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RÉSUMÉ. Les inégalités de Bell applicables aux expériences EPRB
non-idéales sont critiques pour l’interprétation des tests expérimentaux
de Bell. Dans cet article on démontre que les traitements antérieurs
de cette question sont incorrects en vertu d’une hypothèse implicite
et on calcule des inégalités nouvelles sous des conditions générales.
L’évidence expérimentale publiée est réinterprété face a ces résultats
et trouvée entièrement compatible avec le réalisme-local, soit quand
les expériences ont détection inefficient, si on assume échantillonnage
représentatif à la détection, soit quand les expériences ont détection
presque idéal et la diaphonie du processus de mesure est prise en
compte.

ABSTRACT. Bell inequalities applicable to non-ideal EPRB experi-
ments are critical to the interpretation of experimental Bell tests. In
this article it is shown that previous treatments of this subject are in-
correct due to an implicit assumption and new inequalities are derived
under general conditions. Published experimental evidence is reinter-
preted under these results and found to be entirely compatible with
local-realism, both, when experiments involve inefficient detection, if
fair-sampling detection is assumed, as well as when experiments have
nearly ideal detection and measurement crosstalk is taken into account.

P.A.C.S.: 03.65.Ud, 03.67.Mn

1 Ideal EPRB experiments

The origin of the branch of quantum physics presently concerned with
quantum entanglement and non-locality can, historically, be traced to
the 1935 article by Einstein, Podolsky and Rosen [1] and from then to
the equivalent thought-experiment proposed, in 1951, by Bohm [2].
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This thought-experiment, now known as the two-channel analyzer
EPRB experiment, involves the setup depicted, as a flow diagram, in
Figure 1.

S��
��

� -
σA σB

AA AB

6 6

a b

@
@

@I

�
�

�	

�
�
��

@
@
@R

DA+

DA−

DB+

DB−

1

Figure 1: Flow diagram of the EPRB experiment with two-channel an-
alyzers.

The experimental procedure is as follows:

1. Pairs of quantum systems, σA and σB , possibly different, are suc-
cessively prepared at the source, S, in a non-factorizable quantum
state (entangled state);

2. The two systems are physically separated;

3. Each quantum system undergoes an independent dichotomic mea-
surement, represented by analyzers AA and AB , parameterized,
respectively, by a or b. The measurement outcome is signaled
through one of the analyzer’s two channels, + or −. The two ana-
lyzers need not be symmetric, both in the sense that measurement
outcomes in each arm of the experiment may have marginal prob-
abilities 6= 1

2 and that the marginal probabilities on both arms of
the experiment need not be identical;

4. Detectors, DA+, DA−, DB+ and DB−, monitor the analyzers’ out-
puts and produce signal detection events, which are recorded.

Ideally, for every pair of prepared quantum systems, two measure-
ment signals would be detected, and thus, two detection events would
be recorded, either + or − on the A arm of the experiment, and also
either + or − on the B arm.
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Under such conditions, the outcome of an experiment run involving
NP pairs of quantum systems, can be summarized by a contingency table
as Table 1, where the observed frequencies, fAB(a, b), depend on the
parameters, a and b, and the symbol ± is used to represent summation
over the two possible outcomes, + and −.

fAB(a, b) + − B

+ fAB
++ (a, b) fAB

+− (a, b) fAB
+± (a, b)

− fAB
−+ (a, b) fAB

−− (a, b) fAB
−± (a, b)

A fAB
±+ (a, b) fAB

±− (a, b) NP

Table 1: Outcome summary of an ideal two-channel analyzer EPRB
experiment run.

In the limit NP →∞, the relative frequencies approach probabilities:

∀i,j∈{+,−} : pAB
ij (a, b) = lim

NP→∞

fAB
ij (a, b)

NP
,

and, on their basis, a correlation, EAB(a, b) [3], can be introduced to
describe the degree of association between outcomes on both arms of
the experiment:

EAB(a, b) := pAB
++(a, b) + pAB

−−(a, b)− pAB
+−(a, b)− pAB

−+(a, b).

This version of the EPRB experiment involves two distinct values of
the measurement parameters on either arm of the experiment [4], say a
and a′ on the A arm and b and b′ on the B arm. Let’s call A and A′

the respective detection records on the A arm and B and B′ the similar
records on the B arm.

A specific realization of this version of the EPRB experiment can,
thus, be fully characterized by the four joint probability tables in Table 2.

If outcomes in one arm of the experiment are independent of the
choice of measurement parameter made on the other arm, the marginal
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pAB + − B

+ pAB
++ pAB

+− pAB
+±

− pAB
−+ pAB

−− pAB
−±

A pAB
±+ pAB

±− 1

pAB′
+ − B′

+ pAB′

++ pAB′

+− pAB′

+±

− pAB′

−+ pAB′

−− pAB′

−±

A pAB′

±+ pAB′

±− 1

pA′B + − B

+ pA′B
++ pA′B

+− pA′B
+±

− pA′B
−+ pA′B

−− pA′B
−±

A′ pA′B
±+ pA′B

±− 1

pA′B′
+ − B′

+ pA′B′

++ pA′B′

+− pA′B′

+±

− pA′B′

−+ pA′B′

−− pA′B′

−±

A′ pA′B′

±+ pA′B′

±− 1

Table 2: Full characterization of an ideal two-channel analyzer EPRB
experiment.

probabilities will satisfy:

pAB
+± = pAB′

+± =: pA
+, pAB

−± = pAB′

−± =: pA
−, (1)

pA′B
+± = pA′B′

+± =: pA′

+ , pA′B
−± = pA′B′

−± =: pA′

− , (2)

pAB
±+ = pA′B

±+ =: pB
+, pA′B

±− = pA′B
±− =: pB

−, (3)

pAB′

±+ = pA′B′

±+ =: pB′

+ , pAB′

±− = pA′B′

±− =: pB′

− . (4)

These conditions are necessary but, as will be shown in the next
section, not sufficient to ensure locality. Let’s say we have ’apparent
locality’ when these conditions are met.

From the four joint probability tables in Table 2, four correlation
values can be obtained:

∀X∈{A,A′},Y ∈{B,B′} : EXY = pXY
++ + pXY

−− − pXY
+− − pXY

−+ .

The summary statistic for this version of the EPRB experiment,
known as the CHSH [4] Bell-quantity, S, is based on these four cor-
relation values and defined as:

S := EAB − EAB′
+ EA′B + EA′B′

. (5)

Another version of the EPRB experiment results from removing one
detector from each arm of the setup in Figure 1. Since only one channel
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of each analyzer is now monitored, this version is known as the single-
channel analyzer EPRB experiment. Either detector may be removed.
Let’s choose to keep the + detectors on both arms and remove both −
ones.

The summary statistic for this version is known as the CH [5] Bell-
quantity ∆′. This is based directly on the joint and marginal probabili-
ties in Table 2 and defined as:

∆′ := pAB
++ − pAB′

++ + pA′B
++ + pA′B′

++ − pA′

+ − pB
+. (6)

A single-channel analyzer EPRB experiment may also be supple-
mented with three additional experiments in which one or both of the
analyzers are removed and all quantum systems, in the respective arm,
directly detected without measurement. The collection of these four ex-
periments will be designated as the single-channel removable analyzers
EPRB experiment.

In this version, the measurement parameters, a and b, may be re-
garded as taking three alternative settings on either arm, say a, a′ and
∞ on the A arm and b, b′ and ∞ on the B arm, where the ∞ setting
stands for removal of the analyzer. Let’s designate by A, A′ and A′′ the
respective detection records on the A arm and by B, B′ and B′′ those
on the B arm.

The summary statistic for this version is the CH [5] Bell-quantity ∆,
defined as follows:

∆ := pAB
++ − pAB′

++ + pA′B
++ + pA′B′

++ − pA′B′′

++ − pA′′B
++ , (7)

The maximum and minimum values of this quantity can be combined
into another summary statistic known as the Freedman [6] Bell-quantity,
δ. This is defined as:

δ :=
∆max −∆min

4
. (8)

The probabilities in Table 2 and those in its generalization for the
removable analyzers version, are constrained by their non-negativity, by
their total of 1 in each sub-table and, under apparent locality, by equal-
ities (1)-(4). All these constraints are linear on the probabilities.

The four Bell-quantities, S, ∆′, ∆ and δ, are also linear on the prob-
abilities and, thus, the bounds that those constraints place on these
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quantities can be established by solving a minimization and a maxi-
mization linear programming problem for each of the quantities, taken
as objective function.

Solving these problems, using, for instance, the simplex method, es-
tablishes the following bounds, applicable to ideal EPRB experiments
under apparent locality, as defined above:

−4 6 S 6 4, (9)

−3
2

6∆′6
1
2
, (10)

−3
2

6∆6
1
2
, (11)

δ 6
1
2
. (12)

Quantum theory’s predictions for ideal EPRB experiments satisfy the
apparent locality conditions, (1)-(4), and hence, the bounds predicted by
quantum theory, (13)-(16) below, are compatible with bounds (9)-(12).

−2
√

2 6 S 6 2
√

2, (13)

−1 +
√

2
2

6∆′6

√
2− 1
2

, (14)

−1 +
√

2
2

6∆6

√
2− 1
2

, (15)

δ 6

√
2

4
. (16)

2 Bell theorems

Theorems which, from the hypothesis of local-realism, derive inequal-
ities constraining the possible values of Bell-quantities in ideal EPRB
experiments, are known as Bell theorems.

Realism is the hypothesis that reality exists and, always and ev-
erywhere, has well defined properties, regardless of whether these are
observed or not [7].

Locality is the hypothesis that two physically separated events must
be statistically independent unless some form of influence either propa-
gates from one to the other or propagates from a third event to both.

Locality denies the existence of action-at-a-distance and, in EPRB
experiments, requires that outcomes in one arm of the experiment be
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statistically independent of the measurement parameter value chosen in
the other arm [7].

Consequently, any statistic performed on an outcome record collected
on the A arm, say on the A outcome record, must not depend on whether
the measurement parameter on the B arm was set to b or to b′ and
thus on whether outcomes in that arm were recorded on the B or on
the B′ records. This invariance requirement for all possible statistics is
much more demanding than the simple equality of marginal probabilities
designated as apparent locality in the previous section.

If the joint probability distributions between A and B and between
A and B′ were independent, as the joint distribution structure in Table 2
allows, such invariance would not be ensured and, accordingly, EPRB
experiments may potentially display non-local behavior.

To enforce locality from the point of view of the A arm of the experi-
ment, a realistic model of EPRB experiments must require that outcome
records A, B and B′ be jointly distributed, even though whenever an
outcome is recorded on the B record this excludes the possibility of
recording any outcome on the B′ record. This requirement of local-
realism is known as counterfactual definiteness [8].

Enforcing locality from the points of view of both arms of the exper-
iment thus requires that all four outcome records, A, A′, B and B′ be
jointly distributed and, in consequence, any local-realistic model of an
ideal EPRB experiment must necessarily assume the form of the joint
probability table in Table 3.

pAA′BB′
+ + − − B

+ − + − B′

+ + pAA′BB′

++++ pAA′BB′

+++− pAA′BB′

++−+ pAA′BB′

++−− pAA′BB′

++±±

+ − pAA′BB′

+−++ pAA′BB′

+−+− pAA′BB′

+−−+ pAA′BB′

+−−− pAA′BB′

+−±±

− + pAA′BB′

−+++ pAA′BB′

−++− pAA′BB′

−+−+ pAA′BB′

−+−− pAA′BB′

−+±±

− − pAA′BB′

−−++ pAA′BB′

−−+− pAA′BB′

−−−+ pAA′BB′

−−−− pAA′BB′

−−±±

A A′ pAA′BB′

±±++ pAA′BB′

±±+− pAA′BB′

±±−+ pAA′BB′

±±−− 1

Table 3: Local-realistic model of an ideal EPRB experiment.
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The joint distributions in Table 2 which such model predicts, result
directly from this joint distribution:

∀i,j∈{+,−} :



pAB
ij =pAA′BB′

i±j±

pAB′

ij =pAA′BB′

i±±j

pA′B
ij =pAA′BB′

±ij±

pA′B′

ij =pAA′BB′

± i±j

. (17)

The marginal probabilities in Table 2 which thus result, satisfy the
apparent locality conditions, (1)-(4), which shows that apparent locality
is a necessary consequence of locality.

The probabilities in Table 3 are constrained only by their non-
negativity and their total of 1.

Since Bell-quantities are linear on the probabilities in Table 2 and,
thus, linear on the probabilities in Table 3, linear programming can
establish the bounds placed on them by these constraints, leading to the
well known Bell inequalities for ideal EPRB experiments:

−2 6 S 6 2, (18)
−1 6∆′6 0, (19)
−1 6∆6 0, (20)

δ 6
1
4
. (21)

These are strictly enclosed within the bounds (9)-(12), which shows
that apparent locality, even though necessary, is not a sufficient condition
for locality.

Since the bounds predicted by quantum theory, (13)-(16), extend be-
yond these bounds, and these follow directly from local-realism for ideal
EPRB experiments, quantum theory and local-realism are incompatible,
as originally shown by Bell [3].

Realized EPRB experiments, however, have not been ideal. Bell
theorems thus need to be generalized to non-ideal conditions before they
can be used to interpret experimental results.

Non-ideal EPRB experiments can be classified into three categories,
on the basis of how close to ideal their detection processes are:
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1. Experiments which have inefficient detection on both arms: These
are discussed in Sections 3 and 4;

2. Experiments which have nearly ideal detection on one arm but
inefficient detection on the other: Section 5 discusses these;

3. Experiments which have nearly ideal detection on both arms but do
not follow the EPRB experimental protocol described in Section 1,
in particular, do not physically separate the two quantum systems:
These are addressed in Section 6.

3 Inefficient detection on both arms

With inefficient detection, a third outcome becomes possible on either
arm. For each analyzed quantum system, in addition to detection on the
+ channel or detection on the − channel, no detection is now possible.
Let’s use the symbol 0 to represent this outcome and the symbol ∗ to
represent summation over all three possible outcomes, +, − and 0.

The joint probability distribution of the four detection records, A, A′,
B and B′, that generalizes Table 3, now involves 34 = 81 probabilities
instead of 16. For the removable analyzers version, since six detection
records are involved, A, A′, A′′, B, B′ and B′′, 3422 = 324 probabilities
are required.

To establish the marginal constraints on these probabilities, addi-
tional hypotheses regarding detection are necessary.

If the quantum systems adopted for the experiment do not possess an
intrinsic ’detectability’ property which might cause some systems to have
a higher probability of detection than others, a supplementary hypoth-
esis should be that, in each channel, (i) actual detections are a random
sample drawn from the population of all potential detections, with each
element having a probability of inclusion η, the detection efficiency.

The detection efficiencies in each channel, ηA+, ηA−, ηB+ and ηB−,
need not be identical. Nevertheless, to begin, let’s make the simplifying
assumption of identical detection efficiencies on all channels:

ηA+ = ηA− = ηB+ = ηB− = η.

The generalization to different detection efficiencies on either arm of
the experiment is made in Section 5.
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The final additional hypothesis is that (ii) all detectors are indepen-
dent, in the sense that they neither influence each other nor are influ-
enced by the analyzers or the choice of measurement parameter values
in any way other than by the reception of the quantum measurement
signals. Should we say that a detection event has occurred in a de-
tection record when either a + or a − outcome has been recorded in
that record, by opposition to a no detection, 0, outcome, this hypothesis
makes all detection vs. no detection events in different detection records,
statistically independent.

The conjunction of hypotheses (i) and (ii) is known as fair-sampling
detection.

Assuming fair-sampling detection, quantum theory predicts the fol-
lowing bounds on Bell-quantities:

−2
√

2 η2 6 S 6 2
√

2 η2, (22)

−
√

2− 1
2

η2 − η 6∆′6
1 +

√
2

2
η2 − η, (23)

−1 +
√

2
2

η2 6∆6

√
2− 1
2

η2, (24)

δ 6

√
2

4
η2. (25)

Since all these bounds tend to 0 when detection efficiency decreases, it
is useful to introduce three normalized Bell-quantities for which quantum
theory predicts bounds independent of detection efficiency.

Because the bounds on S, ∆ and δ are all proportional to η2, quan-
tum theory predicts bounds independent of detection efficiency for the
following normalized quantities:

SN :=
S

η2
, ∆N :=

∆
η2

, δN :=
δ

η2
. (26)

It is these normalized quantities that have been measured in most
Bell tests and the bounds predicted for them by quantum theory are,
regardless of detection efficiency:

−2
√

2 6SN 6 2
√

2, (27)

−1 +
√

2
2

6∆N6

√
2− 1
2

, (28)

δN 6

√
2

4
. (29)
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As for ideal experiments, linear programming can be used to derive
the bounds imposed by local-realism and fair-sampling detection on Bell-
quantities.

The marginal constraints on the joint probability distribution for the
fixed analyzers version become:

pAA′BB′

∗∗∗∗ =1, (30)

pAA′BB′

±∗∗∗ = pAA′BB′

∗±∗∗ =η, (31)

pAA′BB′

∗∗±∗ = pAA′BB′

∗∗∗± =η. (32)

For the removable analyzers version:

pAA′A′′BB′B′′

∗∗∗∗∗∗ =1, (33)

pAA′A′′BB′B′′

±∗∗∗∗∗ = pAA′A′′BB′B′′

∗±∗∗∗∗ =η, (34)

pAA′A′′BB′B′′

∗∗∗±∗∗ = pAA′A′′BB′B′′

∗∗∗∗±∗ =η, (35)

pAA′A′′BB′B′′

∗∗+∗∗∗ = pAA′A′′BB′B′′

∗∗∗∗∗+ =η. (36)

The Bell inequalities implied by these sets of constraints can be de-
rived by solving the respective parametric linear programming problems,
and the joint probability solutions that are found to lie on the maximal
contour of S, involve the following probabilities for joint detection on
both arms of the experiment:

pAB
±± = pAB′

±± = pA′B
±± = pAB′

±± =

 2
3η : 0 6 η 6 3

4

2η − 1: 3
4 6 η 6 1

6= η2

This means that whether detection occurs or not on the A arm is not
yet statistically independent of whether it occurs or not on the B arm.
The formulation developed thus far, enforces locality regarding param-
eter values, through the structure of the joint probability distribution,
but does not yet enforce locality on detection and still allows potentially
non-local models.

Adding the following constraints to, respectively, constraints (30)-
(32) and (33)-(36) enforces statistical independence between factual de-
tection on both arms of the experiment:

pAA′BB′

±∗±∗ = pAA′BB′

±∗∗± = pAA′BB′

∗±±∗ = pAA′BB′

∗±∗± = η2; (37)
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pAA′A′′BB′B′′

±∗∗±∗∗ = pAA′A′′BB′B′′

±∗∗∗±∗ = pAA′A′′BB′B′′

±∗∗∗∗+ =η2, (38)

pAA′A′′BB′B′′

∗±∗±∗∗ = pAA′A′′BB′B′′

∗±∗∗±∗ = pAA′A′′BB′B′′

∗±∗∗∗+ =η2, (39)

pAA′A′′BB′B′′

∗∗+±∗∗ = pAA′A′′BB′B′′

∗∗+∗±∗ = pAA′A′′BB′B′′

∗∗+∗∗+ =η2. (40)

From these enlarged constraint sets, another set of Bell inequalities
results, which includes the well known inequality of Garg and Mermin
[9]:

0 6 η 6 2
3 : −4

2
3 6 η 6 1: − 4

η + 2

 6 SN 6

4 : 0 6 η 6 2
3

4
η − 2: 2

3 6 η 6 1
.

However, along the maximal contour of S, we find, for 2
3 6 η 6 1:

pABB′

±±± = pA′BB′

±±± = pAA′B
±±± = pAA′B′

±±± =2η2 − η 6= η3,

pAA′BB′

±±±± =3η2 − 2η 6= η4.

The joint probabilities for counterfactual detection on one arm are
still not statistically independent of detection on the other arm and
consequently some non-locality is still allowed.

Enforcing full statistical independence for factual and counterfactual
detection on both sides of the experiment requires the addition of the
following constraints to (30)-(32) and (37), for the fixed analyzers ver-
sion:

pAA′BB′

±±∗∗ = pAA′BB′

∗∗±± =η2,

pAA′BB′

±∗±± = pAA′BB′

∗±±± = pAA′BB′

±±±∗ = pAA′BB′

±±∗± =η3

pAA′BB′

±±±± =η4.

And the addition of the following constraints to (33)-(36) and (38)-
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(40), for the removable analyzers version:

pAA′A′′BB′B′′

±±∗∗∗∗ = pAA′A′′BB′B′′

±∗+∗∗∗ = pAA′A′′BB′B′′

∗±+∗∗∗ =η2,

pAA′A′′BB′B′′

∗∗∗±±∗ = pAA′A′′BB′B′′

∗∗∗±∗+ = pAA′A′′BB′B′′

∗∗∗∗±+ =η2,

pAA′A′′BB′B′′

±±+∗∗∗ = pAA′A′′BB′B′′

±±∗±∗∗ = pAA′A′′BB′B′′

±±∗∗±∗ = pAA′A′′BB′B′′

±±∗∗∗+ =η3,

pAA′A′′BB′B′′

±∗+±∗∗ = pAA′A′′BB′B′′

±∗+∗±∗ = pAA′A′′BB′B′′

±∗+∗∗+ = pAA′A′′BB′B′′

±∗∗±±∗ =η3,

pAA′A′′BB′B′′

±∗∗±∗+ = pAA′A′′BB′B′′

±∗∗∗±+ = pAA′A′′BB′B′′

∗±+±∗∗ = pAA′A′′BB′B′′

∗±+∗±∗ =η3,

pAA′A′′BB′B′′

∗±+∗∗+ = pAA′A′′BB′B′′

∗±∗±±∗ = pAA′A′′BB′B′′

∗±∗±∗+ = pAA′A′′BB′B′′

∗±∗∗±+ =η3,

pAA′A′′BB′B′′

∗∗+±±∗ = pAA′A′′BB′B′′

∗∗+±∗+ = pAA′A′′BB′B′′

∗∗+∗±+ = pAA′A′′BB′B′′

∗∗∗±±+ =η3,

pAA′A′′BB′B′′

±±+±∗∗ = pAA′A′′BB′B′′

±±+∗±∗ = pAA′A′′BB′B′′

±±+∗∗+ = pAA′A′′BB′B′′

±±∗±±∗ =η4,

pAA′A′′BB′B′′

±±∗±∗+ = pAA′A′′BB′B′′

±±∗∗±+ = pAA′A′′BB′B′′

±∗+±±∗ = pAA′A′′BB′B′′

±∗+±∗+ =η4,

pAA′A′′BB′B′′

±∗+∗±+ = pAA′A′′BB′B′′

±∗∗±±+ = pAA′A′′BB′B′′

∗±+±±∗ = pAA′A′′BB′B′′

∗±+±∗+ =η4,

pAA′A′′BB′B′′

∗±+∗±+ = pAA′A′′BB′B′′

∗±∗±±+ = pAA′A′′BB′B′′

∗∗+±±+ =η4,

pAA′A′′BB′B′′

±±+±±∗ = pAA′A′′BB′B′′

±±+±∗+ = pAA′A′′BB′B′′

±±+∗±+ =η5,

pAA′A′′BB′B′′

±±∗±±+ = pAA′A′′BB′B′′

±∗+±±+ = pAA′A′′BB′B′′

∗±+±±+ =η5,

pAA′A′′BB′B′′

±±+±±+ =η6.

The Bell inequalities that result from the conjunction of local-realism
with fair-sampling detection are:

2η4 − 4η2 6 S 6 −2η4 + 4η2, (41)
−η4 + 2η3 − 2η 6∆′6 0, (42)
−η6 + 3η4 − 3η2 6∆6 η6 − 2η5 + 2η4 − 4η3 + 3η2, (43)

δ 6
η6

2
− η5

2
− η4

4
− η3 +

3η2

2
, (44)

and, for normalized Bell-quantities:

2η2 − 4 6SN 6 −2η2 + 4, (45)
−η4 + 3η2 − 3 6∆N6 η4 − 2η3 + 2η2 − 4η + 3, (46)

δN 6
η4

2
− η3

2
− η2

4
− η +

3
2
. (47)

The bounds these inequalities impose are graphically depicted, for
each Bell-quantity, by the LR+FSD (local-realism and fair-sampling de-
tection) lines in Figures A to A in Appendix A.
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The respective bounds predicted by quantum theory, (22)-(25) and
(27)-(29), are also depicted in the same Figures by the QT lines.

The predictions of quantum theory can be seen to be compatible
with the bounds imposed by local-realism and fair-sampling detection
for all detection efficiencies below a critical threshold, specific to each
Bell-quantity. The values of the critical detection efficiencies, ηc, are
listed in Table 4.

Bell-quantity ηc

S, SN

√
2−

√
2 ≈ 0.7654

∆′ Upper Bnd. 2(
√

2− 1) ≈ 0, 8284

∆′ Lower Bnd. ≈ 0.8452

∆, ∆N Upper Bnd. ≈ 0.9047

∆, ∆N Lower Bnd. ≈ 0.9077

δ, δN ≈ 0.9062

Table 4: Critical detection efficiencies.

The lowest critical detection efficiency, and hence the most selective
Bell test, can be seen to be that based on the two-channel analyzer
EPRB experiment version and Bell-quantity S or SN .

Because the bounds imposed on Bell-quantities by the conjunction of
local-realism and fair-sampling detection are dependent on detection effi-
ciency, experiments which seek to discriminate between quantum theory
and local-realism through the measurement of Bell-quantities in EPRB
experiments, known as Bell tests, must also measure detection efficiency.

If detection efficiency is found to be below the above critical thresh-
olds for all detectors involved, consistency of the observed results with
the predictions of quantum theory is insufficient to discriminate between
quantum theory and the conjunction of local-realism and fair-sampling
detection.

Consequently, because no photon detector has yet achieved the re-
quired efficiency [10], all purely optical Bell tests performed to this date
have been inconclusive due to insufficient detection efficiency. These in-
clude [6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
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among others.
To this category also belong tests in which the state of the quantum

systems can be detected with near certainty when they are examined,
but they are examined only in a small subset of prepared instances,
heralded, usually, by photon detections [28, 29]. The low probability for
prepared quantum systems to actually be examined is equivalent to low
detection efficiency and makes this type of test inconclusive as well.

It is important to note that this result is quite different from what
is known as ’the detection loophole’ [30] because the failure to reject
local-realism by these tests has here been shown to result from the con-
junction of local-realism and fair-sampling detection, whereas it had been
understood that unrepresentative sampling detection was required to in-
validate these tests.

4 Perfectly correlated counterfactual detection

The result presented in the previous section is somewhat surprising be-
cause it has now been consensual for several decades that the inequalities
applicable to normalized Bell-quantities under the conjunction of local-
realism with additional hypotheses similar to fair-sampling detection,
such as ’no-enhancement’ detection [5] and ’microscopical symmetric de-
tection’ [31], were:

−2 6SN 6 2, (48)
−1 6∆N6 0, (49)

δN 6
1
4
. (50)

To understand the difference that leads to one set of inequalities
instead of the other, let’s re-derive the result for the Bell-quantity S
obtained in Section 3, (41), but, this time, using a variation on Mermin’s
logic ladder [32] instead of linear programming.

Please consider four binary detection records, A, A′, B and B′, all
with the same number of recorded symbols, NP . Given their binary
nature, the number of positions in which A and B′ agree or disagree
is constrained by the numbers of positions in which A and B agree or
disagree, A′ and B agree or disagree and A′ and B′ agree or disagree: NAB′

Agree6NAB
Agree + NA′B

Agree + NA′B′

Agree

NAB′

Disagree6NAB
Disagree + NA′B

Disagree + NA′B′

Disagree

.
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Dividing by the total number of symbols, NP , and taking the limit
NP → ∞, transforms the above inequalities on counts into inequalities
on probabilities: pAB′

Agree6pAB
Agree + pA′B

Agree + pA′B′

Agree

pAB′

Disagree6pAB
Disagree + pA′B

Disagree + pA′B′

Disagree

.

If, instead of being binary, the four detection records are ternary but
we remain interested only in agreements or disagreements involving two
symbols, say + and −, then the above inequalities still apply but only
to the subset of events in which all four records jointly have only + and
− symbols.

For A and B′ to be comparable, both have to have either a + or
a − symbol, but if, in some of these instances, either A′ or B have a
’no detection’ outcome, the above inequalities do not, in these specific
instances, constrain the agreement or disagreement between A and B′.

The probability for A and B′ to jointly have detection outcomes,
either + or −, is η2 and the probability for all four detection records to
jointly have only detection outcomes is η4.

Thus, under inefficient detection, in instances with probability η2 −
η4, the agreement or disagreement between A and B′ is not constrained
by the above inequalities and hence this probability must be added to
the right-hand sides of both inequalities: pAB′

Agree6pAB
Agree + pA′B

Agree + pA′B′

Agree + η2 − η4

pAB′

Disagree6pAB
Disagree + pA′B

Disagree + pA′B′

Disagree + η2 − η4
.

Since,

∀X∈{A,A′},Y ∈{B,B′} : pXY
±± = pXY

Agree + pXY
Disagree = η2,

and the correlation between outcome records is:

∀X∈{A,A′},Y ∈{B,B′} : EXY = pXY
Agree − pXY

Disagree,

solving for pXY
Agree and pXY

Disagree gives:

∀X∈{A,A′},Y ∈{B,B′} :

 pXY
Agree = η2+EXY

2

pXY
Disagree = η2−EXY

2

.
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Substituting into the inequalities results in:
η2+EAB′

2 6η2+EAB

2 + η2+EA′B

2 + η2+EA′B′

2 + η2 − η4

η2−EAB′

2 6η2−EAB

2 + η2−EA′B

2 + η2−EA′B′

2 + η2 − η4
.

Collecting all correlations on the left-hand sides and recognizing the
definition of S, (5), results in inequality (41) from Section 3:−S64η2 − 2η4

S64η2 − 2η4
,

However, had we not added the terms η2−η4 on the right-hand sides
of the inequalities, the result would have been:−S62η2

S62η2
,

which, divided by η2, produces inequality (48) on the normalized quan-
tity SN .

It is thus the presence or absence of the η2 − η4 terms that distin-
guishes one set of inequalities from the other.

The origin of these terms lies in the joint probability for A and B′

both having detection outcomes being η2 and the joint probability for
all four detection outcome records A, A′, B and B′ to all have detection
outcomes being η4. This is a direct consequence of the fair-sampling
detection hypothesis.

However, let’s consider the alternative hypothesis that every time A
has a detection outcome A′ would also have had a detection outcome
had the measurement parameter been set to a′ instead of a.

Because, from a realistic point of view, an outcome that did not take
place cannot possibly influence one that did, such perfect correlation
between counterfactual detections can only come from the quantum sys-
tems having a ’detectability’ property which fully determines whether
each system will be detected or not.

This hypothesis contradicts fair-sampling and is consequently a form
of unrepresentative sampling detection. It would also make detection
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efficiency a property of the source of quantum systems instead of a prop-
erty of the detectors, in contradiction to all known experimental evidence
regarding particle detection.

In EPRB experiments, from a local-realistic point of view, the source
would have to produce pairs of quantum systems totally uncorrelated
in this ’detectability’ property while totally correlated in the entangled
property and measurement would have to be totally random while de-
tection would have to be completely deterministic.

This combination, even if nearly self-contradictory, is admissible un-
der local-realism but by no means required.

Let’s designate by ’perfectly correlated counterfactual detection’ the
hypothesis that detection in A would always have meant detection in A′

and detection in B′ would also always have meant detection in B.
The conjunction of local-realism with perfectly correlated counterfac-

tual detection implies the following constraints on local-realistic models
of the fixed analyzers EPRB experiment version:

pAA′BB′

∗∗∗∗ =1,

pAA′BB′

±∗∗∗ = pAA′BB′

∗±∗∗ = pAA′BB′

∗∗±∗ = pAA′BB′

∗∗∗± =η,

pAA′BB′

±∗±∗ = pAA′BB′

±∗∗± = pAA′BB′

∗±±∗ = pAA′BB′

∗±∗± =η2,

pAA′BB′

±±∗∗ = pAA′BB′

∗∗±± =η,

pAA′BB′

±∗±± = pAA′BB′

∗±±± = pAA′BB′

±±±∗ = pAA′BB′

±±∗± =η2,

pAA′BB′

±±±± =η2.

For the removable analyzers version, the constraints are:

pAA′A′′BB′B′′

∗∗∗∗∗∗ =1,

pAA′A′′BB′B′′

±∗∗∗∗∗ = pAA′A′′BB′B′′

∗±∗∗∗∗ = pAA′A′′BB′B′′

∗∗∗±∗∗ = pAA′A′′BB′B′′

∗∗∗∗±∗ =η,

pAA′A′′BB′B′′

∗∗+∗∗∗ = pAA′A′′BB′B′′

∗∗∗∗∗+ =η,

pAA′A′′BB′B′′

±∗∗±∗∗ = pAA′A′′BB′B′′

±∗∗∗±∗ = pAA′A′′BB′B′′

±∗∗∗∗+ =η2,

pAA′A′′BB′B′′

∗±∗±∗∗ = pAA′A′′BB′B′′

∗±∗∗±∗ = pAA′A′′BB′B′′

∗±∗∗∗+ =η2,

pAA′A′′BB′B′′

∗∗+±∗∗ = pAA′A′′BB′B′′

∗∗+∗±∗ = pAA′A′′BB′B′′

∗∗+∗∗+ =η2,

pAA′A′′BB′B′′

±±∗∗∗∗ = pAA′A′′BB′B′′

±∗+∗∗∗ = pAA′A′′BB′B′′

∗±+∗∗∗ =η,

pAA′A′′BB′B′′

∗∗∗±±∗ = pAA′A′′BB′B′′

∗∗∗±∗+ = pAA′A′′BB′B′′

∗∗∗∗±+ =η,
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pAA′A′′BB′B′′

±±∗±∗∗ = pAA′A′′BB′B′′

±±∗∗±∗ = pAA′A′′BB′B′′

±±∗∗∗+ =η2,

pAA′A′′BB′B′′

±∗+±∗∗ = pAA′A′′BB′B′′

±∗+∗±∗ = pAA′A′′BB′B′′

±∗+∗∗+ = pAA′A′′BB′B′′

±∗∗±±∗ =η2,

pAA′A′′BB′B′′

±∗∗±∗+ = pAA′A′′BB′B′′

±∗∗∗±+ = pAA′A′′BB′B′′

∗±+±∗∗ = pAA′A′′BB′B′′

∗±+∗±∗ =η2,

pAA′A′′BB′B′′

∗±+∗∗+ = pAA′A′′BB′B′′

∗±∗±±∗ = pAA′A′′BB′B′′

∗±∗±∗+ = pAA′A′′BB′B′′

∗±∗∗±+ =η2,

pAA′A′′BB′B′′

∗∗+±±∗ = pAA′A′′BB′B′′

∗∗+±∗+ = pAA′A′′BB′B′′

∗∗+∗±+ =η2,

pAA′A′′BB′B′′

±±+∗∗∗ = pAA′A′′BB′B′′

∗∗∗±±+ =η,

pAA′A′′BB′B′′

±±+±∗∗ = pAA′A′′BB′B′′

±±+∗±∗ = pAA′A′′BB′B′′

±±+∗∗+ = pAA′A′′BB′B′′

±±∗±±∗ =η2,

pAA′A′′BB′B′′

±±∗±∗+ = pAA′A′′BB′B′′

±±∗∗±+ = pAA′A′′BB′B′′

±∗+±±∗ = pAA′A′′BB′B′′

±∗+±∗+ =η2,

pAA′A′′BB′B′′

±∗+∗±+ = pAA′A′′BB′B′′

±∗∗±±+ = pAA′A′′BB′B′′

∗±+±±∗ = pAA′A′′BB′B′′

∗±+±∗+ =η2,

pAA′A′′BB′B′′

∗±+∗±+ = pAA′A′′BB′B′′

∗±∗±±+ = pAA′A′′BB′B′′

∗∗+±±+ =η2,

pAA′A′′BB′B′′

±±+±±∗ = pAA′A′′BB′B′′

±±+±∗+ = pAA′A′′BB′B′′

±±+∗±+ =η2,

pAA′A′′BB′B′′

±±∗±±+ = pAA′A′′BB′B′′

±∗+±±+ = pAA′A′′BB′B′′

∗±+±±+ =η2,

pAA′A′′BB′B′′

±±+±±+ =η2.

The Bell inequalities implied by the conjunction of local-realism and
perfectly correlated counterfactual detection are:

−2η2 6 S 6 2η2,

η2 − 2η 6∆′6 0,

−η2 6∆6 0,

δ 6
η2

4
.

From these follow inequalities (48)-(50), for the normalized quanti-
ties, confirming that these inequalities are indeed implied by the conjunc-
tion of local-realism with perfectly correlated counterfactual detection.

These bounds are graphically depicted by the LR+PCCD (local-
realism and perfectly correlated counterfactual detection) lines in Fig-
ures A to A in Appendix A.

As may be seen, the bounds predicted by quantum theory (QT lines)
allow violation of these bounds for all detection efficiency values.

In fact, optical Bell tests [6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27] have systematically violated inequalities (48)-(50) and
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it is, thus, a well established fact that the conjunction of local-realism
and perfectly correlated counterfactual detection has been empirically
rejected.

Since these optical Bell tests were shown, in Section 3, to be compat-
ible with the conjunction of local-realism and fair-sampling detection,
the above fact simply implies empirical rejection of perfectly correlated
counterfactual detection, which is not surprising given the nearly self-
contradictory nature of this hypothesis.

The confusion between the hypotheses of fair-sampling detection and
perfectly correlated counterfactual detection was due to neither [5] nor
[31] having explicitly addressed the issue of counterfactuality. It thus
ended entering these works as an implicit assumption of perfectly corre-
lated counterfactual detection whereas the authors had clearly intended
to introduce a fair-sampling detection hypothesis instead. Given the
strong empirical evidence available in favor of fair-sampling detection,
this confusion directly led to the incorrect interpretation of experimental
evidence as empirical rejection of local-realism.

In the end, it is the claims of rejection of local-realism by these Bell
tests which, in fact, require unrepresentative sampling detection.

5 Asymmetric detection efficiencies

In Section 3, the simplifying assumption of identical detection efficiencies
on all channels was made.

Another important generalization of Bell theorems is, however, the
treatment of asymmetric EPRB experiments, in which detection is nearly
ideal on one arm while inefficient on the other.

To address this scenario and clearly distinguish Bell tests in this cate-
gory from those discussed in Section 3, let’s now consider the general case
of different detection efficiencies on either arm of the EPRB experiment:

ηA+ = ηA− = ηA, ηB+ = ηB− = ηB .
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The constraints for the fixed analyzers version become:

pAA′BB′

∗∗∗∗ =1,

pAA′BB′

±∗∗∗ = pAA′BB′

∗±∗∗ =ηA,

pAA′BB′

∗∗±∗ = pAA′BB′

∗∗∗± =ηB ,

pAA′BB′

±∗±∗ = pAA′BB′

±∗∗± = pAA′BB′

∗±±∗ = pAA′BB′

∗±∗± =ηAηB ,

pAA′BB′

±±∗∗ =η2
A,

pAA′BB′

∗∗±± =η2
B ,

pAA′BB′

±∗±± = pAA′BB′

∗±±± =ηAη2
B ,

pAA′BB′

±±±∗ = pAA′BB′

±±∗± =η2
AηB ,

pAA′BB′

±±±± =η2
Aη2

B .

For the removable analyzers version, the constraints become:

pAA′A′′BB′B′′

∗∗∗∗∗∗ =1,

pAA′A′′BB′B′′

±∗∗∗∗∗ = pAA′A′′BB′B′′

∗±∗∗∗∗ = pAA′A′′BB′B′′

∗∗+∗∗∗ =ηA,

pAA′A′′BB′B′′

∗∗∗±∗∗ = pAA′A′′BB′B′′

∗∗∗∗±∗ = pAA′A′′BB′B′′

∗∗∗∗∗+ =ηB ,

pAA′A′′BB′B′′

±∗∗±∗∗ = pAA′A′′BB′B′′

±∗∗∗±∗ = pAA′A′′BB′B′′

±∗∗∗∗+ =ηAηB ,

pAA′A′′BB′B′′

∗±∗±∗∗ = pAA′A′′BB′B′′

∗±∗∗±∗ = pAA′A′′BB′B′′

∗±∗∗∗+ =ηAηB ,

pAA′A′′BB′B′′

∗∗+±∗∗ = pAA′A′′BB′B′′

∗∗+∗±∗ = pAA′A′′BB′B′′

∗∗+∗∗+ =ηAηB ,

pAA′A′′BB′B′′

±±∗∗∗∗ = pAA′A′′BB′B′′

±∗+∗∗∗ = pAA′A′′BB′B′′

∗±+∗∗∗ =η2
A,

pAA′A′′BB′B′′

∗∗∗±±∗ = pAA′A′′BB′B′′

∗∗∗±∗+ = pAA′A′′BB′B′′

∗∗∗∗±+ =η2
B ,

pAA′A′′BB′B′′

±±∗±∗∗ = pAA′A′′BB′B′′

±±∗∗±∗ = pAA′A′′BB′B′′

±±∗∗∗+ =η2
AηB ,

pAA′A′′BB′B′′

±∗+±∗∗ = pAA′A′′BB′B′′

±∗+∗±∗ = pAA′A′′BB′B′′

±∗+∗∗+ =η2
AηB ,

pAA′A′′BB′B′′

±∗∗±±∗ = pAA′A′′BB′B′′

±∗∗±∗+ = pAA′A′′BB′B′′

±∗∗∗±+ =ηAη2
B ,

pAA′A′′BB′B′′

∗±+±∗∗ = pAA′A′′BB′B′′

∗±+∗±∗ = pAA′A′′BB′B′′

∗±+∗∗+ =η2
AηB ,

pAA′A′′BB′B′′

∗±∗±±∗ = pAA′A′′BB′B′′

∗±∗±∗+ = pAA′A′′BB′B′′

∗±∗∗±+ =ηAη2
B ,

pAA′A′′BB′B′′

∗∗+±±∗ = pAA′A′′BB′B′′

∗∗+±∗+ = pAA′A′′BB′B′′

∗∗+∗±+ =ηAη2
B ,

pAA′A′′BB′B′′

±±+∗∗∗ =η3
A,

pAA′A′′BB′B′′

∗∗∗±±+ =η3
B ,
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pAA′A′′BB′B′′

±±+±∗∗ = pAA′A′′BB′B′′

±±+∗±∗ = pAA′A′′BB′B′′

±±+∗∗+ =η3
AηB ,

pAA′A′′BB′B′′

±±∗±±∗ = pAA′A′′BB′B′′

±±∗±∗+ = pAA′A′′BB′B′′

±±∗∗±+ =η2
Aη2

B ,

pAA′A′′BB′B′′

±∗+±±∗ = pAA′A′′BB′B′′

±∗+±∗+ = pAA′A′′BB′B′′

±∗+∗±+ =η2
Aη2

B ,

pAA′A′′BB′B′′

±∗∗±±+ = pAA′A′′BB′B′′

∗±∗±±+ = pAA′A′′BB′B′′

∗∗+±±+ =ηAη3
B ,

pAA′A′′BB′B′′

∗±+±±∗ = pAA′A′′BB′B′′

∗±+±∗+ = pAA′A′′BB′B′′

∗±+∗±+ =η2
Aη2

B ,

pAA′A′′BB′B′′

±±+±±∗ = pAA′A′′BB′B′′

±±+±∗+ = pAA′A′′BB′B′′

±±+∗±+ =η3
Aη2

B ,

pAA′A′′BB′B′′

±±∗±±+ = pAA′A′′BB′B′′

±∗+±±+ = pAA′A′′BB′B′′

∗±+±±+ =η2
Aη3

B ,

pAA′A′′BB′B′′

±±+±±+ =η3
Aη3

B .

From these constraints and the non-negativity of all probabilities,
result the following Bell inequalities:

2η2
Aη2

B − 4ηAηB 6 S 6 −2η2
Aη2

B + 4ηAηB ,

−η2
Aη2

B + ηAηB(ηA + ηB) 6∆′6 0,

−η3
Aη3

B + 3η2
Aη2

B − 3ηAηB 6∆,

∆ 6 η3
Aη3

B − η2
Aη2

B(ηA + ηB) + ηAηB(η2
A + η2

B − 2(ηA + ηB) + 3),

δ 6
η3

Aη3
B

2
− η2

Aη2
B(ηA + ηB + 3)

4
+

ηAηB(η2
A + η2

B − 2(ηA + ηB) + 6)
4

.

Normalized Bell-quantities, for asymmetric EPRB experiments, are
defined as:

SN :=
S

ηAηB
, ∆N :=

∆
ηAηB

, δN :=
δ

ηAηB
,

and, consequently, Bell inequalities for the normalized quantities are:

2ηAηB − 4 6 SN 6 −2ηAηB + 4,

−η2
Aη2

B + 3ηAηB − 3 6∆N ,

∆N 6 η2
Aη2

B − ηAηB(ηA + ηB) + η2
A + η2

B − 2(ηA + ηB) + 3,

δN 6
η2

Aη2
B

2
− ηAηB(ηA + ηB + 3)

4
+

η2
A + η2

B − 2(ηA + ηB) + 6
4

.

The above upper and lower bounds are depicted graphically, for each
normalized Bell-quantity, in Figures B to B in Appendix B.
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The respective values predicted by quantum theory, (27)-(29), are
marked in the Figures’ legends by the QT lines.

Once again, the predictions of quantum theory can be seen to be
compatible with the bounds imposed by local-realism and fair-sampling
detection as long as ηA and ηB both lie below variable critical values,
a tradeoff existing between detection efficiency on one arm and critical
detection efficiency on the other.

For the normalized Bell-quantity SN , compatibility between quantum
theory and the conjunction of local-realism and fair-sampling detection
exists as long as:

ηAηB 6 2−
√

2 ≈ 0.5858.

Hence, if detection efficiency in one arm increases above
√

2−
√

2 ≈
0.7654, critical efficiency on the other decreases below this value in in-
verse proportion. If detection efficiency became ideal in one arm, critical
efficiency on the other could be as low as 0.5858.

For Bell tests based on the normalized Bell-quantity SN , the criteria
for their classification into the three categories mentioned in Section 2
can now be quantified:

1. Those in which detection efficiency is lower than 0.7654 on both
arms fall into the category of having inefficient detection on both
arms and were discussed in Section 3;

2. Those which have detection efficiency higher than 0.7654 on one
arm but lower than this value on the other are designated as asym-
metric tests and will be discussed in the remainder of this Section;

3. Those which have detection efficiency higher than 0.7654 on both
arms are said to have nearly ideal detection on both arms and will
be discussed in Section 6.

Asymmetric Bell tests [33, 34, 35] have involved a trapped ion, on
the arm having high detection efficiency, and a photon, on the inefficient
one.

Because in realized Bell tests of this type, detection efficiency on the
photon arm has been lower than the critical threshold applicable if de-
tection had been ideal on the ion arm, these experiments are inconclusive
regarding discrimination between quantum theory and the conjunction
of local-realism and fair-sampling detection.
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6 Measurement crosstalk

The last decade has seen the development of two-level quantum systems
that can be measured and detected with near certainty, known as qubits.

If the EPRB experimental protocol were performed on two such sys-
tems, a nearly ideal EPRB experiment would result.

However, these systems have involved ion traps [36] or superconduct-
ing devices under cryogenic conditions [37] which have prevented their
physical separation after their initial state has been prepared.

Performing Bell tests using these systems thus closes the problem of
detection efficiency but opens a new one.

Because the two systems are placed in close proximity to enable the
preparation of their initial state, they remain so during the measurement
stage and the possibility exists of the measurement process performed on
one qubit to influence the state, and hence the measurement outcome,
of the other.

This problem is known as measurement crosstalk [38] and has been
measured in several experiments [38, 37, 39, 40].

Measurement crosstalk can be modeled by allowing the joint proba-
bilities in Table 2 to deviate, by at most the probability of crosstalk, pC ,
from the respective probabilities that result from Table 3.

This means relaxing equalities (17) into inequalities:

∀i,j∈{+,−} :



|pAB
ij − pAA′BB′

i±j± | 6pC

|pAB′

ij − pAA′BB′

i±±j |6pC

|pA′B
ij − pAA′BB′

±ij± |6pC

|pA′B′

ij − pAA′BB′

± i±j |6pC

. (51)

These inequalities imply the following constraints on the marginal
probabilities in Table 2:

|pAB
+± − pAB′

+± | 6 4pC , |pAB
−± − pAB′

−± | 6 4pC ,

|pA′B
+± − pA′B′

+± | 6 4pC , |pA′B
−± − pA′B′

−± | 6 4pC ,

|pAB
±+ − pA′B

±+ | 6 4pC , |pA′B
±− − pA′B

±− | 6 4pC ,

|pAB′

±+ − pA′B′

±+ | 6 4pC , |pAB′

±− − pA′B′

±− | 6 4pC .
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from which follows that absence of crosstalk necessarily implies apparent
locality.

Conversely, lack of apparent locality places a lower bound on the
probability of crosstalk. Should ∆p be the largest of the above absolute
values of differences in marginal probabilities:

pC >
∆p

4
.

From inequalities (51), together with non-negativity for all proba-
bilities and totals of 1 for all sub-tables in Table 2 as well as for Ta-
ble 3, result the following bounds for Bell-quantity S, applicable, under
crosstalk, to the conjunction of local-realism and ideal detection on both
arms:

0 6 pC 6 1
8 : −2− 16 pC

1
8 6 pC 6 1: −4

 6 S 6

2 + 16 pC : 0 6 pC 6 1
8

4 : 1
8 6 pC 6 1

.

These bounds remain unchanged if the requirement of apparent local-
ity is added, through inclusion also of equalities (1)-(4) in the constraints
of the parametric linear programming problem. Just as for locality, ap-
parent locality is a necessary but not sufficient condition for absence of
crosstalk.

Measurement crosstalk can thus be seen to require a correction to
the ideal Bell inequality (18) larger than previously estimated [41].

Quantum theory’s predictions for EPRB experiments with ideal
detection, (13), can be seen compatible with the above bounds for
pC > pC

c =
√

2−1
8 ≈ 0.0518.

To our knowledge, only one Bell test involving two qubits has, to this
date, achieved a probability of crosstalk lower than this critical threshold:
[37]. Its results are recalled in Table 5.

In this test, the largest absolute value of the differences in marginal
probabilities was ∆p = 0.88% [37] which places a lower bound of 0.22%
on the probability of crosstalk, compatible with the measured values.

The measured value of the Bell-quantity, SExper, can be seen to be
not only compatible but actually consistent with the upper bound pre-
dicted by local-realism, ŜUB , for the observed probability of crosstalk,
p̄C .
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pC
A→B 0.31%

pC
B→A 0.59%

p̄C 0.45%± 0.14%

ŜUB 2.0720± 0.0224

SExper 2.0732± 0.0003

H. t. SExper = ŜUB z = 0.0536, α = 0.9573

Table 5: Comparison between the results of [37] and local-realism.

From a local-realistic point of view, this agreement is understandable:
Since an optimization search was performed on all relevant parameters
of this experiment to maximize the measured value of S [37], maximum
use of available crosstalk was achieved.

Bell-like quantities have also been measured in experiments which
involve a single quantum system instead of two quantum systems [42,
43, 44, 45].

In these experiments, two different properties are measured on each
prepared quantum system and each measurement is carried out with two
different parameter settings.

Since these measurements are performed sequentially in time, the
first measurement process may alter the state of the property measured
on the second measurement and, consequently, the outcome of the second
measurement may be influenced by the choice of parameter adopted for
the first.

This is again a situation of measurement crosstalk. In these experi-
ments, even if apparent locality was observed in the measured marginal
probabilities, this would not, as shown above, be sufficient to exclude
the presence of measurement crosstalk.

Such experiments so fundamentally depart from the EPRB exper-
iment design that they do not measure Bell-quantities, nor consti-
tute tests of local-realism, nor of hypotheses it implies, namely, non-
contextuality.
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7 Conclusion

Realized Bell tests were classified into three categories.
The first, experiments having inefficient detection on both arms, in-

cludes, among others, all purely optical Bell tests. The results from
experiments in this category were shown to be compatible with the con-
junction of local-realism and fair-sampling detection.

The second, asymmetric Bell tests in which detection is nearly ideal
on one arm but inefficient on the other, include all experiments involv-
ing an atomic qubit and a photon and their results were also shown to
be compatible with the conjunction of local-realism and fair-sampling
detection.

Finally, of all Bell tests involving two qubits, which provide nearly
ideal detection on both arms but allow measurement crosstalk between
them, only one has achieved a sufficiently small probability of crosstalk
to be able to discriminate between quantum theory and local-realism
and its results were shown to be not only compatible but, actually, in
agreement with local-realism.

All published evidence from experimental Bell tests has thus, been
shown jointly compatible with local-realism and fair-sampling detection.

More than 75 years since Einstein expressed his belief that a local-
realistic theory of quantum phenomena should be possible [1], and af-
ter nearly 40 years in which countless experiments, specifically designed
to discriminate between quantum theory and local-realism, have been
performed, no evidence still exists that local-realism does not apply to
quantum phenomena.

Appendices

Graphical depictions of the bounds imposed on Bell-quantities by the
inequalities derived in Sections 3, 4 and 5.

Abbreviations:

LR+FSD: Conjunction of the hypotheses of local-realism and fair-
sampling detection;

LR+PCCD: Conjunction of the hypotheses of local-realism and per-
fectly correlated counterfactual detection;

QT: Bounds predicted by quantum theory.
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A Symmetric detection efficiencies
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