the interaction between par-
ticles and vacuum in terms of velocity fields. This came out as a non-
local model, and we found an expression for the characteristic distance
<|&7 ;41> of the interaction :

YV |1 —cplh
v, (x)y/m | om(x) |

<[&hial > x> {Region I} (48)
Here ~ is a positive coefficient and the reason why we expose the term
|1 — ¢y is explained next (see a comment to eq. (57)). Physically, equa-
tion (48) is limited to a domain where v, (x) is not too small (Region
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I), and we can exploit it to find an expression of m.s¢(x) therein. Next
we’'ll give an expression holding in Region II (this region includes the
stopping points where all the velocity fields are small).

The expression (48) looks very similar to a de-Broglie wavelength but
includes the mass defect dm(x). In order to find an equation for this last
quantity, it can be noted that the characteristic distance should be of
the same order of the distance across which (relative) density variations
are observed, i.e.

v, (x)y/m | dm(x) | P (%)
To refine this equation, we insert a complemental function f(x) into it

and write ) )
72 1= cal b2 14 £(9)] /(0)

m v, (x)° p(x)”

We need now an expression for f(x). We have used the following (a rough
one, but very simple and effective for consistence of our model) :

| om(x) |=

(50)

const meyf(x,)g9(x) —m

f(x) = sign|p (X)]p’(x)2 meyy(x,) —m

(51)

Indeed, if g(x) is a regular function, this expression is able to avoid diver-
gence of <|&7,;|>|xwhen p’(x)— 0. The function g(x) will be determined,
for each case, by the numerical procedure described in the Part II of this
work : we anticipate here that the constant value g(x) =1 will bring us
very near to the right solutions, so that numerical calculations will start
with this value to provide subsequent refinements. Now we can write
simply

Meyf(X) = megpr(x) =
2 1— h2 / 2
,7 | C’I’L| p (X) 5 (52)
4m Vn(x)
{Region I}

= mes5(x,)g(x) + sign[p’(x)]

Concerning Region II, we first use eq. (22) and find

p(x) = Cih\/gmeff(x)\/Enf—@(x) {Region IT} (53)
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By eq.(30) we get moreover

cph vy (x)

2y () {Region IT}  (54)

Meff(X) = mesprr(x) =

4.2.6 Explicit expressions for the phase gradient and density current

Equations (43), (52) and (54) can be re-elaborated giving

VS(x) =
—@ p(X")2 xX) — p(x sign|p (x)] o —c p'(x)2
=1 { e 9(x) — p(x) + sign[p’ (x)] on |1 — cn| o) } (55)

x UnitStep[x, — X]

where by continuity in x,, we ask that g(x,,) = 1 and the constant o,, is
a cross-section (const = [length™4]) of the form

2 —
Op = Zhy — 8 (meff(Xn) m) Vno (56)

Cplll Vpo cp const h|1 — ¢y

The term |1 — ¢, | appeared in equation (52) already : we displayed it as
such in the mass expression for the purpose of the classical limit. Indeed,
the continuity of expression (55) in x=x,, also calls for the condition

1 - el p/(x,) = 0 (57)

so that - as it will be better explained in a next section - when we will
turn to the classical limit we will have to satisfy this last condition just
setting ¢,, = 1, mef¢(x)=m; p’(x,)= 0 is instead the condition to impose
when we search for quantum solutions. In our model, these circumstances
represent mathematically the change of step to be made when crossing
the boundary between the classical and quantum world.

4.2.7 Calculation of the potential ¢(x)
Using eq. (43), (4), (34), we find

_ VS VSi(x)

$(x) om 2mey g (x)

—cphr,(x) — —
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so that eq.(14) writes

VS2(X) h2 A(X)// B
T T o Ak (59)
2(x
%meff(x) V(X)2+ E,; — ¢y hv,(x) — QZch;())() - E (60)

These last are just the final energy theorem expressions we promote
in our paper to describe the physical behavior of what we have called
the Bernoulli oscillators : i.e. classical oscillators submitted to the va-
cuum action. This action is described by different terms going back to
the known Bohm potential + the few other mass and flow effects spe-
cifically featured in equation (59) itself. To compare with the standard
expression generally used in Bohmian mechanics, we can state there-
fore that our “quantum potential” is not simply the Bohm potential
-h?/2m A(x)"” /A(x) but

CnhVnO

D uant () = f% om(x) v(x)® + 5

— cphr, (x) +

4.2.8 Single-particle time-dependent behavior

In the time-dependent branch of the model, equation (14) writes

1 dX2 En *En1
o Mepr(x(t)) 3¢ +Ox(t)) +o(x(t)) + ol ) =E(t)  (62)
where the ergodic assumption requires that
1 dt
P(E)dE = —T(E)dE = — 63
(E)IE = —-T(E)IE = = (63)
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So once P(E) is known, we can integrate to find E(t). Here one complete
cycle of fluctuation lasts a time 27 so that, essentially

1 En,f ti+T
- T(E)dE = / dt
Cnh jol t; T

For all the physical quantities Q(E) defined in the E-states ensemble we
have therefore

(64)

Eny 1 ti+T
QEPEME=> [ QEw)d (65)

Eni T t;

This insures ergodicity. We do not give solved examples in this paper,
but only note that if for each state n we take 7 not shorter than a few
mean periods, then standard techniques can be used - starting from the
stationary solutions v(x,xo(E)) - to visualize a phase-space imagine of
the trajectories available to each particle.

4.3 Thermodynamic framework

In a previous paper [59] we introduced a peculiar interpretation of
the Bose-Einstein distribution (1), as enlightened by a basic balance
principle : in statistical equilibrium, the fluctuation entropy - i.e. the
amount of entropy (let us call it here AY,.,;) introduced by the pertur-
bation into the classical system must be equal to the entropy difference
AY.."receivable” by the last. We resume here the fundamental concept,
adding some new knowledge for the anharmonic case [60]. First of all,
we attribute to the (vacuum-oscillator) interaction a lifetime

h <c¢,>h
k f Cj(%cu) k (Uc - UcO)

T(UC)

To calculate this quantity, we can use in a first approximation the unper-
turbed, classical oscillators characteristic functions : therefore U, is the
classical thermodynamic energy ; ¢, (U,.) is the classical constant-volume
specific-heat and 1/< ¢, > an equivalent integral mean just defined by
the same eq. (66). In the same equation U (a constant with respect
to the U, fluctuation, but we may take it dependent on the fixed tem-
perature T, see Part II of this work) is to cut off slow motions, since
anharmonic oscillators may have too long periods for meaningful inter-
action; k is the Boltzmann constant. We define the fluctuation entropy
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(12) as

1 Uy (T) << ¢y >>i¢ Uf(T) - UCO(T)
Azpert = E /UI(T) T(Uc)dUc = k In Uz(T) — UCO(T) (67)

Now we equate this last to the amount of entropy AX.. This one can be

simply defined as (%)

US(T) ~ Uy(T) _ AU(T)
kT kT

AY, = (68)

Equating (67) and (68), we take out U; and get the energy distribution
in the form

< Up > jra = SO FUAD) g gy AU(T) L AU
- ’ .
(69)

The obvious conditions we have to impose to this expression are that it
must be consistent with the mechanical part of the model, and coincident
with the correspondent quantum-mechanical expectation Uy, (T). So we
write

<Eui >+ <Buy > 2o (Bni+Bng) Bxp [ 3]
2 230l Bxp [~ 5]

< Uc >fluct =

_ Ziozl E,Exp [%] (70)

These equations can be used to find the spectrum of values E,;, E,, ¢
necessary to the mechanical model equations for every given case. We
will see this in the next sections, dedicated to basic examples, to be found
in Part II of the paper.

5 Conclusion

In this paper, we have stated theoretically that using an Hamiltonian
(39) with the imaginary potential (40) brings the quantum-mechanical

12We apply here the integral rule found in [14]. It is a prescription able to insure
detailed balancing in classically-calculated transition probability expressions.
13See a discussion in ref [59].
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hydrodynamic equations to be solved consistently with a classical-like
theorem of the form (59), provided we add to this frame : a) fluctuating
energy statistical equations, with implied mass functions m.ss(x) and
flow functions v, (x), and b) the ergodic assumption (63). In eq. (59),
as well as in the imaginary potential definition, the characteristic mass
function mesy(x) takes a dominant role. It appears as a new physical
actor able to reconciliate (at the basic level here presented at least) the
quantum theory with the classical. We have given detailed expressions
of the mass functions as well as of the other quantities involved by the
model ; in the following Part II of this work we will exhibit in sampled
graphs the solutions we obtained numerically for the two most important
cases of the rectangular well and harmonic oscillator. Consistence of the
global model with the main thermodynamic quantum properties has also
been shown theoretically, and the resulting equations will be used in Part
IT for the practical purpose of finding the appropriate extreme energy
values of the fluctuation intervals for the cases at hand. A view is given
on the constitutive equation of the wave-function phase gradient in terms
of characteristic momenta and the classical limit framework associated
to the model will also be investigated in Part II. We note at last that
due to the characteristic form of the HDF potential expressed in (10),
where a second derivative of the squared velocity field plays the dominant
role, we foretold in [42,58,61] the ability of this potential to supply energy
during barrier jumping, so that basing on the same framework a classical-
like interpretation of the tunnel effect can be expected with detailed
calculations in future work.
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