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On the variance of light
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RÉSUMÉ. Dans le cadre de l’algèbre de Clifford de l’espace physique
Cl3 on reprend la théorie de la lumière de Louis de Broglie. On retrouve
les quatre photons de G. Lochak. La théorie est invariante sous le
groupe Cl∗3 , plus vaste que le groupe de Lorentz.
In the frame of the Cl3 Clifford algebra of the physical space we resume
the Louis de Broglie’s theory of light. We get all four photons of G.
Lochak. The theory is invariant under the Cl∗3 group, a greater group
than the Lorentz group.

We link here Louis de Broglie’s theory of light [1], its generalization
by G. Lochak as a theory of four kinds of photons [2], to the invariance
under the Cl∗3 group [3] which is the true invariance group of all electro-
magnetism, Dirac wave equation included.

For his construction of the wave of a photon Louis de Broglie started
from two Dirac spinors. In the frame of the initial formalism used by de
Broglie his two spinors read

ψ =


ψ1

ψ2

ψ3

ψ4

 ; ϕ =


ϕ1

ϕ2

ϕ3

ϕ4

 . (1)

They are solutions of the Dirac wave equation for a particle without
charge

∂0ψ = (α1∂1 + α2∂2 + α3∂3 + i
m

2
α4)ψ (2)

and of the wave equation for its antiparticle

∂0ϕ = (α1∂1 − α2∂2 + α3∂3 − i
m

2
α4)ϕ (3)
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where

x0 = ct ; ∂µ =
∂

∂xµ
; m =

m0c

~
(4)

αjαk + αkαj = 2δjk. (5)

It is well known that these matrix relations are not enough to define
uniquely αµ. We can choose different sets of αµ matrices. We choose here
a set working with Weyl spinors which are used to get the relativistic
invariance :

αj =
(
−σj 0
0 σj

)
, j = 1, 2, 3 ; α4 =

(
0 −I
−I 0

)
; I =

(
1 0
0 1

)
(6)

where σj are Pauli matrices and we let

ξ =
(
ψ1

ψ2

)
=

(
ξ1
ξ2

)
; η =

(
ψ3

ψ4

)
=

(
η1
η2

)
ζ∗ =

(
ϕ1

ϕ2

)
=

(
ζ∗1
ζ∗2

)
; λ∗ =

(
ϕ3

ϕ4

)
=

(
λ∗1
λ∗2

)
(7)

where a∗ is the complex conjugate of a. With

~∂ = σ1∂1 + σ2∂2 + σ3∂3

~∂∗ = σ1∂1 − σ2∂2 + σ3∂3 (8)

the wave equation (2) is equivalent to the system

(∂0 + ~∂)ξ + i
m

2
η = 0 (9)

(∂0 − ~∂)η + i
m

2
ξ = 0. (10)

ξ and η are Weyl spinors of the wave ψ and the wave equation of the
anti-particle (3) is equivalent to the system

(∂0 + ~∂∗)ζ∗ − im
2
λ∗ = 0

(∂0 − ~∂∗)λ∗ − im
2
ζ∗ = 0. (11)

By complex conjugation we get

(∂0 + ~∂)ζ + i
m

2
λ = 0 (12)

(∂0 − ~∂)λ+ i
m

2
ζ = 0. (13)
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This system is identical to (9)-(10) if we replace ζ by ξ and λ by η. Now
we take the complex conjugate of (10) and we multiply by −iσ2 on the
left side :

(−iσ2)[(∂0 − ~∂∗)η∗ − im
2
ξ∗] = 0 (14)

and we get
(∂0 + ~∂)(−iσ2)η∗ − i

m

2
(−iσ2)ξ∗ = 0. (15)

We get with (9) and (15)

(∂0 + ~∂)
(
ξ1
ξ2

)
+ i

m

2

(
η1
η2

)
= 0

(∂0 + ~∂)
(
−η∗2
η∗1

)
+ i

m

2

(
ξ∗2
−ξ∗1

)
= 0. (16)

This system is equivalent to the equation

(∂0 + ~∂)
(
ξ1 −η∗2
ξ2 η∗1

)
+
m

2

(
η1 −ξ∗2
η2 ξ∗1

) (
i 0
0 −i

)
= 0. (17)

We let [3]

φ1 =
√

2
(
ξ1 −η∗2
ξ2 η∗1

)
; φ2 =

√
2

(
ζ1 −λ∗2
ζ2 λ∗1

)
(18)

which have their value in the algebra generated by Pauli matrices σj .
This algebra named Cl3 is also the Clifford algebra of the physical space.
Any element in Cl3 is the sum of a scalar s, a vector ~v, a pseudo-vector
i ~w and a pseudo-scalar ip.

φ = s+ ~v + i ~w + ip. (19)

The main automorphism P in Cl3

P : φ 7→ φ̂ = s− ~v + i ~w − ip (20)

satisfies

φ̂1 =
√

2
(
η1 −ξ∗2
η2 ξ∗1

)
; ̂(A+B) = Â+ B̂ ; ÂB = ÂB̂. (21)

We need

∇ = σµ∂µ = ∂0 − ~∂ ; ∇̂ = ∂0 + ~∂ ; σ0 = σ0 = I

σ12 = σ1σ2 = iσ3. (22)
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With (18) and (21) equation (17) therefore reads

∇̂φ1 +
m

2
φ̂1σ12 = 0 (23)

or using again the main automorphism P

∇φ̂1 +
m

2
φ1σ12 = 0. (24)

Similarly the system (12)-(13) is equivalent to

∇φ̂2 +
m

2
φ2σ12 = 0. (25)

De Broglie’s half-photons ψ and ϕ are linked, they have the same
energy and the same momentum, so he supposed [1] that they satisfy

ϕk∂µψi = (∂µϕk)ψi =
1
2
∂µ(ϕkψi) , k, j = 1, 2, 3, 4 ; µ = 0, 1, 2, 3. (26)

This is equivalent, with (1) and (7), to

ξk(∂µζ
∗
i ) = (∂µξk)ζ∗i =

1
2
∂µ(ξkζ∗i )

ξk(∂µλ
∗
i ) = (∂µξk)λ∗i =

1
2
∂µ(ξkλ∗i )

ηk(∂µζ
∗
i ) = (∂µηk)ζ∗i =

1
2
∂µ(ηkζ

∗
i ) (27)

ηk(∂µλ
∗
i ) = (∂µηk)λ∗i =

1
2
∂µ(ηkλ

∗
i ).

Wave equations (24) and (25) are form invariant [3] under the Lorentz
dilation D defined by

x′ = D(x) = MxM† ; φ′1 = Mφ1 ; φ′2 = Mφ2

∇ = M∇′M̂ ; ∇′ = σµ∂′µ ; m = det(M)m′ ; M = M̂† (28)

whereM is any element in Cl∗3 that is to say any invertible element in Cl3
and M† is the adjoint of M . We get indeed as det(M) = MM = MM
for any M in Cl3

∇φ̂j +
m

2
φjiσ3 = M∇′M̂φ̂j +

m′

2
det(M)φjiσ3

= M∇′φ̂′j +MM
m′

2
φjiσ3

= M(∇′φ̂′j +
m′

2
φ′jiσ3). (29)
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1- The electromagnetism of the photon
We start here from the fact seen in [3] that the electromagnetic po-

tential A is a contra-variant space-time vector, that is to say a vector
transforming as x :

A′ = MAM†. (30)
We know in addition that Pauli’s principle rules that products must be
antisymmetric. We also know that the σ3 term is privileged with the
Dirac equation. We then consider

A = φ1iσ3φ
†
2 − φ2iσ3φ

†
1 (31)

Fe = ∇Â (32)

The variance of A and the variance of the electromagnetic field Fe are
expected because

A′ = φ′1iσ3φ
′
2
† − φ′2iσ3φ

′
1
†

= (Mφ1)iσ3(Mφ2)† − (Mφ2)iσ3(Mφ1)†

= M(φ1iσ3φ
†
2 − φ2iσ3φ

†
1)M

† = MAM† (33)

Fe = ∇Â = M∇′M̂Â = M∇′M̂AM†(M̂†)−1

= M(∇′Â′)M
−1

= M−1MMF ′
eM

−1
M−1M

= M−1 det(M)F ′
e det(M−1)M = M−1F ′

eM

F ′
e = MFeM

−1. (34)

A is actually a space-time vector because

A† = (φ1iσ3φ
†
2 − φ2iσ3φ

†
1)

†

= φ2(−iσ3)φ
†
1 − φ1(−iσ3)φ

†
2 = A. (35)

The calculation of A with (18) and usual Pauli matrices gives

Â

2i
=

(
η1λ

∗
1 − ξ∗2ζ2 − λ1η

∗
1 + ζ∗2 ξ2 η1λ

∗
2 + ξ∗2ζ1 − λ1η

∗
2 − ζ∗2 ξ1

η2λ
∗
1 + ξ∗1ζ2 − λ2η

∗
1 − ζ∗1 ξ2 η2λ

∗
2 − ξ∗1ζ1 − λ2η

∗
2 + ζ∗1 ξ1

)
. (36)

We then remark that each product is one of products in (27) and this
gives

∂µÂ = ∂µ(φ̂1iσ3φ2 − φ̂2iσ3φ1) = 2(∂µφ̂1)iσ3φ2 − 2(∂µφ̂2)iσ3φ1

∇Â = 2[(∇φ̂1)iσ3φ2 − (∇φ̂2)iσ3φ1]. (37)
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Dirac equations (24) and (25) give then

Fe = mφ1(−iσ3)iσ3φ2 −mφ2(−iσ3)iσ3φ1

= m(φ1φ2 − φ2φ1). (38)

As any element in the Cl3 algebra Fe is a sum

Fe = s+ ~E + i ~H + ip (39)

where s is a scalar, ~E is a vector, i ~H is a pseudo-vector and ip is a
pseudo-scalar. But we get

F e = s− ~E − i ~H + ip = m(φ1φ2 − φ2φ1) = m(φ2φ1 − φ1φ2)

= −m(φ1φ2 − φ2φ1) = −Fe = −s− ~E − i ~H − ip. (40)

Fe is therefore a pure bivector :

s = 0 ; p = 0 ; Fe = ~E + i ~H. (41)

This agrees with all that we know about electromagnetism and optics.
Now (32) reads

~E + i ~H = (∂0 − ~∂)(A0 − ~A) = ∂0A
0 − ~∂A0 − ∂0

~A+ ~∂ ~A (42)

and as
~∂ ~A = ~∂ · ~A+ i~∂ × ~A ; ∂0A

0 + ~∂ · ~A = ∂µA
µ (43)

(32) is equivalent to the system

0 = ∂µA
µ (44)

~E = −~∂A0 − ∂0
~A (45)

~H = ~∂ × ~A. (46)

(45) and (46) are well known relations between electric and magnetic
fields and potential terms. (44) is the relation known as the Lorentz
gauge which is in the frame of the theory of light a necessary condition.
With (38) we get

∇̂Fe = m∇̂(φ1φ2 − φ2φ1). (47)

A detailed calculation of these matrices shows as in (36) only products
present in (27) and this gives

∇̂Fe = 2m[(∇̂φ1)φ2 − (∇̂φ2)φ1] (48)
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And we get with (24) and (25)

∇̂φ1 =
m

2
φ̂1σ21 ; ∇̂φ2 =

m

2
φ̂2σ21 (49)

�Â = ∇̂∇Â = ∇̂Fe = m2[φ̂1(−iσ3)φ2 − φ̂2(−iσ3)φ1]

∇̂Fe = −m2Â (50)

This is the expected law for the electromagnetism of the photon first
obtained by Louis de Broglie since it gives

(∂0 + ~∂)( ~E + i ~H) = −m2(A0 − ~A)

= ~∂ · ~E + (∂0
~E − ~∇× ~H) + i(∂0

~H + ~∇× ~E) + i~∂ · ~H. (51)

Separating the scalar, vector, pseudo-vector and pseudo-scalar parts,
(50) is equivalent to the system

~∂ · ~E = −m2A0 (52)

∂0
~E − ~∇× ~H = m2 ~A (53)

∂0
~H + ~∇× ~E = 0 (54)

~∂ · ~H = 0 (55)

(44) to (46) and (52) to (55) are exactly laws of the electromagnetism of
Maxwell in the void, completed by new terms found by Louis de Broglie
containing the very small proper mass m0 = m~

c of the photon. These
seven laws are exactly the same, but quantities are here only real or with
real components, Fe is therefore the electromagnetic field of classical
electromagnetism and optics. The photon does not need complex fields.

Differential laws (32) and (50) are form invariant under dilations
defined by (28). This invariance under Cl∗3 induces that they are invariant
under the restricted Lorentz group [3].

2- Three other photons of G. Lochak

Following the example of (31) seven other space-time vectors should
be possible since Cl3 algebra is 8-dimensional. They are built with
φ1Xφ

†
2 − φ2Xφ

†
1. Only three of these seven choices : X = −σ3, X = i,

X = 1 are compatible with (27) and we will see now that this gives
Lochak’s three other photons.
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2-1 Case X = σ̂3

We start now from

iB = φ1σ̂3φ
†
2 − φ2σ̂3φ

†
1. (56)

It is a pseudo-vector, not a vector, because

(iB)† = φ2σ̂3φ
†
1 − φ1σ̂3φ

†
2 = −iB. (57)

The variance of B is the same as for A :

B′ = MBM† (58)

B must not be confused with the magnetic induction. It reads

B = B0 + ~B (59)

where B0 is the magnetic potential and ~B is the magnetic potential
vector which are present in the theory of the magnetic monopole [2]. We
let now

Fm = ∇îB (60)

This gives for the variance of Fm

F ′
m = MFmM

−1. (61)

The detailed calculation of (56) shows that each product is one of pro-
ducts present in (27). We therefore get

Fm = ∇(φ̂1σ3φ2 − φ̂2σ3φ1)

= 2[(∇φ̂1)σ3φ2 − (∇φ̂2)σ3φ1)]

= m[φ1(−iσ3)σ3φ2 − φ2(−iσ3)σ3φ1]

= −im(φ1φ2 − φ2φ1) (62)

We then get

Fm = −imφ1φ2 − φ2φ1 = −im(φ2φ1 − φ1φ2) = −Fm (63)

Fm is also a pure bivector and we can let

Fm = ~Em + i ~Hm (64)
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which gives in (60)

~Em + i ~Hm = (∂0 − ~∂)(−iB0 + i ~B)

= ~∂ × ~B + i(∂0
~B + ~∂B0)− i(∂0B

0 + ~∂ · ~B). (65)

And this is equivalent to the system

~Em = ~∂ × ~B (66)
~Hm = ∂0

~B + ~∂B0 (67)
0 = ∂µB

µ (68)

The Lorentz gauge (68) is also a necessary condition for magnetic po-
tentials. (66) and (67) are relations linking electric and magnetic fields
to magnetic potentials in the theory of the magnetic monopole [2]. We
then get

�îB = ∇̂Fm = −im∇̂(φ1φ2 − φ2φ1)

= −2im[(∇̂φ1)φ2 − (∇̂φ2)φ1]

= −im2[φ̂1(−iσ3)φ2 − φ̂2(−iσ3)φ1]

= −m2îB. (69)

We then get

m2(iB0 − i ~B) = (∂0 + ~∂)( ~Em + i ~Hm)

= ~∂ · ~Em + (∂0
~Em − ~∂ × ~Hm) + i(∂0

~Hm + ~∂ × ~Em) + i~∂ · ~Hm (70)

equivalent to the system

~∂ · ~Em = 0 (71)

∂0
~Em − ~∇× ~Hm = 0 (72)

∂0
~Hm + ~∇× ~Em = −m2 ~B (73)

~∂ · ~Hm = m2B0 (74)

These equations (66) to (68) and (71) to (74) are exactly seven laws
found by G. Lochak for the second kind of photon, the magnetic photon.
We can notice that as with the electric photon each quantity is real or
with real components.
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Now it is possible to consider a total field F = Fe + Fm satisfying

F = ∇(Â+ iB) (75)

∇̂F = −m2(Â+ iB) (76)

which are laws of the electromagnetism with electric charges and magne-
tic monopoles and densities of electric current j and magnetic current k
satisfying

j = −cm
2

4π
A ; k = −cm

2

4π
B (77)

very small since m0 is very small. Even if A and B are contra-variant
vectors, the variance of m allows j and k to be covariant vectors [3],
varying as ∇, not as x.

2-2 Case X = i

We start now from

A(i) = φ1iφ
†
2 − φ2iφ

†
1. (78)

It is a contra-variant vector in space-time since we get

A†
(i) = φ2(−i)φ†1 − φ1(−i)φ†2 = A(i) (79)

A′
(i) = MA(i)M

†. (80)

Now we let as previously
F(i) = ∇Â(i) (81)

so we get as variance under Cl∗3

F ′
(i) = MF(i)M

−1. (82)

The detailed calculation of the product of matrices in (81) shows only
products contained in (27) and we then get

F(i) = ∇(φ̂1îφ2 − φ̂2îφ1)

= 2[(∇φ̂1)(−i)φ2 − (∇φ̂2)(−i)φ1]

= m[φ1(−iσ3)(−i)φ2 − φ2(−iσ3)(−i)φ1]

= −m(φ1σ3φ2 − φ2σ3φ1). (83)



On the variance of light 263

This gives

F (i) = −m(φ1σ3φ2 − φ2σ3φ1) = −m[φ2(−σ3)φ1 − φ1(−σ3)φ2]

= −m(φ1σ3φ2 − φ2σ3φ1) = F(i) (84)

with an opposite result in comparison with (40) and (63). We then get

F(i) = s+ ~u+ i~v + ip = F (i) = s− ~u− i~v + ip

~u = 0 ; ~v = 0 ; F(i) = s+ ip (85)

But then we get from (82)

s′ + ip′ = M(s+ ip)M−1 = (s+ ip)MM−1 = s+ ip (86)

This case corresponds to a field completely invariant under Cl∗3. Now
(81) reads

s+ ip = (∂0 − ~∂)(A0
(i) − ~A(i))

= ∂0A
0
(i) + ~∂ · ~A(i) − (∂0

~A(i) + ~∂A0
(i)) + i~∂ × ~A(i) + 0i. (87)

This is equivalent to the system

s = ∂µA
µ
(i) (88)

0 = ∂0
~A(i) + ~∂A0

(i) (89)

0 = ~∂ × ~A(i) (90)
p = 0 (91)

The field is therefore a scalar and invariant field. Next we get

∇̂F(i) = −m∇̂(φ1σ3φ2 − φ2σ3φ1)

= −2m[(∇̂φ1)σ3φ2 − (∇̂φ2)σ3φ1]

= −m2[φ̂1(−iσ3)σ3φ2 − φ̂2(−iσ3)σ3φ1]

= −m2[φ̂1(−i)φ2 − φ̂2(−i)φ1] (92)

�Â(i) = ∇̂F(i) = −m2Â(i). (93)

This is equivalent to

(∂0 + ~∂)s = −m2(A0
(i) − ~A(i))

∂0s = −m2A0
(i) (94)

~∂s = m2 ~A(i) (95)
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(88) to (91) and (94)-(95) are non-Maxwellian equations of the Lochak’s
magnetic photon, with

s = I1 ; m = k0 ; A′ = m~A(i) ; V ′ = mA0
(i) (96)

We can remark that this invariant scalar field is obtained in a largely
independent way from the electromagnetic field. Here also everything
is with real value or component. In this case physical objects are an
invariant scalar field and a contra-variant vector. There is no apparent
reason to identify A and A(i), even if they are two contra-variant vectors.
Many physicists are searching now a scalar Higgs field rather similar to
the s field encountered here.

2-3 Case X = 1

We start now from

iB(1) = φ1φ
†
2 − φ2φ

†
1. (97)

It is now a contra-variant pseudo-vector in the space-time since we get

(iB(1))† = φ2φ
†
1 − φ1φ

†
2 = −iB(1) (98)

B′
(1) = MB(1)M

†. (99)

Now we let as previously

F(1) = ∇îB(1) (100)

so we get again as variance under Cl∗3

F ′
(1) = MF(1)M

−1. (101)

The detailed calculation of (97) shows that all products are in (27). We
then get again

F(1) = ∇(φ̂1φ2 − φ̂2φ1) = 2[(∇φ̂1)φ2 − (∇φ̂2)φ1]

= m[φ1(−iσ3)φ2 − φ2(−iσ3)φ1] (102)

And we get

F (1) = m[φ1(−iσ3)φ2 − φ2(−iσ3)φ1]

= m[φ2(iσ3)φ1 − φ1(iσ3)φ2 = F(1) (103)
F(1) = s+ ip (104)
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With (86) F(1) is therefore also an invariant field under Cl∗3. Now (100)
reads

s+ ip = (∂0 − ~∂)(−i)(B0
(1) − ~B(1))

= 0 + ~∂ × ~B(1) + i(~∂B0
(1) + ∂0

~B(1))− i∂µB
µ
(1) (105)

that is

s = 0 (106)

0 = ~∂ × ~B(1) (107)

0 = ~∂B0
(1) + ∂0

~B(1) (108)

p = −∂µB
µ
(1) (109)

So this field is pseudo-scalar and invariant :

F(1) = ip = ip′ = −i∂µB
µ
(1) (110)

Next we get

∇̂F(1) = m∇̂[φ1(−iσ3)φ2 − φ2(−iσ3)φ1]

= 2m[(∇̂φ1)(−iσ3)φ2 − (∇̂φ2)(−iσ3)φ1]

= m2[φ̂1(−iσ3)2φ2 − φ̂2(−iσ3)2φ1]

= −m2(φ̂1φ2 − φ̂2φ1) (111)

�îB(1) = ∇̂F(1) = −m2îB(1) (112)

This reads
(∂0 + ~∂)(ip) = im2(B0

(1) − ~B(1)) (113)

which is equivalent to

~∂p = −m2 ~B(1) (114)

∂0p = m2B0
(1) (115)

(107) to (109) and (114)-(115) are non-Maxwellian equations of the Louis
de Broglie’s photon with p = −I2. This is reduced to an invariant pseudo-
scalar and a contravariant pseudo-vector. There is no evident reason to
identify B(1) to the magnetic potential B. If the Higgs sector of the
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quantum field theory needs also an invariant pseudo-scalar, p could be
a good candidate.

We then see that it is easy to get in the frame of Cl3 all four photons of
the theory of de Broglie - Lochak and the whole thing is form invariant
under Cl∗3. There are differences in comparison with the construction
based on Dirac matrices : All physical quantities are real or have real
components and they are obtained by antisymmetric products. This is
very easy to get with the internal multiplication of the Cl3 algebra and
was very difficult to make with complex unicolumn matrices. These two
differences are advantages because vectors and tensors of classical elec-
tromagnetism and optics have only real components. And Louis de Bro-
glie had understood very early that antisymmetric products are enough
to get the Bose-Einstein statistics for bosons made of an even number
of fermions. The scalar field of G. Lochak and the pseudo-scalar field
for which Louis de Broglie was cautious are perhaps to bring together
with the scalar Higgs boson that physicists search experimentally today.
As fields s and p are obtained here independently from the field of the
electric photon and of the magnetic photon, their mass is not necessarily
very small and may be huge. Curiously it was the first idea of Louis de
Broglie about the non-Maxwellian part of his theory. Were Higgs bosons
seen as soon as 1934 ?

Concluding remarks

The quantum wave of a photon is actually an electromagnetic wave.
The theory of the electron was built in the frame of a field theory

using complex numbers and Hilbert spaces. Here fields have only real
components, as classical fields. But everything is built in the frame of a
Clifford algebra isomorphic to the Pauli algebra. We can also say that
F = ~E + i ~H has complex values or that F which is a 2 × 2 matrix
is a linear operator. The usual formalism of quantum mechanics is still
available.

All fields were defined from antisymmetric products of spinors. They
can disappear as soon as these two spinors are equal. They can appear
as soon as they are not equal.

The first difference in comparison with classical electromagnetism
is about potentials. They are not convenient vectors coming from ade-
quate calculation. They are essential quantities. Fields are computed
from them. It is a reinforcement of the position of potentials in quan-
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tum theory. We must recall that wave equations of quantum mechanics
contain potentials. Fields are second.

The second difference in comparison with quantum field theory, where
gauge invariances play a fundamental role, comes from the fact that the
electromagnetism of the photon is not gauge invariant. This was never
considered as bad by Louis de Broglie, on the contrary. In fact the inva-
riance of the theory is the form invariance under Cl∗3. Everything about
electromagnetism can be made form invariant under this group, which
extends the relativistic invariance. The Dirac theory contains things
which are gauge invariant and things which are not gauge invariant.
This was largely hidden in the Dirac theory by the matrix formalism
which put in evidence only 16 densities without derivative from the 36
existing [3].

The result of conditions (26) of Louis de Broglie is a linearisation of
the derivation of products which gives linear equations for bosons built
from fermions. This is how the linear operator ∇ acts both in the Dirac
equation and in Maxwell equations.
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