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ABSTRACT. We introduce a (non-standard) laplacian form produ-
cing squared angular momentum values equal to h2 [l(l + 1) + 1/4]. So
we set up an ”alternative” Hydrogen atom model, which can also be
thought as a sort of precursor to the standard quantum atom. It shows
the following properties : torus-like orbitals ; appearance of a ”zero-
point” rotational quantum number (it adds zenithal altitude fluctua-
tions with momentum h/2) ; S-like wavefunctions made zero over nu-
cleus ; corrections to spectroscopic terms, linearly dependent on the
operators l̂z and l̂2ns, identical to the standard ones ; quantization pro-
cedure resolvable into a quantization in the constant azimuth plane,
followed by rotation around the polar axis. Although we come to a
subtlety concerning the azimuthal component, these features make the
model suitable for decomposition in one-dimensional motions, whose
quantum properties we could recently approach by a method based on
ergodic statistics of classical-like time laws with variable mass. Compa-
ring the present results with the standard quantum theory and the cor-
responding quasi-classical case, we trace a possible path to implement
our one-dimensional calculations up to describe 2D and 3D motions ;
and to identify some ultimate differences, worth of further investiga-
tion, with those standard models.

RÉSUMÉ. On introduit en cet article une forme laplacienne (non-
standard) amenant à des valeurs du moment cinétique carré égales à h
2 [l(l + 1) + 1/4]. On bâti ainsi un modèle d’atome d’Hydrogène ”alter-
natif”, que l’on peut aussi considerer comme une sorte de précurseur
de l’atome quantique standard. Il montre les proprietés suivantes : or-
bitales avec un caractère toroidale ; apparition d’un nombre quantique
rotationnel ”de point zero” (il ajoute des fluctuations d’hauteur zéni-
thale avec moment h/2) ; fonctions d’onde de type S s’annulant sur le
noyeau ; corrections aux termes spectroscopiques, linéairement dépen-
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dantes de l̂z and l̂2ns, identiques en comparaison avec le modèle stan-
dard ; procedure de quantisation se décomposant en quantisation dans
le plan à azimuth constant, suivie par rotation autour de l’axe polaire.
Bien que l’on parvient à une subtilité concernant la composante azi-
muthale, ces characteristiques rendent le modèle apte à la résolution
en mouvements uni-dimensionnels, dont les propriétés quantiques on
a pu récemment approcher par une méthode fondée sur un moyennage
statistique ergodique de lois temporelles de type classique mais à masse
variable. En faisant la comparaison des résultats présents avec le modèle
quantique et le cas quasi-classique correspondant, on trace un chemin
possible pour développer nos modèles uni-dimensionnels jusqu’à pouvoir
décrire des mouvements en 2D et 3D ; et à pouvoir identifier certaines
différences ultimes, dignes d’ultérieures études, avec le modèle ortho-
doxe.

1 Introduction

In previously published papers [1, 2] we provided a peculiar model
for one-dimensional oscillators, embodying energy and mass fluctuations
in both the quantum wave equation and the classical energy theorem.
It seems to us able to reconciliate (at least some) basic quantum-like
features with classical-like motion. Extending calculations to the three-
dimensional case (here represented by the Hydrogen atom) is in principle
possible by the use of linear-motions superposition techniques ; but it
requires a number of important premises, to be expounded in this paper.

Describing 2D or 3D motions by an appropriate composition of one-
dimensional time-laws is a basic conceptual and mathematical tool for
the classical physicist, stemming out directly from the vector character
of the particle momentum ~p = m ~v. Motion composition properties also
appear in quantum mechanics, although in the different form dictated
by the state superposition principle. Other traces can be found in the
variables separation techniques as we employ, f.i., in the template case
of the Hydrogen atom model. Yet expounding this topic in quantum me-
chanics looks a much more complex matter compared with the classical,
not only because of the many circumstances where non-linear coupling
between variables must be taken into account - but essentially because
of the intrinsic lack of the concept itself of particles trajectory in the
former. However, from the old Bohr and Sommerfeld models via sto-
chastic theories and Bohm mechanics, up to the fluctuation model we
have recently proposed, classical-like approaches to quantum mechanical
effects look to become more and more seasoned nowadays. So a rather
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solid background is available to us and analysis in this field is still requi-
red. Amongst its main purposes, there is developing detailed calculations
of the rotational motions which one can build up by superposing basic
time-laws as the ones proposed in [1, 2].

Before attempting any practical calculation, however, we have to in-
vestigate in this paper about a major difficulty which we will certainly
meet with in these future trials. It is represented by the existence of
S-states with angular momentum quantum number l = 0. By the ex-
pression of the squared angular momentum values l(l + 1) holding in
quantum mechanics, this value in a S-state is obviously also zero. Now
no fluctuation law of a quantity whatsoever can result in a time average
and mean-square value both to be zero, except in the inconsistent case
where the quantity is constantly null. So the states with zero angular
momentum get out of any attempted resolution in two or three com-
ponent motions. They have a spherical symmetry where any polar axis
is actually suppressed. This fact seems to result merely from the statis-
tics attached by the quantum formalism to the radial motion, summing
over all directions of the radial axis in space. Yet no physical rotation of
this axis may be thought without a (squared) average angular momen-
tum different from zero. Moreover, we have to note that the S-states 3D
wavefunctions are not zero on the nucleus (r = 0), what is connected in-
deed to the fact that there is no centrifugal force to keep the electron far
out from it. Again, it would be hardly attempted to explain by classical
thinking how the electron moves in the very proximity of the nucleus.

All of these intriguing circumstances seem to prevent ”a priori” that
an S-orbital is interpreted by a rotating particle model in a classical
sense. But on a general point of view, even in recent literature, many
efforts are still found, aimed at investigating different original paths to-
wards the goal of identifying traces of electron trajectories in the atom.
Some of the most interesting (theoretical) ones account for spin rotation
in the calculation, as is basically done in Bohm mechanics [3] ; or spin-
orbit effects as we find f.i. in the known models by Gryzinski [4 ÷ 6].
Moreover several papers, reporting both theory (the ”closed orbits” one)
[7÷11] and experiments [12÷23], have also been issued lately which de-
monstrate classical-like trajectories of wave-packets in Rydberg atoms ;
with some insight even in the innermost atom core [24 ÷ 27]. However,
the difficulty with S states is not removed even in the ordinary relativis-
tic treatment, where the 3D S wavefunctions behaviour shows a (weak)
singularity of the order ≈ r−α2/2 (α = fine structure constant) [28, 29].
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Yet remarkably, in the (2+1)D Coulomb interaction case [28], a Chern-
Simons term accounted for into the Hamiltonian is known to bring a cor-
rection to the angular momentum quantum number. This might reveal,
to further analysis, beneficial to smooth out the singularity, at least in the
2D case. Besides that, arguments can be found to introduce supplemental
angular momentum in S states whenever one accounts for spin or other
perturbations which make l not so good a quantum number any more.
In our concerns here however, we focus our interest on a non-relativistic,
spinless frame. In any case indeed, we do not believe in principle that
solving the S-states puzzle should help with having recourse to extrinsic
variables as spin rotation, nonlocalization and magnetic effects ; nor to
relativity in general. The real spirit of a basic description of particles
interaction should be independent of such ingredients being activated or
not in the model. State of the art considered, the mentioned S-states
properties look to us to substantiate peculiarly some very fundamental
discrepancies between the quantum and classical-like models. For this
reason the case deserves major investigation.

So we leave out in this paper any spin or magnetic effect, and resting
on a basic ground we trace back the anomaly of S-states to a consequence
of the standard quantization procedure historically risen to dominance.
We turn out at examining the possibility that a different quantization
procedure from the standard one is employed, in such a way that new
interesting elements can be identified in the basic Hydrogen model. The
sound variation here is introducing a constant additional value into the
squared angular momentum values, and we discuss the alternative Hy-
drogen model set up in this way. First to say, we will see that many
of the spectroscopic terms pertinent to the new model come ”naturally”
identical with the standard ones. Residual discrepancies are only found
for small l-values, and some of the known orthodox expressions might
perhaps also be recovered by appropriate redefinition of the perturba-
tional Hamiltonians in the new context. However, even small term shifts
implied by any model - if tracing in the reality - are in principle suscep-
tible of experimental checks ; but on a more concrete ground, here we
have only a very basic model of the Coulomb interaction, so that the
differences we can find in the term structure shall be better taken as
hints for comparison purposes with analogous models. The real utility
of the present framework is indeed as a new reference for discussion.
By its definition, it will lend itself to be finely interpreted basing on 3D
composition of fluctuating classical-like microscopic motions. Therefore
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investigating the S-orbitals problem will also be found to offer further
insight into the ultimate difference between a standard quantum and
classical-like models of motions.

2 Background

In order to eliminate the ambiguities impending to the uncertain in-
dications of the correspondence principle, different quantization proce-
dures candidates for application in the multidimensional cases have been
carefully examined since the beginning of quantum mechanics [30]. Parti-
cular concern has been given to their symmetry properties and ordering
of non-commutative operators [31] ; the regular laplacian form we use
for the 3D kinetic Hamiltonian is in fact known to insure the invariance
of the Schrödinger equation by rotations of axes, and general covariance
properties. We are brought to think that this standard description repre-
sents the ultimate statistical appearance of the microscopical motions,
once averaged all over the space directions. So we make clear that the
aim of the present study is not at claiming that a better expression may
be found. It is rather to affirm that a precursor form may exist, saving
memory of some important kinetic properties - these last destined to be
obliterated by the final step bringing to the standard result. In other
words, we search here for a decomposition of the quantization procedure
into different steps, each of them being connected (amongst other) to
some peculiar motions appearances - in the quoted spirit of a motion
composition methodology.

In this connection, it may be interesting to stress that in the (stan-
dard) isolated atom, separation of variables worked out, we find symme-
trical states with complete oblivion of the classical ellipses. A number of
authors [32÷46] developed Hydrogen models in two dimensions and some
[47, 48] gave a very peculiar insight into this question. Rather rigorous
trials have been made afterwards to built up ellipses again, by coherent
composition of nearby quantum states ; this has been done not only by
theoretical means [49 ÷ 61], but also experimentally with a certain de-
gree of success [62 ÷ 69]. However, all of these concern Rydberg atoms
in quasi-classical circumstances. In a complementary way, we may think
that the standard atom is straight the result we would also get starting
with a mere ”classical ellipse quantization” first, and averaging it after-
wards over all the possible parameters and directions in space allowed
by quantum theory. But exception made for the very first calculations
by Sommerfeld himself, we have not yet available such a kind of detailed



88 G. Mastrocinque

model. In any case, the real difficulty it would certainly face if developed
would be, first of all, how to insure the right quantum numbers spectrum
at the final step - given all the previous ones. Indeed even the very solid
2D theories available for the electron staying in a fixed plane around
the nucleus result into a spectrum different from the real 3D case. Since
many years already, conjectures have been advanced as how to frame
these differences into sound dynamical aspects of the system [38, 45, 48].
The case is emblematic of the so-called space quantization problem, soon
going beyond it to point straight forward at the doublets appearance and
to the Stern-Gerlach experiment interpretation.

X. Oudet [70 ÷ 73] has investigated space quantization in the light
of relativistic principles with a model based on exchanges of small mass
grains to describe the proton-electron interaction and the electron mo-
tion. He proposed to consider that quantification is not due properly
to angular momentum but results from a so called intrinsic quantum
of action h. This last is equally partitioned between the angular and
translational (parallel to z) motion degrees of freedom so that motion
is also quantified in the perpendicular direction to the classical plane of
the Bohr Sommerfeld approach. For the S states, this means that half
the action h/2 contributes to the orthogonal motion and the other half
to an angular momentum. First prospections of the influence of these as-
sumptions on the atomic model are given by this author, with particular
insight into relativistic and quantum magnetic properties.

The method we describe in this paper is also based on a quantization
step first operated in a plane, but it insures at last that the entire spec-
trum of quantum numbers m, l, n is identical with the known standard ;
the only difference in this respect consists into the addition of a constant
h2/4 value to the squared kinetic momentum eigenvalue. Indeed in order
to overcome the mentioned difficulties with the standard model, we have
to insert some additional rotation into the atom Hamiltonian. Yet we do
not get this by adding any explicit energy term more to the standard
Coulomb interaction (as is f.i. the case with the Chern-Simons term [28]
(1)) : we only assume a different quantization procedure at the start.
Compared to Oudet’s model, however, we concluded that in the present
non-relativistic, spinless treatment, only half a quantum of angular mo-
mentum h/2 (to be interpreted as a fluctuation, with a zero average

1The Chern-Simons correction may imply a modified (fractional) statistics [74] ;
this is not at all the case in our model, where no spin is considered, l stays unperturbed
and only l̂2-eigenvalues modify into (l + 1/2)2.
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value) in the zenithal degree of freedom is adequate to the fluctuation
hypothesis. This is also because inserting the other half quantum into
the procedure (at least as it is here proposed) caused essential singulari-
ties to appear in the calculations. Then with the previous assumptions,
we came to the results expounded in the following section.

3 Theory

In this section, we are going to introduce our ”alternative” expression
for the 3D kinetic Hamiltonian of the Hydrogen atom. We ask for the
following requirements to be satisfied :

a) the new form still must be a laplacian-like one (at second deriva-
tives).

b) it must result into the same known set of the standard Hydrogen
quantum numbers m, l, n, nr with the same reciprocal relations. The
energy terms must be the same that in the standard case, i.e.

En = −hR

n2
= − me4

2h2n2
(1)

Here R is the Rydberg constant, e the electron charge, and m the electron
mass. Accidental degeneracy is therefore preserved here.

c) the squared momentum values, instead, have to take the values

h2 [l(l + 1) + 1/4] = h2(l + 1/2)2 (2)

As anticipated, this is tantamount to introduce a ”zero point” fractional
quantum number 1/2 which corresponds to an additional kinetic mo-
mentum lying in the z = 0 plane, with alternate values ±h/2 in the time
domain (take a square wave or a flip-flop for easy reference). This additio-
nal momentum has to be interpreted indeed as a fluctuation amplitude,
so that its time-average is actually zero (2), and we have essentially only
to deal with its squared average. Note that (l + 1/2)2 are the same va-
lues we find in the quasi-classical case of the standard quantum theory ;
but here we are searching the conditions for they are expressed exactly

2Fast quivering of the electron in our context may resemble a ”zitterbewegung”
(ZB) motion, the relativistic effect linked to interference between Dirac states. Deeper
analysis, not affordable here, would be required to examine the possible connections
of the present model with ZB ; interestingly, however, ”simulation experiments” by
Gerritsma [75] seem to show that ZB is also linked to a mass effect, which is one of
the main ingredients for the fluctuation model promoted in [1,2].
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by our laplacian form, without any approximation. So the resultant mo-
del may perhaps be considered as a rather exotic one, but is always a
quantum-like one. More details on all of these points will be found later
on.

d) The radial energy operator has not to have the regular 3D
form 1/r2 ∂/∂r r2 ∂/∂r but the one pertinent to a 2D quantization in the
plane, i.e. 1/r ∂/∂r r ∂/∂r. In this way, we are setting up a mathematical
ground to resolve our model in component motions in the future.

e) All the wavefunctions have to be zero on the nucleus (r = 0) (3).
Their radial number of nodes must be the same standard number for
l 6= 0 ; for l = 0 instead, it obviously comes out increased by 1.

Looking particularly at point b) we conclude that the azimuthal part
(φ = azimuthal angle (4)) of the laplacian must stay unchanged in com-
parison to the standard, while point d) determines the new radial part.
Therefore we introduce the laplacian form :

∆′ =
1
r

∂

∂r
r

∂

∂r
+

j(θ)
r2 sin(θ)

∂

∂θ

sin(θ)
j(θ)

∂

∂θ
+

1
r2 sin(θ)2

∂2

∂ϕ2
(3)

The factor j(θ) we find inserted into it actually modifies the zeni-
thal part of the standard laplacian. As we will see in a next section,
it is connected to a new metrics being defined in the 3D space, which
we will have to consider by the sake of interpretation. However, before
expounding this point, let us write down the Hydrogen wave equation
as determined by the new context. We have

h2

2m

[
1
r

∂

∂r
r

∂

∂r
+

j(θ)
r2 sin(θ)

∂

∂θ

sin(θ)
j(θ)

∂

∂θ
+

1
r2 sin(θ)2

∂2

∂ϕ2

]
Ψnlm(r, θ, ϕ) =

= −
[
En +

e2

r

]
Ψnlm(r, θ, ϕ) (4)

3This condition should induce meditation on such topics as electron capture or
Darwin effect, popularly calculated as functions of a certain permanence of the S
electron on the nucleus (the more if some physical reality of the present model may
ever appear, at some degree). But for now, we have different purposes in this work.

4We refer to the regular set of polar coordinates r, θ, ϕ with polar axis along z.
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In order to discuss this equation, we note first that it can be in-
terpreted as the sequence of two quantization steps. The first step is a
quantization in the plane at constant azimuth :

− h2

2m

[
1
r

∂

∂r
r

∂

∂r
+

j(θ)
r2 sin(θ)

∂

∂θ

sin(θ)
j(θ)

∂

∂θ

]
Ψnlm(r, θ, ϕ) =

=
[
En +

e2

r
+

h2

2m
fm(r, θ)

]
Ψnlm(r, θ, ϕ) (5)

The second step is quantizing the azimuthal rotation :

1
r2 sin(θ)2

∂2

∂ϕ2
Ψnlm(r, θ, ϕ) =

= fm(r, θ)Ψnlm(r, θ, ϕ) = − m2

r2 sin(θ)2
Ψnlm(r, θ, ϕ) (6)

Indeed the intermediary function fm(r, θ) is independent of ϕ at last,
because by separation of variables we are able to extract the factor
Exp[im ϕ] from Ψnlm(r, θ, ϕ). Then the overall procedure is a quan-
tization in the meridian plane + rotation around the polar axis along z.
Although in this paper we cannot afford accomplishing our main task
(i.e. using Newton-like motions for 3D composition in Hydrogen, what
is demanded to future papers) it must be stressed here that we consider
the previous circumstance a clue to that purpose.

It is easy to understand now that point b) can be satisfied if wave-
functions may be set up using the standard expressions multiplied by a
perturbational factor equal for all of them. So we have to take

Ψnlm(r, θ, ϕ) = A(r)B(θ)χnl(r)Y
l
m(θ, ϕ) (7)

Y l
m(θ, ϕ) = P l

m(cos(θ))Exp[imϕ] (8)

where Y l
m(θ, ϕ) are the regular spherical harmonics, P l

m(cos(θ)) the as-
sociated Legendre polynomials and the χnl(r) are the radial parts of the
standard Hydrogen :

χnl(r) = k(n, l)Exp(− r

a n
)
( r

n

)l

Hypergeometric1F1[1+l−n, 2+2l,
2 r

a n
]

(9)
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Here k(n, l) is the normalization constant, a is the Bohr radius. As
stated already, n l m are the regular quantum numbers of the standard
atom.

Concerning the A(r) and B(θ) functions, we can easily find their
forms by comparing a few calculation elements of our model with the
standard case. In this last, we have indeed

− 1
sin(θ)2

[
sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

∂2

∂ϕ2

]
Y l

m(θ, ϕ) = l(l + 1)Y l
m(θ, ϕ) (10)

From eq. (5) and point c) we have to put instead

− 1
sin(θ)2

[
sin(θ)j(θ)

∂

∂θ

sin(θ)
j(θ)

∂

∂θ
+

∂2

∂ϕ2

]
B(θ)Y l

m(θ, ϕ) =

= (l + 1/2)2B(θ)Y l
m(θ, ϕ) (11)

By simple developments, using both the equations we find that for
all l,m

B(θ) =
√

j(θ) (12)

and

Cot (θ)
j′(θ)
2j(θ)

− 3
4

j′(θ)2

j(θ)2
+

j′′(θ)
2j(θ)

= −1
4

(13)

The solution for j(θ) (5) is given in fig.1.

5Equation (13) has a rather involved solution, we could deal with by use of Wolfram
Mathematica 8. An expression can be found in the brief Appendix to this work.
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fig. 1 – Function j(θ) with 0 ≤ θ ≤ π.

Now we can write down equation (4) again in the form

− h2

2m

[
1
r

∂

∂r
r

∂

∂r
− (l + 1/2)2

r2

]
A(r)χnl(r) =

=
[
− me4

2h2n2
+

e2

r

]
A(r)χnl(r) (14)

Comparing it with the standard equation satisfied by χnl(r) we have

− h2

2m

[
1
r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2

]
χnl(r) =

=
[
− me4

2h2n2
+

e2

r

]
χnl(r) (15)

and we find for all n :
A(r) =

√
r (16)

So our new wavefunctions take the expression (6) :

Ψnlm(r, θ, ϕ) = β(n, l)
√

r
√

j(θ)χnl(r)Y
l
m(θ, ϕ) (17)

6As is obvious, the normalization factors we attached to χnl(r) in eq. (9) should
take now values different from the ones pertinent to the standard states. So we leave
the χnl(r) expression unchanged, but add in the expression (17) a corrective norma-
lization factor β(n, l).
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Equation (17) shows us that the form of the orbitals in the new
model changes in comparison to the standard by the factor

√
r
√

j(θ).
From fig.1 we see that j(θ) → 0 when θ → 0 or θ → π. So the main
differences come out for m = 0 at small values of r and j. Indeed the
m = 0 wavefunctions change from the finite values they take in the
standard model around (r = 0, θ = 0, θ = π), down to 0. For all quantum
numbers besides, when r moves from 0 to greater values and θ starts with
detaching from the extreme values 0 or π, the deformation may soon be
considered small (7). Concerning the radial part, we see in particular
that requirement e) is satisfied, i.e. even for l = 0 the electron has now
a null probability to be found in the volume element 4πr2dr near r =
0. Concerning the angular part, the probability to find the electron at
the zenithal points (θ = 0, θ = π) is now equally zero for all quantum
numbers. Therefore all the orbitals (take moduli in (17)) have now a
torus-like symmetry. By an example, we give in figs. 2 and 3 3D-plots
of two sampled S- and F-like orbitals and their radial behaviour plotted
in the additional 2D graph of fig. 4 (all plots with Mathematica 8).
Other orbitals change quite similarly, but clearly orbitals with m 6= 0
are not submitted to any variation in the topological sense.

7This explains by the overcoming effect of the l-powers and evanescence terms
enclosed in the functions χnl(r), and by the fast trend to unity of the factor j(θ)
when θ → π/2.
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Note that not all of the functions in the set (17) turn out to
be orthogonal to each other when we integrate (only) over the stan-
dard volume element sin(θ)dθ. It can be checked by numerical calcu-
lations of the volume integrals that the θ−functions

√
j(θ)P l

m(cos θ)
and

√
j(θ)P l′

m′ (cos θ) slightly superpose to each other when |l′ − l| and
|m′ −m| both are odd numbers, or both are even ones. So we find (p, q
integers) : ∫ π

0

j(θ)P l
m(cos (θ))P l∓2p

m∓2q(cos (θ))sin(θ)dθ 6= 0 (18)∫ π

0

j(θ)P l
m(cos (θ))P l∓(2p+1)

m∓(2q+1)(cos (θ))sin(θ)dθ 6= 0 (19)

The integrals are instead 0 when |l′ − l| and |m′ −m| have different
parity.

A similar situation however, also occurs to the standard associated
Legendre functions P l

m(cos (θ)), which are also found to interfere in the
θ domain when |l′ − l| and |m′ −m|both are odd numbers :∫ π

0

P l
m(cos θ)P l∓(2p+1)

m∓(2q+1)(cos (θ))sin(θ)dθ 6= 0 (20)

Yet here, the set of functions with integral overlap is not represented only
by (19) but also by (18) so that it includes a greater number of them. In-
deed the presence of j(θ) in the integral brings it to a non-zero value even
for the cases where the standard integrand P l

m(cos (θ))P l∓2p
m∓2q(cos (θ))
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amounts to a zero integral superposition (although it is an even function
of the latitude around θ = π/2). So amongst other, we see that if we in-
tegrate the non-standard wavefunctions (17) over the full space volume
element r2sin(θ)drdθdϕ with m 6= m′, we still find the result 0 - so that
the orbitals can be said orthogonal to each other ; but in case m = m′ and
|l′ − l| = 2p 6= 0, these orbitals will show (small) overlaps. As it is well
known, eigenfunctions orthonormality is a property strictly linked to the
mathematical asset of the linear state superposition principle in ortho-
dox quantum mechanics, allowing easy treatment of mixed states with
their interference effects. But in our view, it is not an essential property
to keep the model working in all circumstances. The true and concrete
matter is indeed, after all, having available a wave equation able to give
solutions with any initial conditions set given by physical constraints.
That one has available two solutions with certain initial conditions, and
he can find a third case by linear mixing (or the inverse, i.e. easily achieve
state reduction), this is obviously a very comfortable circumstance. But
whenever it is not so, the only important matter to be insured is that
we can find the solutions with any chosen constraint ; we will always be
able to investigate their relations afterwards. This situation also occurs
in the framework of the fluctuation model expounded in [1,2], because
there an imaginary potential term is added to the standard Hamiltonian
so that the resulting wave equation is a non-linear one.

However, the cross integral values (18) and (19) fast approach the
standard values (i.e. the ones with j(θ) = 1) when l′and l are large
enough compared to 1/2. Also very interesting, if we integrate over the
”deformed volume” with element r2sin(θ)drdθ/(rj(θ)), the factor rj(θ)
eliminates in the integrand so that the set (17) turns out to recover the
standard properties in that volume ; we identify this last now as a sort
of non-euclidean space domain.

Looking more specifically at the meridian plane, we see from equation
(5) that 1/j(θ) plays the form factor role attached to sin(θ) into it. Since
rsin(θ)dθ is the part of metric element in spherical coordinates pertinent
to a zenithal altitude variation, we give the interpretation that it is
deformed into rsin(θ)dθ/j(θ), thus becoming a bit longer (j(θ) ≤ 1).
This is tantamount to say that the space element attached to the angle
θ is greater than the standard cartesian value ; in other words, we face
here the appearance of a non-euclidean geometry tract to account for.
This can be found better explained physically in the next section. We call
dθdef the deformed angular space element dθ/j(θ). We plot the function
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θdef (θ) in fig. 5.

Note that a treatment of non-euclidean space extension in the va-
riable θ implies the following transformations in the main operators defi-
nitions (l̂ = standard angular momentum operator ; l̂ns = a non-standard
operator in the present model, fitted to absolute value calculations) :

dθ

dt
=⇒ dθ

j(θ)dt
(classical view) (21)

∂

∂θ
=⇒ 1

j(θ)
∂

∂θ
(quantum view) (22)

So we define

l̂ns ≡ l̂−ns =
1

j(θ)
l̂ (23)

where l̂ns takes the role of a kinetic momentum operator accounting for
the space deformation. Here we have given a (−) suffix to l̂ns, because
it also turns out useful to define a dual operator

l̂+ns = j(θ)l̂ (24)
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So we can write

l̂2 =⇒ l̂2ns ≡ l̂+ns · l̂−ns = j(θ)l̂ · 1
j(θ)

l̂ (25)

These equations may also be read in the sense that space deformation
introduces a major distinction between the measures (quantum means)
of the angular momentum itself and its absolute value. This brings us
to introduce the couple of non-standard operators l̂−ns and l̂+ns but only
their ordered product univocally defines the squared operator (8). Eq.
(25) means that we have to measure first the quantity l̂−ns = 1/j(θ) l̂ to
get the absolute mean value of the angular momentum from the defor-
med wavefunction ; and apply j(θ)l̂ afterwards, in order to report the
average squared momentum to the euclidean observer. Compared to the
standard quantum formalism, a remarkable conceptual difference is that
in order to calculate the absolute squared value we cannot simply ap-
ply twice the same standard operator l̂, because the non-euclidean space
includes motion modes we should not average out (see figs. 6, 7 as an
example). The standard operator l̂ instead, still measures the mean an-
gular momentum and expresses as îl̂x+̂l̂y+k̂l̂z in cartesian coordinates.
Taking the scalar product in (25) and the known expressions in polar
coordinates

l̂x = i

[
Cos(ϕ)Cot(θ)

∂

∂ϕ
+ Sin(ϕ)

∂

∂θ

]
(26)

l̂y = i

[
Sin(ϕ)Cot(θ)

∂

∂ϕ
− Cos(ϕ)

∂

∂θ

]
(27)

l̂z = −i
∂

∂ϕ
(28)

it can be now checked that the quantity l̂+ns · l̂−ns comes indeed equal to

l̂+ns · l̂−ns = − 1
sin(θ)2

[
sin(θ)j(θ)

∂

∂θ

(
sin(θ)
j(θ)

∂

∂θ

)
+

∂2

∂ϕ2

]
(29)

as required by (11). In this expression, we have to note that the azimuth-
dependent part of the operator is unaffected by the factor j(θ) at last.

8Changing their order in the definition leads to the same result when we set
j(θ) → 1/j(θ) in the formalism, i.e. assuming a mere change of definition for j(θ).
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This obviously means that the magnetic quantum numbers and corres-
ponding ϕ-dependent parts of the wavefunctions also are unaffected by
the definition (25). Amongst other indeed, we also find insured that (bra
and kets here stay for the deformed waves (17)) :

< ml
∣∣∣l̂2z∣∣∣ ml >= −

∫
V

Ψ∗
nlm(r, θ, ϕ)

∂2

∂ϕ2
Ψnlm(r, θ, ϕ)sin(θ)r2drdθdϕ = m2

(30)

< ml
∣∣∣l̂ z

∣∣∣ ml >= −i

∫
V

Ψ∗
nlm(r, θ, ϕ)

∂

∂ϕ
Ψnlm(r, θ, ϕ)sin(θ)r2drdθdϕ = m

(31)
Moreover we find

< ml
∣∣∣l̂ x

∣∣∣ ml >=< ml
∣∣∣l̂ y

∣∣∣ ml >= 0 (32)

So these diagonal terms also come out equal to the standard values i.e.
are null. By numerical checks, we have found that non-diagonal terms
with indices (m, m ± 1) are instead different from zero (as expected)
and show very small differences (< 1%) in comparison to the standard
values. The same cannot be said of the operators 1/j(θ)l̂ x and 1/j(θ)l̂ y,
resulting in matrix terms different up to about 31 % from the standard :
f.i. we have

< 01
∣∣∣∣ 1
j(θ)

l̂ x

∣∣∣∣ 11 >= − i < 01
∣∣∣∣ 1
j(θ)

l̂ y

∣∣∣∣ 11 >= 0.929 (33)

< 12
∣∣∣∣ 1
j(θ)

l̂ x

∣∣∣∣ 22 >= − i < 12
∣∣∣∣ 1
j(θ)

l̂ y

∣∣∣∣ 22 >= 1.168 (34)

while the standard values are 1/
√

2 = 0.707 and 1 for the two cases
respectively. However, all of these differences soon decrease when the l,
l′ values increase. Due to the involved expression of j(θ) and consequent
long pc calculation time, it is not affordable here computing the new
matrix terms or integral overlaps all over the quantum numbers spectrum
with deformed wavefunctions, so we leave this to a future work whenever
useful. But we have attempted a physical interpretation to the main
quoted findings. As anticipated, this is expounded in a next section.

Here we only add a mathematical point more, concerning the diffe-
rence between the new laplacian ∆′ we have previously shown and the
known standard form. If we name ∆ the standard 3D laplacian operator
in polar coordinates, it is easy to check that this difference is
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l̂0 = ∆′ −∆ = −1
r

∂

∂r
− j′(θ)

r2j(θ)
∂

∂θ
(35)

By the present context, it is clear that the action of this operator
is correlated to the appearance of the additional (fluctuation) quantum
number 1/2 in our theory. So we will name it ”the zero point (rotational)
operator”. This operator is a linear composition of derivatives in r and
θ. As such, we want to stress that it can be quite naturally framed into
the possible set of extensions of quantization procedures we have for-
merly investigated [76, 77], and traced back to the use of non-standard,
generalized Hamilton-like quadratic forms - these last include a term li-
near in the classical particle momentum ~p and are correlated to a mass
effect. By equation (35), l̂0 can be regarded as the perturbational Ha-
miltonian which has to be added to ∆ to obtain the deformed orbitals
- and viceversa, −l̂0 brings back from the latter to the standard model
(9).

4 Physical interpretation

Orbitals deformation with toroidal symmetry, two-steps interpreta-
tion of the quantization procedure and appearance of the additional term
h2/4 in the expression of the squared angular momentum are the essen-
tial features introduced by the new laplacian form ∆′. These properties
altogether seem to provide us with a special insight into the atom model
and new instruments to our description ability.

As announced before, the space extension in the meridian circle r =
const, ϕ = const is perturbed by the metric factor 1/j(θ) so that the
measure of the full zenithal angle coverage (π) becomes instead∫ π

0

dθdef =
∫ π

0

dθ

j(θ)
= 4.558 ' 1.45 π (36)

We interpret this non-euclidean measure assuming that the electron
is submitted to fast oscillations in the meridian plane, perturbing the
standard dynamics we generally have when we set j(θ) = 1. In this
paper, calculations fitted to the energy-mass fluctuation model as given

9So −l̂0 suppresses the h/2 fluctuation and obviously brings us back to the or-
thodox treatments and results, also for the entire perturbational environment of the
atom.
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in [1,2] are not affordable ; but a simulated, simple insight can be given
by the following equations, treading in a basic fluctuation frame. Would
it be θc(t) an electron time-law in the meridian plane, it might have a
form (f.i. the simplest) including a slow (s) varying term, and a fast (f)
one (take time derivatives ; in this example, θ̇s(t) and θ̇def (t) ≤ 0) :

θ̇c(t) = θ̇s(t) (1 + a(t) Sin(ωf t)) (37)

with
ωf >>

∣∣∣θ̇s(t)
∣∣∣ (38)

< θ̇s(t) a(t) Sin(ωf t) >2πp/ωf
' 0 (39)

< θ̇c(t) >2πp/ωf
' θ̇s(t) (40)

The two last equations here indicate how to average out fast fluctuations ;
indeed the time averages <> are intended to be taken over a small
interval 2πp/ωf (f.i. p ≈ 2 or 3) around t. We have also, by the same
rule (10) :

θdef (t) = θdef (0)− <

∫ t

0

∣∣∣θ̇c(t′)
∣∣∣ dt′ >2πp/ωf

(41)

Obviously the time laws must be such that (call τ the time needed to go
from π/2 to 0) : ∫ τ

−τ

θ̇c(t)dt =
∫ 0

π

dθc = −π (42)

∫ τ

−τ

θ̇def (t)dt = −ε π = −1.45 π (43)

All of this can be resumed saying that when a fast fluctuation with
zero time average is superimposed to some predefined θ̇s(t) time law, the
total angular path effectively covered by the electron increases by a factor
ε due to forward/backward vibration steps around any position θs. This
motion is much analogous to the fluctuating motion of the pointer in a
mechanical watch affected by vibrations.

10The sign minus in eq. (41) is due to the fact that our time laws bring the zenithal
altitude from (θ = π/2 in t = 0) to (θ = 0 in t = τ), i.e. time derivatives are negative
quantities.
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To enlighten our example, we have plotted in figs. 6 and 7 the func-
tions θc(t), θdef (t) consequent to a simple time law (44) in time units
of τ , with π/2 ≥ θc ≥ 0 and 0 ≤ t/τ ≤ 1. We purposely have taken a
rather small frequency ωf , to allow the reader appreciate fluctuations
in the graphics. For an effective application to the electron orbital high
frequencies some coefficients in the equations should be rescaled (so it
was not worthy to us achieving high numerical precision in the plots 6,
7 and in eq. (46), all of this is for demonstrative purposes). The case
can be therefore simply illustrated as follows : taking f.i. (pulsations in
rad/s)

θ̇s(t) = − π

2 τ
(44)

ωf =
61.1

τ
(45)

and

a(t) ' −(0.074 + 0.019
t

τ
)
[
3.71− ln

(
1− t

τ

)]2

(46)

we get the following graphs for θc(t), θdef (t) :
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So the coordinate θdef (t) appears to us as the measure of the average
(red line in fig. 7) absolute angular path covered when following the law
θc(t) (this behaviour confirms the one shown in fig. 5, since the time t
is proportional to θs (11) in the example. This is thanks to the peculiar
expression given in eq. (46)).

In a very rough model with fluctuating mass m(t), just to fix ideas
for the S orbital case in the present context, we might think to a family
of basic electron trajectories in the meridian plane of the form (c � 1)

m(t)r(t)2θ̇c(t) = ±h
2

√
1 + c sin(ωt + φ) (47)

where we assume that the number of trajectories with a (+) sign is
balanced with the (−) ones ; then the time-averaged, squared angular
momentum in the (x, y) plane should be

1
T

∫ T

0

m(t)2r(t)4θ̇
2

c(t)dt =
h2

4
(48)

We can also cast (in a future refined model) by simple logics these pro-
perties into a final expectation for the quantum squared momentum, at

11θs ≡ θ in fig. 5.
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least qualitatively : a classical-like motion interpretation should exist,
where by upgraded equations similar to (47) (48) the quantum number
l turns out unchanged, but the quantum squared value l(l + 1) must be
increased by a factor 1/4 - the value we have indicated in this paper
indeed.

When such kind of refined model will be expounded to take full ac-
count of energy, momentum and mass fluctuations, we believe it can
provide a classical-like motion interpretation even for the case of the
S-orbitals. Yet for now, it removes the apparent incongruence of these
orbitals with respect to zenithal elevation changes ; but it still remains
to be understood how azimuthal displacement is possible with the spe-
cific constraint lz = 0. An explanation can be found, still staying in a
fluctuation model frame. Although investigation is still required in this
direction, we want to propose it here for the sake of an interesting pers-
pective being brought to the model.

Looking at the toroidal orbitals, we see that the probability to find
the electron at the extreme zenithal angles 0, π is now null. But in a
mass fluctuation model, it will be different. This model will bring its
own peculiarities, leading to some differences with the quantum models.
It has been shown [2] that due to the mass effect the particles density ρ
will not take zero values at nodes as in the standard quantum model :
zeros actually transform into minima, so that the singularities of the
inverse of density become rather high values, but not infinite (12). Since
the mean velocity v

D
of the equivalent particle (or the packet if preferred)

is given by the equation

v
D

= 2
ν

ρ
(49)

(ν is the inverse of the rotation period here) the particles group will
be found to cross over the zenithal points at a rather high velocity, but
not infinite in that model. Now suppose that during the passages over
θ = 0 or π, at each time, a transverse (13) fluctuation impulse of force,
available in the external (”vacuum”) background, deflects the electron at
a different random azimuthal angle or meridian plane : no violation of
the condition lz = 0 will occur, since sin(θ) = 0 in that very moment.
After many passages at last, the trajectories clew will fill the orbital in
full.

12This fact brings back the orbitals genus to zero again.
13i.e. parallel to the (x, y) plane and orthogonal to the particle velocity at zenith.
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This mechanism would also help us with insuring that orbital angular
momentum in the (x, y) plane is able to flip between h/2 and −h/2 with
zero average as previously assumed.

We have to stress that this sudden (and random) meridian plane
rotation consequent to the passages at zenith is only a proposed expla-
natory mechanism herein, whose real occurrence we cannot prove by our
present knowledge. Further research is obviously required, in order to
investigate about any possible appearance of our precursor stage in the
physical reality. So by now, the proposed escapement towards a classical
interpretation rests on the mathematical anomaly of the lz definition
in the very points where sin(θ) = 0 : this looks to us as the very subtle
boundary edge between the quantum description and the classical view of
motion. On another hand, the impulse discontinuity at zenith is strictly
linked to the pointlike character of the electron in this model, at least
when the magnetic quantum number m is zero ; yet we might be able
to remove it introducing electron dimensions or some non-local effect
(both in classical or quantum views) in further investigations. When
m is different from zero instead, in order to eliminate the singularities
dues to the lz = const constraint imposed by quantum mechanics, we
can also invoke the favourable circumstance that in a fluctuating mo-
del interpretation the operator eigenvalues must be generally thought as
time-averages of oscillating quantities.

Squared angular momentum values equal to (l+1/2)2 are also found
in the standard quantum model when a quasi-classical limit is taken. Yet
there, the result is obtained heuristically, by imposing phase-match of
the radial wavefunction with the Kramers conditions ; no special inter-
pretation beyond quasi-classical applications seems ever to have followed.
However, quasi-classical conditions are only insured for r greater than
the Bohr radius, great l values, small latitudes. The present model seems
instead to us able to shed new light with some rigour and completeness
on the overall context.

5 Spectroscopic terms (comments)

Since the expression of the energy eigenvalues (1) is identical to the
known standard, all of the basic Lyman, Balmer, Paschen, Brackett and
Pfund transition frequencies are obviously also preserved in our model.
As a general rule, all of the spectroscopic terms corrections depending
linearly on the operators l̂z and l̂2ns come identical to the standard ones,
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because the differences in m values and in [l(l + 1) + 1/4] values stay un-
changed. Concerning fine structure instead, a rather subtle point must be
made. Would we assume brutally that the additional fluctuating momen-
tum makes no interference with the spin vector, the spin-orbit correction
would not change compared to the standard model. Indeed it essentially
depends on the value of the scalar product l̂ · ŝ which would remain the
same : we should then simply add 1/4 to both j(j + 1) and l(l + 1) in
the known RS expression

< l̂ · ŝ > =
1
2

[j(j + 1)− l(l + 1)− s(s + 1)] (50)

leaving it therefore unperturbed (14). But it may not be so, if the scalar
product has to account for an interference term arising by the product of
the equatorial parts of spin with the flipping ±h/2. So deeper investiga-
tion, including a detailed spin model in the fluctuation frame, is needed
to enlighten this point. A specific remark can also be reserved here to
the Darwin term, since generally it is expressed as

πe2h2

2mc2
Ψn00(0, θ, ϕ)2 =

2n
mc2

E2
n (51)

where the wavefunctions Ψn00(0, θ, ϕ) are different from zero in the stan-
dard model. The wavefunctions we have produced in this paper are
instead null on the nucleus, so that eq. (51) fails in our case. Then the
standard treatment of the Darwin term should be revised to cope with
the present model, probably having recourse to non-locality electron pro-
perties. Note however, that the Darwin term is known to be coincident
with the limit l → 0 of the general RS-coupling expression of the spin-
orbit energies [82]. Thus we can link this question to the previous one ;
yet the point remains a subtle one, as in all cases where relativistic cor-
rections are treated with non-rigorous, non-relativistic ingredients. But
as is obvious, further discussion extending to the Dirac model or exami-
ning QED-based corrections cannot be afforded here.

At least for weak magnetic fields, Zeeman terms are instead unchan-
ged compared to the known expressions, because they only depend on
the z component of the angular momentum (and spin). We have seen
indeed that the angular momentum z component matrix elements are

14Even so, we may not find the same situation for multielecron atoms where spin-
spin interaction must be considered, since then we have to account for a quadratic
term in L̂ · Ŝ, which might be affected by the corrective term 1/4.
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identical to the standard ones. Correspondingly, the fluctuating electri-
cal current in the meridian plane due to the added ±h/2 makes a zero
time-averaged mechanical momentum with the magnetic field, so that
the added energy correction is effectively zero. On another hand, the
popular expression for the gyromagnetic ratio given by the relativistic
theory of the electron [78, 79]

g =
k

k + 1/2
(52)

where k is the so-called screening quantum number [80] (15), also re-
mains unchanged by the present context. Clearly however, and poin-
ting to possible generalizations of our model to multielectron atoms, the
present comments are only based on the assumption that a RS coupling
with a quantum number l good enough is insured, so that any deeper
refinement of theoretical calculations besides this assumption still waits
for future research.

6 Conclusion

Searching for traces of classical motion in quantum mechanics, we
have introduced an ”alternative” model for the (non-relativistic) Hydro-
gen atom, as it stems from a non-standard quantization procedure. We
identified the so-called ”zero point operator” l̂0 in eq. (35), useful to get
across two quantization sets as a sort of mathematical bridge : if we
start with our toroidal Hamiltonian model and subtract l̂0 to it, we re-
cover the standard quantized model ; if we start with this last, adding
l̂0, we turn back to the former. Giving sense to the appearance of the
non-euclidean metrics, we might also say [83] that we have transformed
the quantum radial motion mode expressed by 1

r
∂
∂r in the laplacian ∆

into another one, − j′(θ)
r2j(θ)

∂
∂θ (i.e. an orthogonal mode playing in the me-

ridian plane) to obtain ∆′. We have also given the interpretation that
the standard quantum atom model can be obtained by the suite of two
precursor quantization steps (5) and (6) (quantization in the meridian
plane + azimuthal rotation) and a third step removing the fluctuation
quantum number 1/2 by the action of −l̂0. The first two steps offer a
quantized model seeming to us well fitted for a classical-like interpreta-
tion, by summing ergodic microscopic motions with variable mass (to

15In the atomic shells nomenclature pertinent to such models, k is either equal to
l or to −(l + 1), see also f.i. [81].
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be attempted in next papers). If these future calculations will be suc-
cessful, residual discrepancies between their results and the standard
quantum model may then be ascribed to the action of −l̂0 so that a fur-
ther, peculiarly focused insight may hopefully be given into the elusive
incongruence between classical and quantum theories.
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Appendix

The function j(θ) solving eq. (13) with the conditions

j(
π

2
) = 1 (53)

j(θ) = j(π − θ) (54)

takes the expression

j(θ) = Exp[
∫ θ

π
2

f(θ′)dθ′] (55)

where

f(θ′) =
πCot(θ′)EllipticK

[
sin2( θ′

2 )
]
− 0.5 π2 csc(θ′)LegendreP

[
1
2 , cos(θ′)

]
πEllipticK

[
sin2( θ′

2 )
]
+ πLegendreQ

[
− 1

2 , cos(θ′)
] +

(56)

+
πCot(θ′)LegendreQ

[
− 1

2 , cos(θ′)
]
− π csc(θ′)LegendreQ

[
1
2 , cos(θ′)

]
πEllipticK

[
sin2( θ′

2 )
]
+ πLegendreQ

[
− 1

2 , cos(θ′)
]

(57)
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