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ABSTRACT. We review the geometry of the Rindler space induced
by hyperbolic motion in special relativity, and its applications to the
calculation of the Unruh effect in flat spacetime, and to the Hawking
temperature of the Schwarzschild black hole.

I. Introduction.

Hyperbolic motion in Minkowski spacetime (Landau and Lifshitz,
1975), that is, classical motion of a relativistic particle with constant pro-
per acceleration, plays an important role in the understanding of motion
in the presence of horizons and, most important, in the understanding
of relevant phenomena such as Hawking radiation in black holes and the
corresponding temperature (Hawking, 1974, 1975). It was precisely in-
vestigations on this subject, that led Unruh (Unruh, 1976) to discover
a thermal effect in the vacuum of a quantum field in Minkowski space
when this vacuum is observed from a uniformly accelerated frame which,
in terms of the adapted Rindler coordinates (Rindler, 1966), has a fixed
value for the spatial coordinate and an evolving temporal coordinate.

It is the purpose of the present article to review, to some extend, part
of this subject, in particular with some insights into the geometry of the
Rindler space and its three additional wedges, its Penrose diagram, here
considered as a space in itself, its maximal analytic extension to Min-
kowski spacetime, its role as the “theater" where the Unruh effect occurs,
and its application to the determination of the Hawking temperature of
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the evaporating Schwarzschild black hole. Though not considered here,
this determination can be extended to more complicated black holes, like
Reissner-Nordstrom, Kerr, and Kerr-Newman, which have two horizons.

Different suggestions have been done to detect the Unruh radiation ;
among them the use of linear accelerators and/or storage rings (Bell and
Leinaas, 1983 ; Bell, 1987), laser physics (Chen and Tajima, 1999) and,
more recently, through the employment of the Berry phase (Martin-
Martinez, Fuentes, and Mann, 2011). A review on the subject of the
Unruh effect and its applications can be found in (Crispino, Higuchi,
and Matsas, 2008).

In subsection II.1. we define light cone coordinates u and v in Min-
kowski space. Restricting to 1+1 dimensions (Mink2), in subsection II.2.
a detailed definition of hyperbolic motion is given and is shown how the
concepts of horizons, invisible regions, and the Rindler wedge R appear.
The description of the particle motion in terms of the proper time τ and
proper acceleration α is given in subsection II.3., while Rindler coordi-
nates ξ (spatial) and λ (temporal) are defined in subsection II.4. Here it
is shown how α is written in terms of ξ and a constant a which provides
the units of acceleration, and it is exhibited the relation between α, a,
λ and τ , which is crucial for identifying the correct Unruh temperature
T in subsection III.2. In terms of dimensionless Rindler coordinates ρ
and η defined in subsection II.5., we study timelike geodesic motion in
R showing its geodesic incompleteness. In subsection II.6. we develop
the steps to construct Mink2 from R as its maximal analytic exten-
sion, while in subsection II.7., left (L), future (F ) and past (P ) Rindler
wedges are constructed, and a brief discussion of the discrete symmetries
of parity, time reversal, and charge conjugation between the accelerated
trajectories in R and L is presented. Future directed (in Rindler time
λ) trajectories are interpreted as particles in R and antiparticles in L.
Light cone Rindler coordinates ū and v̄ are defined in subsection II.8.,
together with positive frequency right and left moving solutions of the
Klein-Gordon equation, in preparation for the calculation of the Unruh
effect in section III. The final subsection II.9. of section II, gives a de-
tailed presentation of the construction of the Penrose diagrams, here
considered as spaces in its own right (compact pseudo-Riemannian ma-
nifolds with boundary) of the Minkowski and Rindler spaces. The Unruh
effect is calculated in two different ways in section III. In III.1., following
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the original lines of thought (Unruh, 1976), through the application of
the Bogoliubov transformation, and in III.2. the direct calculation of Lee
(Lee, 1986) is reproduced in detail. In particular the discussion empha-
sizes how the proper acceleration α (and not a) appears naturally in the
final result for the Unruh temperature (using the relation of equation
(19)), without explicitly appealing to the red shift between different ac-
celerated trajectories (Carroll, 2004 ; Birrell and Davies, 1982). In section
IV, the approximation of the Schwarzschild metric in the neighborhood
of the horizon of the corresponding black hole in subsection IV.2., gives
rise to a 2-dimensional Rindler space (Raine and Thomas, 2010). This
allows to apply the results of section III to obtain the Hawking tem-
perature of the thermal radiation from the black hole in terms of its
surface gravity, which is defined in subsection IV.1. A different approach
to this problem, based on a global embedding in a higher dimensional
Minkowski spacetime (GEMS), was developed by Deser and Levin (Deser
and Levin, 1999). Finally, in section V, we present some conclusions.

II. Hyperbolic motion. Rindler space. Four wedges of
Minkowski spacetime.
II.1. Minkowski spacetime

Let xµ = (x0, ~x) = (ct, x, y, z) = (ct, x1, x2, x3) be the global chart of
Minkowski spacetime. The metric is given by

ds2 = ηµνdx
µdxν = c2dt2 − |d~x|2, (1)

with
ηµν = diag(1,−1,−1,−1). (2)

For later use we define the light cone coordinates(
u
v

)
=
(

1−1
1 1

)(
ct
x

)
(3)

i.e. u = ct− x and v = ct+ x, which lead to

ds2 = dudv − |d~x⊥|2, ~x⊥ = (x2, x3) (4)

i.e. to the metric

ηLC =


0 1

2 0 0
1
2 0 0 0
0 0 −1 0
0 0 0 −1

 . (5)
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u = const. implies ct = x + const. and v = const.′ implies ct = −x +
const.′. Also, with the metric (g) = ηLC , guu = g(∂u, ∂u) = || ∂

∂u ||
2 = 0

and gvv = g(∂v, ∂v) = || ∂
∂v ||

2 = 0 i.e. ∂
∂u and ∂

∂v are null vectors. They
are not orthogonal since guv = gvu = g(∂u, ∂v) = 1

2 .

u = v = +∞(−∞) define the future (past) null infinity. (See Figure
1.)

Figure 1. Null (light cone coordinates) in Minkowski spacetime

II.2. Hyperbolic motion

Let uµ = (cγ, γ~v) be be the 4-velocity of a particle, with γ = (1 −
v2/c2)−

1
2 and ~v the ordinary 3-velocity ([v] = [L]/[T ]). The 4-momentum

of the particle is pµ = muµ = (E/c, ~p) where E = γmc2, ~p = γm~v, and
m is the mass of the particle. The relation between the proper time and
t is dt = γdτ , so for the 4-acceleration we have

αµ =
duµ

dτ
= γ

duµ

dt
= γ(c

dγ

dt
,
d(γ~v)
dt

) = (α0, ~α) (6)

where
α0 = cγγ̇, ~α = γ

d(γ~v)
dt

. (7)

[αµ] = [L]/[T ]2. In the instantaneous rest system of the particle, γ = 1,
so the proper acceleration is

αµ|RS = (cγ̇|~v=0,
d(γ~v)
dt
|~v=0) = (0,

d2~x

dt2
) (8)
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since γ̇|~v=~0 = − 1
2 (1− v2/c2)−

3
2 (−2~v · d~v

dt )|~v=~0 = 0 and d(γ~v)
dt |~v=~0 = (γ̇~v+

γ d~v
dt )|~v=~0 = d~v

dt = ~α|RS = d2~x
dt2 . This shows that αµ is spacelike since

ηµνα
µαν = −~α2 < 0. Hyperbolic motion is defined as that in which

~α|RS is constant. (In particular, if the particle has electric charge q, a
constant electric field ~ε produces hyperbolic motion since for the force
one has ~F |RS = q~ε = m~α|RS .)

Let us restrict our analysis to 1+1 dimensions i.e. to the (t, x) plane of
Minkowski spacetime,Mink2. From ηµνα

µαν = (α0)2−(α1)2 = (du0

dτ )2−
(du1

dτ )2 = γ2((du0

dt )2−(du1

dt )2) = −α2 one obtains the differential equation

α =
d(γv)
dt

=
d(v(1− v2/c2)−

1
2 )

dt
= const. (9)

(Without loss of generality we take α > 0.) Then αdt = d(v/(1 −
v2/c2)

1
2 ) ; if v(t0 = 0) = 0, then αt = v(t)/(1− v(t)2/c2) 1

2 i.e.

v(t) =
αt

(1 + (αt/c)2)
1
2
. (10)

Notice that v(t)→ c− as t→ +∞, and that for small values of t, v ' αt.
Also, dx(t)

dt = v(t), which implies

x(t) = α

∫ t

0

dt′t′√
1 + (αt′/c)2

= (c2/α)
√

1 + (αt/c)2 (11)

with x(0) = c2α−1. For small t, x(t) = (c2/α) + 1
2αt

2, while for large |t|,
x(t) ' c|t| i.e. x(t) → c|t|+ as t → ±∞. The motion is represented by
the hyperbola

x2 − c2t2 = (c2/α)2 (12)

which is plotted in Figure 2. It begins at x = +∞ at t = −∞ (past null
infinity u = −∞), comes to stop at t = 0 for x = (c2/α) and comes
back to x = +∞ for t = +∞ (future null infinity v = +∞). As α grows
the hyperbola approaches the light lines x = ct for t > 0 and x = −ct
for t < 0. The region interior to these lines is called the Rindler right
wedge R of Mink2 or, more simply, Rindler space. It is covered by the
infinite set of uniformely accelerated motions with α−1 ∈ (0,+∞). It
is clear that no signal can arrive to any point p of the trajectory of the
particle from points above or at the light line x = ct which is therefore an
horizon for the motion. The region ct ≥ x is invisible for the accelerated
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particle. At the same time, no information can reach from R to points
with ct < −x. Then the segments x = ct, t > 0 and x = −ct, t < 0
are called the future and past horizons of R. Finally, as α → +∞ the
hyperbola degenerates into the above mentioned lines, so for light proper
acceleration is infinite.

Figure 2. Hyperbolic motion in the right Rindler wedge

II.3. Proper time notation

For the proper time of the particle one has τ =
∫ t

0
dt′
√

1− v(t′)2/c2 =∫ t

0
dt′√

1+(αt′/c)2
= (c/α)Sh−1(αt

c ) i.e.

t = (c/α)Sh(ατ/c). (13)

If this is replaced in the solution for x(t) one obtains

x = (c2/α)Ch(ατ/c). (14)

It is easy to verify that a Lorentz boost
(
x0′

x′

)
=
(
Chψ Shψ
Shψ Chψ

)(
x0

x

)
shifts the proper time to τ ′ = τ + c

αψ.
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II.4. Rindler coordinates

The usual Rindler coordinates (λ, ξ) for the right Rindler wedge (use-
ful for the calculation of the thermal Unruh effect, see section III) are
defined by

ct = (c2/a)eaξ/c2
Sh(aλ/c), (15)

x = (c2/a)eaξ/c2
Ch(aλ/c), (16)

where λ, ξ ∈ (−∞,+∞), [ξ] = [L], [λ] = [T ], and a > 0 is a constant
with [a] = [L]/[T ]2. From this definition, we obtain a hyperbola for each
constant ξ :

x2 − c2t2 = (c2/a)2e2aξ/c2
. (17)

Comparing (15) and (16) with (13) and (14), we obtain the relation
between the proper acceleration α and ξ, and between the proper time
τ and λ :

α = ae−aξ/c2
(18)

and
aλ = ατ. (19)

The Jacobian of the transformation (15)-(16) is given by

J =
(
x0

,λ x
0
ξ

x,λ x,ξ

)
=

(
ceaξ/c2

Ch(aλ/c) eaξ/c2
Sh(aλ/c)

ceaξ/c2
Sh(aλ/c) eaξ/c2

Ch(aλ/c)

)
(20)

with det(J) = ce2aξ/c2 ∈ (0,+∞). The inverses of (15)-(16) are :

λ = (c/a)Th−1(ct/x), (21)

ξ = (c2/2a)× ln((a/c2)2(x2 − c2t2)). (22)

Clearly, R with the metric (24) (see below) solves the Einstein equations
in vacuum, since Mink2 does.

We want to emphasize here that a is not the proper acceleration : for
an arbitrary constant value of a there is a 1-1 correspondence between
proper accelerations α and Rindler hyperbole ξ. λ varies along these lines,
so these are the coordinate lines of λ. Only for the case ξ = 0, a = α.
Since dα

dξ = −(a2/c2)e−aξ/c2
< 0, the larger the value of a, more quickly

the proper acceleration α decreases to zero as ξ increases beyond ξ = 0,
and more quickly increases to +∞ as ξ decreases below ξ = 0. For two
distinct values of a : a′ and a′′, the curves α = α(ξ; a′) and α = α(ξ; a′′)
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intersect at the positive value of ξ given by ξ̄ = c2

a′−a′′ ln( a′

a′′ ). There
is a natural choice to set the scale of accelerations, namely, the Planck
acceleration : aPl = lP l

t2P l
= ( c7

~GN
)

1
2 ' 5.5 × 1051 m

sec2 , which, according

to eq. (158), would give a universal Unruh temperature TU = TP l

2π =
~aP l

2πckB
= c2

2πkB

√
~c
GN
' 2.25× 1033 ◦K.

Infinite acceleration corresponds to ξ = −∞ (horizon) and zero ac-
celeration corresponds to ξ = +∞ (observer at rest at x = +∞ : dashed
line in Figure 2). Also, ct/x = Th(aλ/c) and so

ct = Th(aλ/c)x (23)

i.e. the set of points {λ = const.} corresponds to a line through the origin
in Mink2 space. ξ varies along these lines, so these are the coordinate
lines of ξ. Though not in the domain of definition, the limits λ = ±∞
respectively correspond to ct = ±x. λ = 0 is the t = 0 axis. (See Figure
2.) (λ, ξ) = (0, 0) is the coordinate origin of the frame, and the line ξ = 0
its spatial origin. Also, the frame is rigid in the sense that the proper
distance between any two hyperbolae is constant ; this can be seen by
computing ∆x(t)2 corresponding to two neighbouring accelerations αf

and αb to first order in δX = Xf − Xb = c2(α−1
f − α−1

b ) = ∆x(0),
the result being ∆x(t) =

√
1− vb(t)2/c2δX. Any line {λ0 = const.} is

a Cauchy “surface” of R since any inextendible past (future) directed
causal curve through any p ∈ {λ′ = const. > λ0} (q ∈ {λ′′ = const. <
λ0}) intersects {λ0 = const.}. Then R in itself is a globally hyperbolic
spacetime.

A straightforward calculation using dt = (∂λt)dλ+ (∂ξt)dξ and dx =
(∂λx)dλ+ (∂ξx)dξ leads to the metric

ds2 = e2aξ/c2
(c2dλ2 − dξ2) (24)

which shows that λ (or cλ) is a timelike coordinate while ξ is a spacelike
coordinate, and that the Rindler metric is conformal to the Minkowski
metric with conformal factor Λ(λ, ξ) = eaξ/c2

. Along each hyperbola i.e.
at each fixed acceleration α, the conformal factor remains constant. The
metric coefficients are gλλ = −gξξ = e2aξ/c2

and gλξ = gξλ = 0 ; therefore
∂λ is a Killing vector field with ||∂λ||2 = gλλ = e2aξ/c2

, which is null at
the horizon. Also, if α1 and α2 are accelerations corresponding to the
values ξ1 and ξ2 of the ξ coordinate, then α1

α2
= e−a(ξ1−ξ2/c2) = ||∂λ|ξ2 ||

||∂λ|ξ1 ||
;
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then

α(ξ) =
||∂λ|ξ=0||
||∂λ|ξ||

α(0) = ae−aξ/c2
(25)

since ||∂λ|ξ=0|| = 1. So, ||∂λ|ξ||−1 is a redshift factor. (See also subsections
II.5. and II.6.) At the horizon, if extended, the metric would be singular :
e−∞ = 0.

II.5. Dimensionless coordinates

Set c = 1, choose a = 1, and define Minkowski and Rindler time and
space coordinates without dimensions, respectively (T,X) and (η, ρ) :

T = ρShη, (26)

X = ρChη, (27)

with T, η ∈ (−∞,+∞) and X, ρ ∈ (0,+∞). (Alternatively, these equa-
tions can be obtained from (15) and (16) setting aλ = η, at = T , ax = X,
c = 1, and ρ = eξ.) The metric (24) becomes

ds2 = ρ2dη2 − dρ2, (28)

which clearly shows that, in R, η is timelike and ρ is spacelike.
The metric is independent of η, so

∂η = (∂ηT )∂T + (∂ηX)∂X = X∂T + T∂X (29)

is a Killing vector field in R and, since

||∂η||2 =< ∂η, ∂η >= gηη = ρ2 > 0, (30)

∂η is temporal. Therefore, R, equipped with the coordinates η and ρ (or
λ and ξ) is a static space since it is stationary : the metric does not
depend on the Rindler time η (or λ), and there is no crossed term dηdρ
(or dλdξ). From (29), ∂η is the generator of Lorentz boosts in the X
direction.

It can be easily verified that the hyperbole {ρ = const.} are integral
curves or orbits of ∂η, that is, if ~Tp is a tangent vector to ρ = const. at
p = (T,X), then ~Tp = ∂η|p. In fact, for constant ρ, 0 = dρ2

dT = d(X2−T 2)
dT =

2X dX
dT − 2T i.e. dT

dX = ~T(T,X) = X
T = ∂η|T

∂η|X .
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So, a hyperbolic motion with given proper acceleration ρ−1, asymp-
totically comes from η = −∞ and goes to η = +∞. T = 0 corresponds
to η = 0.

Though the coordinates η and ρ were derived in the context of the
hyperbolic motion of a massive classical point particle, they can be de-
fined independently of any particle motion as curvilinear coordinates in
R. They are nothing but hyperbolic polar coordinates in R. For com-
pleteness, we study timelike geodesic motion in R which is given by the
equations

d2yµ

dτ2
+ Γµ

νρ

dyν

dτ

dyρ

dτ
= 0, (31)

with (y0, y1) = (η, ρ). For the Christoffel symbols Γα
βγ = 1

2g
αδ(∂βgγδ +

∂γgβδ − ∂δgβγ) one obtains :

Γη
ηη = Γη

ρρ = Γρ
ηρ = Γρ

ρρ = 0,

Γη
ηρ =

1
ρ
,

and
Γρ

ηη = ρ. (32)

Then the η- and ρ-geodesic equations are, respectively,

η̈ +
2
ρ
η̇ρ̇ = 0, (33)

and
ρ̈+ ρη̈2 = 0. (34)

The first integral of (33) is

ρ2η̇ = K = const., (35)

with [K] = [L]−1, and from the metric ds2 = dτ2 (see Table I) one
obtains 1 = ρ2η̇2 − ρ̇2, which, from (35), gives

ρ̇2 =
K2

ρ2
− 1. (36)

Then, ρ̇ρ̈ = −K2ρ−3ρ̇, which, for ρ̇ 6= 0, gives the ρ-differential equation

ρ̈+
K2

ρ3
= 0. (37)
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(The same equation is obtained from (34) and (35).) Once (37) is integra-
ted, one defines G(τ) = 2ρ̇/ρ, and from (33) one obtains the η-differential
equation :

η̈ +G(τ)η̇ = 0. (38)

The solution of the autonomous equation (37) is

ρ(τ) =
√
K2(β + τ)2 − 1 (39)

where β is an integration constant with [β] = [L]. ρ is real for

|K(β + τ)| ≥ 1 (40)

and reaches the horizon ρ = 0 for

τ = τ̄ = ±|K|−1 − β. (41)

For G(τ) one obtains

G(τ) =
2K2(β + τ)

ρ2
,

and defining u = η̇, which is positive for a future directed geodesic, one
has the linear equation u̇+G(τ)u = 0 which is trivially integrated. The
solution for η is

η(τ) = u(τ0)(K2(β + τ0)2 − 1) ln| (K(β + τ) + 1)
(K(β + τ)− 1)

(K(β + τ0)− 1)
(K(β + τ0) + 1)

| .

(42)
Then, for τ = τ̄ = K−1 − β, η has a logarithmic divergence :

η(K−1 − β) = b+ a× (+∞) = +∞ (43)

for both K > 0 and K < 0, with a = u(τ0)(K2(β + τ0)2 − 1) > 0
and b = a ln|K(β+τ0)−1

K(β+τ0)+1 | . This fact, together with ρ(τ̄) = 0, prove the
geodesic incompleteness of the Rindler space.

Notice that :
i) The proper time of the total geodesic motion from the horizon with

η = −∞ to the horizon with η = +∞ is finite :

∆τ = (|K|−1 − 1)− (−|K|−1 − 1) = 2/|K|. (44)
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ii) The curvature tensor (and obviously all its invariants) vanishes :

Rηρηρ = gηηR
η
ρηρ = ρ2(−∂ρΓη

ρη − Γη
ρηΓη

ηρ) = ρ2(−∂ρ(1/ρ)− (1/ρ)2) = 0
(45)

(this is so because the gravity “seen” by the Rindler observer is due to
its acceleration with respect to the inertial frame Mink2).

Then the singularity at (η, ρ) = (±∞, 0) is a coordinate singularity
and therefore R is regular there and can be extended : precisely Mink2

is its maximal analytic extension.

II.6. Mink2 spacetime as the maximal analytic extension of R

(Obviously the result is also valid in the 4-dimensional case, i.e. for
Mink4, adding the variables x2 and x3.)

The process consists of a successive change of coordinates given by
analytic functions of their arguments in their domains of definition, star-
ting from R with coordinates η and ρ, and metric ds2 = ρ2dη2 − dρ2,
where det(gαβ(η, ρ)) = −ρ2.

i) Define light cone or null coordinates

ũ = ũ(η, ρ) := η − lnρ, ṽ = ṽ(η, ρ) :=η + lnρ, [ũ] = [ṽ] = [L]0,
ũ, ṽ ∈ (−∞,+∞).

(46)

The ũ ,ṽ coordinates of the future ((ρ, η)+ = (0,+∞)) and past
((ρ, η)− = (0,−∞)) horizons are respectively (ũ, ṽ)+ = (+∞, ṽ < ∞)
and (ũ, ṽ)− = (ũ <∞, ṽ = −∞). (These coordinates are the dimension-
less version of the coordinates v̄ = cλ+ ξ and ū = cλ− ξ to be defined in
section 1.8, with a = 1, η = λ, and ρ = eξ.) The inverse transformation
is

η =
ṽ + ũ

2
, ρ = e

ṽ−ũ
2 . (47)

Then dη = 1
2 (dṽ + dũ), dρ = 1

2ρ(dṽ − dũ) and therefore

ds2 = ρ2dṽdũ = eṽ−ũdṽdũ, (48)

with metric tensor

gαβ(ũ, ṽ)) =
1
2

(
0 eṽ−ũ

eṽ−ũ 0

)
, det(gα,β(ũ, ṽ)) = −1

4
e2(ṽ−ũ). (49)

At the horizons the metric does not exist since

gα,β(ũ, ṽ)± = 0. (50)
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ii) Now define

V = V (ũ, ṽ) := eṽ, U = U(ũ, ṽ) := e−ũ, [V ] = [U ] = [L]0, V, U ∈ (0,+∞),
(51),

with inverse

ṽ = lnV, ũ = −lnU (52)

and metric

ds2 = −dV dU, (53)

i.e. with metric tensor

gαβ(U, V ) =
(

0 − 1
2

− 1
2 0

)
, det(gαβ(U, V )) = −1

4
. (54)

The U , V coordinates of the horizons are now (U, V )+ = (0, eṽ < ∞)
and (U, V )− = (e−ũ <∞, 0) : the metric is regular and can be extended
beyond them.

iii) Defining

X0 = X0(U, V ) : =
1
2
(V − U), X1 = X1(U, V ) :=

1
2
(V + U),

[X0] = [X1] = [L]0, X0, X1 ∈ (−∞,+∞)
(55)

one obtains the metric

ds2 = (dX0)2 − (dX1)2 (56)

i.e. the metric tensor

gαβ(X0, X1) =
(

1 0
0−1

)
, det(gα,β(X0, X1)) = −1. (57)

That is, Mink2 spacetime. (The whole process is summarized in Figure
3.)
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Figure 3. Minkowski space as the maximal analytic extension of the
right Rindler wedge

II.7. Left, future, and past wedges

Formally, there exist trajectories, integral curves of the vector field
∂
∂η , in the left Rindler wedge L (X < ±T ), future Rindler wedge F

(T > ±X), and past Rindler wedge P (T < ±X) with coordinates
ρ ∈ (0,+∞) and η ∈ (−∞,+∞) as in R. Each trajectory “moves" in
Rindler time η and along a fixed ρ from η = −∞ towards η = +∞. In
L, which by the same reasons as in II.4 and II.5 for R is also a globally
hyperbolic static spacetime, trajectories are timelike and can be unders-
tood as antiparticles moving backwards in Minkowski time with negative
proper acceleration. In F and P trajectories are spacelike and do not cor-
respond to particle motions. Also, in F and P the T -axis corresponds
to η = 0. The relation with the Minkowski coordinates, tangent vectors,
and metrics is given in Table I, and typical trajectories are shown in
Figure 4. In Figure 5, η = −∞ and T ≥ X are respectively the horizon
and invisible region for the observer (antiparticle) with the indicated
trajectory in L.
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Figure 4. Trajectories in the four Rindler wedges

Figure 5. Horizon and invisible region for a trajectory in the left
Rindler wedge

Inspection of the metric in the last column of Table I, shows that :
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i) η and ρ are respectively timelike and spacelike coordinates in R
and L, while in F and P η is spacelike and ρ is timelike. So, at the hori-
zons, a timelike (spacelike) coordinate changes into a spacelike (timelike)
coordinate, as it happens at the horizon of a Schwarzschild black hole.

ii) ∂
∂η is a Killing vector field in the four wedges, timelike in R and L

but spacelike in F and P . On the horizon, ∂η is null i.e. ||∂η||2 = 0, since
ρ−1|hor. = α|hor. = +∞, and is orthogonal to it, since < ∂η, (T,X) >=<
(X,T ), (T,X) >= η00XT + η11TX = XT − TX = 0. This is the reason
why T = ±X are called Killing horizons.

iii) ∂
∂ρ is timelike in F and P and spacelike in R and L, but it is

not a Killing field since ∂
∂ρgηη|F,P = −2ρ 6= 0. So, F and P are not

stationary spaces and therefore also non static. They are respectively
called expanding and contracting degenerate Kasner spaces.

iv) In terms of Minkowski coordinates, trajectories in R and L are
interchanged by a ĈP̂ T̂ transformation : P̂ : X → −X, T̂ : T → −T ,
and Ĉ : a particle moving forward in T -time goes to an antiparticle
moving backwards in T -time.

v) In terms of Rindler coordinates, trajectories in R and L are inter-
changed only by a ĈP̂ transformation, since η is the same, P̂ : ρ→ −ρ,
and Ĉ : particle goes to antiparticle but now moving forward in η-time.

X T X2 − T 2 T
X ∂η ||∂η||2 ∂ρ ||∂ρ||2 ds2

R ρChη ρShη ρ2 Thη X∂T + T∂X ρ2 X∂X+T ∂T√
X2−T2

−1 ρ2dη2 − dρ2

L −ρChη −ρShη ρ2 Thη X∂T + T∂X ρ2 −X∂X+T ∂T√
X2−T2

−1 ρ2dη2 − dρ2

F ρShη ρChη −ρ2 Cothη X∂T + T∂X −ρ2 X∂X+T ∂T√
T2−X2

+1 dρ2 − ρ2dη2

P −ρShη −ρChη −ρ2 Cothη X∂T + T∂X −ρ2 −X∂X+T ∂T√
T2−X2

+1 dρ2 − ρ2dη2

Table I
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II.8. Light cone coordinates

From the light cone coordinates u and v in Minkowski space ((eq.
3)), defining

ū = cλ− ξ, v̄ = cλ+ ξ (58)

([ū]=[v̄]=[L]) with inverses

λ =
v̄ + ū

2c
, ξ =

v̄ − ū
2

, (59)

we obtain for u = u(ū), v = v(v̄), and ds2 the expressions in Table II. In
particular :

u = 0⇐⇒ ū = +∞, v = 0⇐⇒ v̄ = −∞, (60)

u = const.⇐⇒ ū = const., v = const.⇐⇒ v̄ = const. (61)

For the proper acceleration one obtains

α = ae−
a

2c2
(v̄−ū). (62)

R L F P

t ca−1eaξ/c2Sh(aλ/c) −ca−1eaξ/c2Sh(aλ/c) ca−1eaξ/c2Ch(aλ/c) −ca−1eaξ/c2Ch(aλ/c)

x c2a−1eaξ/c2Ch(aλ/c) −c2a−1eaξ/c2Ch(aλ/c) c2a−1eaξ/c2Sh(aλ/c) −c2a−1eaξ/c2Sh(aλ/c)

u −c2a−1e−aū/c2 c2a−1e−aū/c2 c2a−1e−aū/c2 −c2a−1e−aū/c2

v c2a−1eav̄/c2 −c2a−1eav̄/c2 c2a−1eav̄/c2 −c2a−1eav̄/c2

ds2 ea(v̄−ū)/c2dv̄dū ea(v̄−ū)/c2dv̄dū −ea(v̄−ū)/c2dv̄dū −ea(v̄−ū)/c2dv̄dū

Table II

ū and v̄, both taking values in (−∞,+∞), are the light cone coor-
dinates in Rindler space. In Figure 6 we plot some lines of constant ū’s
and v̄’s.
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Figure 6. Rindler light cone coordinate lines

For later use, we give the expressions for the positive frequency right
(R) and left (L) right (→ or k > 0) and left (← or k < 0) moving
unnormalized solutions of the Klein-Gordon equation

∂2φ

∂ū∂v̄
= 0 (63)

for a free massless real scalar field living in the two dimensional Min-
kowski (and therefore in the four Rindler wedges) space :

φR
k = ei(kξ−ωλ) = e−iω(λ−sg(k)ξ/c) =

(
e−iω(λ−ξ/c) = e−iωū/c = φR

→
e−iω(λ+ξ/c) = e−iωv̄/c = φR

←

)
,

(64)

φL
k = ei(kξ+ωλ) = e−iω(λ+sg(k)ξ/c) =

(
eiω(λ+ξ/c) = eiωv̄/c = φL

→
eiω(λ−ξ/c) = eiωū/c = φL

←

)
,

(65)
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where ω = c|k| > 0, k ∈ (−∞,+∞), φR
k = 0 in L and φL

k = 0 in R, and

i∂λφ
R
→ = ωφR

→, i∂λφ
R
← = ωφR

←, i∂(−λ)φ
L
→ = ωφL

→, i∂(−λ)φ
L
← = ωφL

←.
(66)

So, in R, right (left) moving solutions move along constant values of ū
(v̄), and the opposite occurs in L : right (left) moving solutions move
along constant values of v̄ (ū). The wave equation (63) is a consequence
of the invariance of the 2-dimensional D’Alambertian gµνDµDν , which
leads to

(c−2∂2
t − ∂2

x)φ = (c−2∂2
λ − ∂2

ξ )φ = ∂ū∂v̄φ = 0. (67)

Together, the sets {φR
k } and {φL

k } (taking only their left moving or right
moving, or right (left) for R and left (right) for L, parts) are a complete
set of solutions in the whole Minkowski spacetime, including the wedges
F and P . This is because any line of constant λ through R and L is a
Cauchy “surface” for the whole Mink2.

We can rewrite φR
→(λ, ξ), φL

←(λ, ξ)∗, φR
←(λ, ξ)∗, and φL

→(λ, ξ) as fol-
lows :

φR
→(λ, ξ) = e−iωū/c = (e−aū/c2

)iωc/a = (−au/c2)iωc/a

= (a/c2)iωc/a(−u)iωc/a = (a/c2)iωc/a(−ct+ x)iωc/a,
(68)

φL
←(λ, ξ)∗ = e−iωū/c = (e−aū/c2

)iωc/a = (au/c2)iωc/a

= (a/c2)iωc/a(−1)iωc/a(−u)iωc/a = (a/c2)iωc/a(−1)iωc/a(−ct+ x)iωc/a,

(69)

φR
←(λ, ξ)∗ = eiωv̄/c = (eav̄/c2

)iωc/a

= (av/c2)iωc/a = (a/c2)iωc/a(v)iωc/a = (a/c2)iωc/a(ct+ x)iωc/a,

(70)

φL
→(λ, ξ) = eiωv̄/c = (eav̄/c2

)iωc/a = (−av/c2)iωc/a

= (a/c2)iωc/a(−1)iωc/a(v)iωc/a = (a/c2)iωc/a(−1)iωc/a(ct+ x)iωc/a.

(71)

In (69) and (71) (respectively negative and positive frequency left modes)
there is an apparent ambiguity for the choice in (−1)iωc/a : −1 = eiπ

or −1 = e−iπ ; however, the fact that v > 0 (< 0) and u < 0 (> 0)
in R (L), and that to keep positive frequencies in the Minkowski linear
combinations (74) and (75) (see below) one needs Im u, Im v < 0, the
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analytic continuation from R to L (for which we write u = Re u+ iIm u
and v = Re v+iIm v) requires Im u < 0 and therefore −1 = e−iπ in (69)
(the continuation must be done in the lower half of the complex u-plane),
and Im (−v) > 0 and therefore −1 = eiπ in (71) (the continuation must
be done in the upper half of the complex v-plane). So, we obtain :

φL
←(t, x)∗ = (a/c2)iωc/a(e−iπ)iωc/a(−ct+ x)iωc/a

= eπωc/a(a/c2)iωc/a(−ct+ x)iωc/a
(72)

and

φL
→(t, x) = (a/c2)iωc/a(eiπ)iωc/a(ct+ x)iωc/a

= e−πωc/a(a/c2)iωc/a(ct+ x)iωc/a.
(73)

Therefore, normalized positive frequency solutions in the whole Min-
kowski space but written in terms of L and R positive and negative
frequency solutions are given by the following expressions :

ϕ
(1)
k (t, x)/N = eπωc/2aφR

k (t, x) + e−πωc/2aφL
−k(t, x)∗

= 2eπωc/2a(a/c2)iωc/a(−ct+ x)iωc/a,
(74)

ϕ
(2)
k (t, x)/N = e−πωc/2aφR

−k(t, x)∗ + eπωc/2aφL
k (t, x)

= 2e−πωc/2a(a/c2)iωc/a(ct+ x)iωc/a.
(75)

To simplify the calculation of the normalization factor N , momentarily
we assume discrete values for k with scalar products (ϕ(a)

k , ϕ
(a)
k′ ) = δkk′ ,

a = 1, 2 ; (φL,R, φL,R) = −((φL,R)∗, (φL,R)∗) = 1, and (φL,R, (φL,R)∗) =
0. Neglecting an irrelevant phase we obtain N = 1/

√
2Sh(πωc

a ) and so

ϕ
(1)
k (t, x) =

1√
2Sh(πωc

a )
(eπωc/2aφR

k (t, x) + e−πωc/2aφL
−k(t, x)∗)

=

√
2

Sh(πωc
a )

eπωc/2a(a/c2)iωc/a(−ct+ x)iωc/a,

(76)

and

ϕ
(2)
k (t, x) =

1√
2Sh(πωc

a )
(e−πωc/2aφR

−k(t, x)∗ + eπωc/2aφL
k (t, x))

=

√
2

Sh(πωc
a )

e−πωc/2a(a/c2)iωc/a(ct+ x)iωc/a.

(77)
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These expressions will be used in the derivation of the Unruh effect in
section III, following the original strategy.

II. 9. Penrose spaces (diagrams) of Minkowski and Rindler
spaces

II.9.1. Minkowski space

The Penrose diagrams or Penrose spaces capture the global proper-
ties and causal structures of a given spacetime. For the 4-dimensional
Minkowski space, it is constructed through the following six steps :

cartesian coordinates
(i)−→ spherical coordinates

(ii)−→ lightcone coordinates

(iii)−→ finite lightconecoordinates
(iv)−→ cartesian coordinates

(v)−→ conformal metric
(vi)−→ compactified space (78)

In detail :
(i) xµ in eq. (1)→ (t, r, θ, ϕ), with r ≥ 0, θ ∈ [0, π], and ϕ ∈ [0, 2π).

The z-axis (θ = 0, π, including r = 0) is a coordinate singularity, which
would require a second chart ; however, we’ll proceed with it. The metric
becomes

ds2 = c2dt2 − dr2 − r2d2Ω, d2Ω = dθ2 + sin2θdϕ2

i.e.
gµν |t,r,θ,ϕ = diag(1,−1,−r2,−r2sin2θ). (79)

We have an open an unbounded space.
(ii) (t, r, θ, ϕ)→ (u, v, θ, ϕ) with

u = ct− r, v = ct+ r; u, v ∈ (−∞,+∞),

and inverses
ct =

v + u

2
, r =

v − u
2

, v ≥ u. (80)

We have :
u = const. =⇒ ct = r + const. :

outgoing light rays, u→ −∞ : past null infinity;
v = const.′ =⇒ ct = −r + const.′ :

ingoing light rays, v → +∞ : future null infinity.

(81)
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The metric is

ds2 = dvdu− (v − u)2

4
d2Ω

i.e.

gµν |(u,v,θ,ϕ) =

0 1
2 0 0

1
2 0 − (v−u)2

4 0
0 0 0 − (v−u)2

4 sin2θ

 . (82)

As in (i), we have still an open and unbounded space.

(iii) (u, v, θ, ϕ)→ (u′, v′, θ, ϕ) with

u′ = 2tg−1u/L, v′ = 2tg−1v/L, u′, v′ ∈ (−π, π), v′ ≥ u′,

and inverses
u

L
= tg

u′

2
,

v

L
= tg

v′

2
. (83)

L is an arbitrary length scale (see below).

We have :

u′ → −π : past null infinity,

v′ → π : future null infinity. (84)

The metric becomes

ds2 =
L2

4cos2(u′

2 )cos2(v′

2 )
(du′dv′ − sin2(

v′ − u′

2
)d2Ω),

i.e.

gµν |(u′,v′,θ,ϕ) =
L2

4cos2(u′

2 )cos2(v′

2 )


0 1

2 0 0
1
2 0 0 0
0 0 −sin2(v′−u′

2 ) 0
0 0 0 −sin2(v′−u′

2 )sin2θ

 .

(85)
We have now an open but bounded space ; see Figure 7. In it, each point,
except at r = 0, is a 2-sphere with radius L

2 (tg(v′

2 )− tg(u′

2 )).
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Figure 7. Open bounded Minkowski space with light cone coordinates

(iv) (u′, v′, θ, ϕ)→ (cT,R, θ, ϕ) with

cT = L
v′ + u′

2
, R = L

v′ − u′

2
, cT ∈ (−π, π)× L, R ∈ [0, π)× L,

and inverses

u′ =
cT −R
L

, v′ =
cT +R

L
. (86)

We have :
cT

L
=
R

L
− π : past null infinity,

cT

L
= −R

L
+ π : future null infinity. (87)

The metric is

ds2 =
1

(cos( cT
L ) + cos(R

L ))2
(c2dT 2 − (dR2 + L2sin2(

R

L
)d2Ω))
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i.e.

gµν |(T,R,θ,ϕ) =
1

(cos( cT
L ) + cos(R

L ))2


1 0 0 0
0−1 0 0
0 0 −L2sin2(R

L ) 0
0 0 0 −L2sin2(R

L )sin2θ

 .

(88)
The quantity

dl2 = dR2 + L2sin2(
R

L
)d2Ω = L2(dχ2 + sin2χd2Ω), (89)

with χ = R
L ∈ [0, π), is the square lenght element of a 3-sphere S3

L of
radius L whose embedding in R4 is

L(sinχsinθcosϕ, sinχsinθsinϕ, sinχcosθ, cosχ) ∈ S3
L ⊂ R4

with χ = 0 corresponding to the north pole N = (0, 0, 0, L) and χ = π
corresponding to the south pole S = (0, 0, 0,−L).

Note : The metric (88)-(89) can be given an abstract dimensionless
form defining

σ =
s

L
, t̂ =

cT

L
∈ (−π, π), l̂ =

l

L
∈ [0, π), (90)

to obtain

dσ2 =
1

(cos t̂) + cos χ)2
(dt̂2 − dl̂2), dl̂2 = dχ2 + sin2χd2Ω. (91)

We have an open and bounded space with light cones at 45◦ and 135◦.
See Figure 8.
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Figure 8. Open bounded Minkowski space with cartesian coordinates

(v) Conformal transformation : Multiplying ds2 (or dσ2) by (cos( cT
L )+

cos(R
L ))2 (or (cos t̂) + cos χ)2) one obtains the metric

ds̃2 = c2dT 2 − (dR2 + L2sin2χd2Ω) (92)

or
dσ̃2 = dt̂2 − dl̂2, (93)

with the same light cone structure. We obtain the conformal space of
Minkowski 4-dimensional space with the topology of an open interval
times a 3-sphere i.e.

conf(Mink4) ∼= (−πL, πL)× S3
L (94)
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or

conf(Mink4) ∼= (−π, π)× S3, (95)

where S3 is the 3-sphere with unit radius.

(vi) Compactification : We add the boundaries (conformal infinity) :

J+ ∼= R× S2
L : future null infinity,

J− ∼= R× S2
L : past null infinity,

ι+ ∼= {pt.} : future timelike infinity, (cT |ι+ , R|ι+) = (πL, 0),

ι− ∼= {pt.} : past timelike infinity, (cT |ι− , R|ι−) = (−πL, 0),

and

ι0 ∼= {pt.} : spatial infinity, (cT |ι0 , R|ι0) = (0, πL),

(96)

obtaining the Penrose space of the 4-dimensional Minkowski space with
the topology of a closed interval times a 3-sphere :

Penr4 ≡ Penr(Mink4) ∼= [−πL, πL]× S3
L, (97)

or, without dimensions,

Penr4 ∼= [−π, π]× S3,

which is a compact manifold with boundary, see Figure 9.
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Figure 9. Penrose space of Minkowski space

Each point in the “triangle" is a 2-sphere with radius sinχ ; the 2-
spheres at ι±, ι0, and χ = R

L = 0 degenerate into points since sinχ = 0
for R = 0 or R = πL. Since vol(S3

L) = 2π2L3 we have

vol(Penr4) = 4π3L4, (98)

with constant scalar curvature

R(Penr4) = R(S3
L) =

6
L2
, (99)

respectively given by
4π3 and 6 (100)

in the dimensionless coordinates t̂ and l̂. Though no physical meaning is
attributed to these volume and curvature, they are computed to charac-
terize more completely the Penr4 manifold.

Note : From (80), (83), and (86),
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(cT,R) = L(tg−1(
ct+ r

L
) + tg−1(

ct− r
L

), tg−1(
ct+ r

L
)− tg−1(

ct− r
L

)).

(101)

Geodesics, timelike, and spacelike curves

It is easy to verify that all radial timelike geodesics begin at ι− and
end at ι+, and that all radial spacelike geodesics end at ι0.

Let
γ : ct = αr + β, (102)

with α and β constants, be a radial timelike geodesic (straight line) ;
then v = dr

dt = c
α < c and so α > 1 ; t(r = 0) = β

c , and r = α−1(ct− β).
As t→ +∞, r → +∞ with

u = ct− r = ct−α−1(ct− β) = (1−α−1)ct+α−1β → +∞ =⇒ u′ → π

and

v = ct+ r = ct+ α−1(ct− β) = (1 + α−1)ct− α−1β → +∞ =⇒ v′ → π

and so
(cT,R)→ (πL, 0) = ι+, t→ +∞. (103)

For ct = β, r = 0 ; then u = v = β and so u′ = v′ = 2tg−1( β
L ) and

therefore (cT,R) = (2Ltg−1( β
L ), 0).

To consider “the other side" of r = 0, we formally extend the domain
of r to r < 0 and allow for R to be in the interval (−πL, πL). As t→ −∞,

u = (1− α−1)t+ α−1β → −∞ =⇒ u′ → −π

and
v = (1 + α−1)t+ α−1β → −∞ =⇒ v′ → −π

and so
(cT,R)→ (−πL, 0) = ι−, t→ −∞. (104)
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Inserting (102) into (101) one obtains

(cT,R) = L(tg−1(
(α+ 1)r + β

L
) + tg−1(

(α− 1)r + β

L
),

tg−1(
(α+ 1)r + β

L
)− tg−1(

(α− 1)r + β

L
)).

It is then easy to see that R < 0 if and only if r < 0. In fact, R < 0⇐⇒
tg−1( (α+1)r−|β|

L ) < tg−1( (α−1)r−|β|
L )

⇐⇒ (α+ 1)r − |β| < (α− 1)r − |β| ⇐⇒ 2r < 0.

For ct = 0, r = −β
α = |β|

α for β < 0 ; then u = −v = β
α =⇒ u′ =

−v′ = −2tg−1( |β|α ) =⇒ (cT,R) = (0, 2Ltg−1( |β|α )).
This is illustrated in Figure 10, where γ, in Penrose space, is γ′.

Figure 10. Timelike radial geodesics in Mink4

Let
δ : ct = αr + β, (105)

be a radial spacelike geodesic (non physical) and so α < 1. As before, as
t→ +∞ :

u = (1− α−1)ct+ α−1β → −∞ =⇒ u′ → −π
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and
v = (1 + α−1)ct− α−1β → +∞ =⇒ v′ → π

and so
(cT,R)→ (0, πL) = ι0, t→ +∞. (106)

For R = 0, (cT,R) = (2Ltg−1( β
L ), 0) = (−2Ltg−1( |β|L ), 0).

This is plotted in Figure 11, where δ, in Penrose space, is δ′.

Figure 11. Spacelike radial geodesics in Mink4

This analysis is easily extended to arbitrary timelike geodesics, not
necessarily radial ones : they extend from ι− to ι+ as t goes from −∞
to +∞. Since an arbitrary timelike path can be approximated with ar-
bitrary accuracy with a sequence of null paths, which also are geodesics,
the result also holds for arbitrary timelike paths.

II.9.2. Rindler space

In order to describe the Penrose diagram of Rindler space, we restrict
ourselves as in section II.1. to 1+1 dimensions, and consider the space
(cT,R) with both cTand R in the interval [−π, π]L. To the “square" of
Figure 10, we have to add the horizons

cT = ±R (107)
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or

t̂ = ±l̂ (108)

with t̂ and l̂ in the interval [−π, π]. So, we obtain the space of Figure 12.

Figure 12. Penrose space of the four Rindler wedges

The “diamond" shaped regions r, f, l, and p respectively correspond
to the Rindler wedges R, F , L, and P in Figure 4.

The hyperbolae (accelerated motions in R and L) α, γ, β, and δ in
R, F , L, and P correspond, in the Penrose space, to the curves α′, γ′,
β′, and δ′ in r, f, l, and p respectively. (See Figure 13.)
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Figure 13. Hyperbolic trajectories (motions in R and L) in the Rindler wedges
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Just as, e.g. the hyperbolae α’s fill the R wedge, their “images" α′’s
fill the diamond r. The analogous happens in the regions f, l, and p.

In r/R :

Take (cT,R) = (0, R′), with R′ ∈ (0, πL) ; in (ct, x) it corresponds
to (0, Ltg( R′

2L )) (we used (101) with t = 0 and r replaced by x). So,
0 < R′

2 < π
2 =⇒ 0 < x = tg( R′

2L ) < +∞.

(cT,R) = (π
2L,

π
2L) = L(tg−1(ct + x) + tg−1(ct − x), tg−1(ct + x) −

tg−1(ct − x)) =⇒ tg−1(ct − x) = 0 =⇒ ct = x : asymptotic to future
horizon.

(cT,R) = (−π
2L,

π
2L) = L(tg−1(ct+x) + tg−1(ct−x), tg−1(ct+x)−

tg−1(ct − x)) =⇒ tg−1(ct + x) = 0 =⇒ ct = −x : asymptotic to past
horizon.

For example, to R = π
2 corresponds x = Ltg(π

4 ) = L (=1 in dimen-
sionless coordinates). Obviously, for x′ < x, R′ < R.

Then,
α↔ α′. (109)

In l/L :
Take (cT,R) = (0, R′), with R′ ∈ (−πL, 0) ; in (ct, x) it corresponds

to (0, Ltg( R′

2L )) with tg( R′

2L ) ∈ (−∞, 0).
(cT,R) = (π

2L,−
π
2L) = L(tg−1(ct+x) + tg−1(ct−x), tg−1(ct+x)−

tg−1(ct − x)) =⇒ tg−1(ct + x) = 0 =⇒ ct = −x : asymptotic to past
horizon.

(cT,R) = (−π
2L,−

π
2L) = L(tg−1(ct + x) + tg−1(ct − x), tg−1(ct +

x)− tg−1(ct−x)) =⇒ tg−1(ct−x) = 0 =⇒ ct = x : asymptotic to future
horizon.

Then,
β ↔ β′. (110)

In f/F :
(cT,R) = (π

2L,−
π
2L) =⇒ ct = x : asymptotic to past horizon.

(cT,R) = (π
2L,

π
2L) =⇒ ct = x : asymptotic to future horizon.
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cT = cT ′ ∈ (0, πL), R′ = 0 =⇒ x′ = 0 and 0 < ct′ = Ltg( cT ′

2L ) <
+∞.

Then,
γ ↔ γ′. (111)

In p/P :
(cT,R) = (−π

2L,
π
2L) =⇒ ct = x : asymptotic to future horizon.

(cT,R) = (−π
2L,

π
2L) =⇒ ct = −x : asymptotic to past horizon.

cT = cT ′′ ∈ (0,−πL), R′′ = 0 =⇒ x′′ = 0, 0 > ct′′ = Ltg( cT ′′

2L ) >
−∞.

Then,
δ ↔ δ′. (112)

III. The Unruh effect.

III.1. Bogoliubov transformations

Let φ be a free 2-dimensional real massless scalar field and let U =
{ui}i∈I and V = {vK}k∈J be two complete sets of positive frequency
solutions of the Klein-Gordon equation

gµν∂µ∂νφ = 0. (113)

(I and J are sets of indices.) The ui’s and vK ’s obey the orthonormali-
zation conditions (for simplicity we adopt discrete sets of indices)

< ui, uj >= − < u∗i , u
∗
j >= δij , < ui, u

∗
j >= 0,

< vK , vL >= − < v∗K , v
∗
L >= δKL, < vK , v

∗
L >= 0 (114)

where the complex conjugates u∗j ’s and v∗L’s are negative frequency so-
lutions. < , > is the scalar product in the space of the field.

Let ai and a†i be the annihilation and creation operators associated to
U and bK and b†K those associated with V. They obey the commutation
relations

[ai, a
†
j ] = δij , [ai, aj ] = [a†i , a

†
j ] = 0,

[bK , b
†
L] = δKL, [bK , bL] = [b†K , b

†
L] = 0. (115)
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The field operator φ has the expansions

φ =
∑
i∈I

(uiai + u∗i a
†
i ) =

∑
K∈J

(vKbK + v∗Kb
†
K). (116)

There are normalized vacuum states in the corresponding Fock spaces,
|0 >a and |0 >b, with a < 0|0 >a= b < 0|0 >b= 1, satisfying

ai|0 >a= 0, bK |0 >b= 0, (117)

1-particle states

|1i >a= a†i |0 >a, |1K >b= b†K |0 >b, (118)

etc.

The completeness of U allows to express the eigenfunctions vK ’s in
terms of the ui’s :

vK =
∑
i∈I

(αKiui + βKiu
∗
i ),

v∗K =
∑
i∈I

(α∗Kiu
∗
i + β∗Kiui). (119)

The quantities αKi and βKi are the Bogoliubov transformation coeffi-
cients between the complete sets U and V. Notice that a non vanishing
βKi gives a negative frequency contribution (that of u∗i ) to the positive
frequency solution vK . Replacing (119) in (116) and taking into account
the completeness of the ui’s, one obtains the transformation of the crea-
tion and annihilation operators :

ai =
∑

K∈J
(αKibK + β∗Kib

†
K),

a†i =
∑

K∈J
(α∗Kib

†
Ki + βKibK). (120)

The orthonormality conditions (114) lead to the following relations bet-
ween the Bogoliubov coefficients :∑

i∈I
(αKiα

∗
Li − βKiβ

∗
Li) = δKL,
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∑
i∈I

(αKiβLi − βKiαLi = 0. (121)

From the scalar products < ui, vK >=< ui,
∑

j∈I αKjuj >= αKi,
< ui, v

∗
K >=< ui,

∑
j∈I β

∗
Kjuj >= β∗Ki, and the expansion ui =∑

K∈J (riKvK + siKv
∗
K), the scalar products < ui, vL >= r∗iL and

< ui, v
∗
L >= −s∗iL lead to the identifications r∗iL = αLi and s∗Li = −β∗Li

and therefore to the inverse transformations

ui =
∑

K∈J
(α∗KivK − βKiv

∗
K),

u∗i =
∑

K∈J
(αKiv

∗
K − β∗KivK) (122)

and
bK =

∑
i∈I

(αKiai − β∗Kia
†
i ),

b†K =
∑
i∈I

(α∗Kia
†
i − βKiai), (123)

with the relations ∑
K∈J

(αKiα
∗
Kj − β∗KiβKj) = δij ,

∑
K∈J

(αKiβ
∗
Kj + β∗KiαKj) = 0. (124)

At this point, we ask the following question : Which is the average
value of the occupation number operator of the b particles,

nK = b†KbK , (125)

in the vacuum state of the a particles, |0 >a ? Since |0 >a is defined by
the condition (117), we have

a < 0|nK |0 >a=
∑

i,j∈I
a < 0|(α∗Kia

†
i − βKiai)(αKjaj − β∗Kja

†
j)|0 >a

=
∑

i,j∈I
βKiβ

∗
Kj a < 0|aia

†
j |0 >a=

∑
i,j∈I

βKiβ
∗
Kjδij =

∑
i∈I
|βKi|2

(126)
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with
∑

i∈I |βKi|2 6= 0 if at least one of the βKi’s is different from zero.
So, the observer using the b basis can see particles in the a vacuum.
The necessary and sufficient condition for that, is that at least one of
the positive frequency modes in V had a non vanishing contribution of
a negative frequency mode in U .

III.2. Unruh effect

To the positive (negative) frequency Minkowski modes ϕ(a)
k (ϕ(a)

k

∗
),

a = 1, 2, of equations (76)-(77), correspond the Minkowski operators

a
(a)M
k (a(a)M

k

†
), a = 1, 2, which obey, in particular,

a
(a)M
k |0 >M= 0. (127)

To the positive (negative) frequency Rindler modes φR
k (φR

k

†) and φL
k

(φL
k

†) in the right and left Rindler wedges, correspond, respectively, the
operators bRk (bRk

†) and bLk (bLk
†) which obey, in particular,

bRk |0 >R= bLk |0 >L= 0. (128)

If, in the general theory of the Bogoliubov coefficients we identify the
bRk ’s and bLk ’s with the bK ’s, and the a(a)M

k ’s, a = 1, 2, with the ai’s or,
equivalently, the φR

k ’s and φL
k ’s with the vK ’s and the ϕ(a)

k ’s, a = 1, 2,
with the ui’s, from the expansions (74) and (75), and (122), we can
identify the αKi’s and the βKi’s :

α∗Ki =
eπωc/2a√
2Sh(πωc

a )
, βKi = − e−πωc/2a√

2Sh(πωc
a )

. (129)

Then,

bRk =
eπωc/2a√
2Sh(πωc

a )
a
(1)M
k − e−πωc/2a√

2Sh(πωc
a )

a
(2)M
−k

†
,

bRk
†

=
eπωc/2a√
2Sh(πωc

a )
a
(1)M
k

†
− e−πωc/2a√

2Sh(πωc
a )

a
(2)M
−k . (130)

So, with
nR

k = bRk
†
bRk , (131)
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M < 0|nR
k |0 >M=

(eπωc/2a)2√
2Sh(πωc

a )
×δ(0) =

1
e

2πωc
a − 1

×δ(0) =
1

e
ωc

a/2π − 1
×δ(0).

(132)
ω is the frequency of the Rindler mode in the coordinate system (λ, ξ)
(equation (64)) ; equation (19) gives the relation between λ and proper
acceleration α and proper time τ of a Rindler observer. For a period T
(with ωT = 2π) one has aT = αTpr i.e. a

ω = α
ωpr

, then

ω

a
=
ωpr

α
(133)

and therefore
M < 0|nR

k |0 >M=
1

e
ωprc

a/2π − 1
× δ(0). (134)

The infinite factor δ(0) comes from the continuous commutator

[a(2)M
l , a

(2)M
m

†
] = δ(l −m).

The r.h.s. of (134) is a thermal distribution (a Bose-Einstein distri-
bution) with absolute temperature

T =
~α

2πkBc
(135)

where kB is the Boltzmann constant. In fact, ωprc
α/2π = ~ωprc

~α/2π = ~ωpr

~α/2πc ≡
εpr/kBT i.e.

M < 0|nR
k |0 >M=

1

e
εpr

kBT − 1
× δ(0). (136)

This is the Unruh effect.

Of course, the same result is obtained in the left Rindler wedge : with
the same identifications as before,

bLk =
eπωc/2a√
2Sh(πωc

a )
a
(2)M
k +

e−πωc/2a√
2Sh(πωc

a )
a
(1)M
−k

†
,

bLk
†

=
eπωc/2a√
2Sh(πωc

a )
a
(2)M
k

†
+

e−πωc/2a√
2Sh(πωc

a )
a
(1)M
−k , (137)

we obtain
M < 0|nL

k |0 >M= M < 0|nR
k |0 >M . (138)
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III.3. Unruh effect : a more direct calculation (Lee, 1986)

Consider again a free real massless scalar field φ in Minkowski space

φ(t, x) =
∫ +∞

−∞

dk

2π
√

2|k|
(ake

−i(ωkt−kx) + a†ke
i(ωkt−kx)) (139)

and in the Rindler wedge R

φ(λ, ξ) =
∫ +∞

−∞

dk

2π
√

2|l|
(αle

−i(ωlλ−lξ) + α†l e
i(ωlλ−lξ)), (140)

where
ωk = c|k|, ωl = c|l|, [k] = [l] = [L]−1, [ak, a

†
k′ ] = 2πδ(k − k′),

[ak, ak′ ] = [a†k, a
†
k′ ] = 0, [αl, α

†
l′ ] = 2πδ(l − l′),

[αl, αl′ ] = [α†l , α
†
l′ ] = 0. (141)

At t = 0,

φ(0, x) =
∫ +∞

−∞

dk

2π
√

2|k|
(ake

ikx + a†ke
−ikx)

=
∫ +∞

−∞

dk

2π
√

2|k|
(ake

i k
a c2eaξ/c2

+ a†ke
−i k

a c2eaξ/c2

) = φ(0, ξ),

(142)

where we used (16) and the fact that λ = 0 ⇐⇒ t = 0. On the other
hand, the Fourier transform of (140) is∫ +∞

−∞
dξe−il′ξφ(λ, ξ) =

∫ +∞

−∞

dl

2π
√

2|l|
(αle

−i|l|λ

×
∫ +∞

−∞
dξei(l−l′)ξ + α†l e

i|l|λ
∫ +∞

−∞
dξe−i(l−l′)ξ)

=
∫ +∞

−∞

dl

2π
√

2|l|
(αle

−i|l′|λ2πδ(l − l′) + α†l e
i|l|λ2πδ(l + l′)

=
1√
2|l′|

(αl′e
−i|l′|λ + α†−l′e

i|l′|λ),
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which, for λ = 0 and using (142) gives

αl + α†−l =
√

2|l|
∫ +∞

−∞
dξφ(0, ξ)e−ilξ

=
∫ +∞

−∞

dk

2π

√
|l|
|k|

(ak

∫ +∞

−∞
dξei(c2 k

a eaξ/c2−lξ)+a†k

∫ +∞

−∞
dξe−i(c2 k

a eaξ/c2+lξ)).

(143)
From (140),

∂

∂λ
φ(λ, ξ)|λ=0 = −i

∫ +∞

−∞

dl

2π

√
|l|
2

(αle
ilξ − α†l e

−ilξ)

and so ∫ +∞

−∞
dξe−il′ξ ∂

∂λ
φ(λ, ξ)|λ=0 = −i

√
|l′|
2

(αl′ − α†−l′)

i.e.

αl − α†−l =
∫ +∞

−∞

dk

2π

√
|k|
|l|

(ak

∫ +∞

−∞
dξeaξ/c2

ei(c2 k
a eaξ/c2−lξ) − a†k

×
∫ +∞

−∞
dξeaξ/c2

e−i(c2 k
a eaξ/c2+lξ)).

(144)

Defining

< l, k >:=
∫ +∞

−∞
dξei(c2 k

a eaξ/c2−lξ), (145)

and

(l, k) =
∫ +∞

−∞
dξeaξ/c2

ei(c2 k
a eaξ/c2−lξ), (146)

with
< l, k >=< −l,−k >∗, < l,−k >=< −l, k >∗, (147)

and

(l, k) = −i a
c2

∂

∂k
< l, k >, (l,−k) = i

a

c2
∂

∂k
< l,−k >, (148)
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([< l, k >] = [(l, k)] = [L]) one obtains

αl =
1
2

∫ +∞

−∞

dk

2π
(ak(

√
|l|
|k|
− i a

c2

√
|k|
|l|

∂

∂k
) < l, k >

+ a†k(

√
|l|
|k|
− i a

c2

√
|k|
|l|

∂

∂k
) < l,−k >)),

α†−l =
1
2

∫ +∞

−∞

dk

2π
(ak(

√
|l|
|k|

+ i
a

c2

√
|k|
|l|

∂

∂k
) < l, k >

+ a†k(

√
|l|
|k|

+ i
a

c2

√
|k|
|l|

∂

∂k
) < l,−k >)).

(149)

For < l, k > one has :
< l, k >= I1 + I2

with

I1 =
∫ +∞

0

dξei(c2 k
a eaξ/c2−lξ) =

c2

a

∫ +∞

0

dxeic2( k
a ex− l

a x)

=
c2

a
(−ik

a
c2)ic2 l

a Γ(−ic2 l
a
,−ic2 k

a
),

(150)

I2 =
∫ +∞

0

dξei(c2 k
a eaξ/c2+lξ) =

c2

a

∫ +∞

0

dxeic2( k
a e−x+ l

a x)

=
c2

a
(−ik

a
c2)ic2 l

a γ(−ic2 l
a
,−ic2 k

a
),

(151)

where Γ(α, x) =
∫ +∞

x
dte−ttα−1 (Gradshtein and Ryzhik, 1980 ; 8.350.2,

p. 940) and γ(α, x) =
∫ x

0
dte−ttα−1 (Gradshtein and Ryzhik, 1980 ;

8.350.1, p. 940) are the incomplete Γ-functions. Using Γ(α, x)+γ(α, x) =
Γ(α) (Gradshtein and Ryzhik, 1980 ; 8.356.3, p. 942), for l, k > 0 one ob-
tains

< l, k >= kic2 l
a f(l), (152)

with
f(l) =

1
c2
a−ic2 l

a−1e
πlc2
2a Γ(−ic2 l

a
). (153)

Then, from (148),

(l, k) =
l

k
< l, k > . (154)
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Replacing these results in (149), we obtain

αl =
∫ +∞

0

dk

2π

√
l

k
(ak < l, k > +a†k < l,−k >), l > 0,

αl =
∫ +∞

0

dk

2π

√
−l
k

(a†−k < l, k > +a−k < l,−k >), l < 0, (155)

and

α†l =
∫ +∞

0

dk

2π

√
l

k
(a†k < −l,−k > +ak < −l, k >), l > 0,

α†l =
∫ +∞

0

dk

2π

√
−l
k

(a−k < −l,−k > +a†−k < −l, k >), l < 0, (156)

where the Bogoliubov coefficients between the creation and annihilation
operators in Minkowski and Rindler spaces as in (120) are given by
< l, k >, < l,−k >, etc.

The calculation of M < 0|α†lαl|0 >M , that is, the average value in the
Minkowski vacuum of the Rindler occupation number operator nl = α†lαl

is now straightforward through the use of (141) and the formula

|Γ(iy)|2 =
π

yShπy
, y 6= 0.

The result is

M < 0|nl|0 >M= z
c2

a
× 1

e
~ωl

kBT − 1
(157)

where z =
∫ +∞
0

dk
k is an infinite constant factor (analogous to δ(0) in

the previous calculation, equation (132)), and

T =
~a

2πkBc
(158)

is the Unruh temperature.
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IV. Hawking temperature.

An approximation of the Schwarzschild coordinates in the neighbo-
rhood of the event horizon of the Schwarzschild black hole, allows us to
apply the Unruh effect in Rindler space to find the Hawking temperature
of the black hole radiation.

IV.1. Surface gravity of the Schwarzschild black hole

The Schwarzschild metric in the Schwarzschild coordinates (t, r, θ, φ)
is given by

ds2 = (1− r∗

r
)c2dt2 − dr2

1− r∗

r

− r2d2Ω, d2Ω = dθ2 + sin2θdφ2. (159)

r∗ = 2GM
c2 is the Schwarzschild radius or radius of the event horizon and

M is the gravitating mass. Since the metric is time independent,

K(0) = Kµ
(0)

∂

∂xµ
, Kµ

(0) = δµ
0 (160)

is a timelike Killing vector field for r > r∗ : ||K(0)||2 = || 1c
∂
∂t ||

2 = 1− r∗

r >
0. ([K(0)] = [L]−1.) The singularity at r = r∗ is a coordinate singularity
and is eliminated passing to another set of coordinates e.g. Eddington-
Finkelstein or Kruskal-Szekeres. The only physical singularity is at r = 0.

The 4-velocity of a static observer at r > r∗ is

uµ
obs(r) = (c(1− r∗

r
)−1/2,~0) = c(1− r∗

r
)−1/2Kµ

(0) (161)

with ||uobs(r)||2 = c2. We can write

K(0) = f(r)uobs(r), f(r) =
1
c
(1− r∗

r
)1/2 =

1
c

√
g00. (162)

Notice that f(∞) = 1
c , f(r∗) = 0, with f ′(r) = r∗

2cr2 (1 − r∗

r )−1/2
r→r∗+−→

+∞, 0 < f(r) < 1
c for r ∈ (0,∞).

The relation between proper time at r, dτ(r), and coordinate time t,
is

dτ = (1− r∗

r
)1/2dt.
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So, proper time coincides with coordinate time at r =∞. The same rela-
tion holds for the period of a wave and therefore also for the wavelengths,
in particular for light. Then,

λ(r) = (1− r∗

r
)1/2λ∞ or λ∞ = (1− r∗

r
)−1/2λ(r). (163)

So, λ∞ →∞ as r → r∗+ : light emitted from the horizon has an infinite
red shift at large distances. The function (1− r∗

r )1/2 is called the red shift
factor. One has

λ(r) = cf(r)λ∞ ⇐⇒ ν∞ = cf(r)ν(r). (164)

For light emitted at the horizon, ν∞ = cf(r∗)ν(r∗) = 0.

The surface gravity (κ) of a Schwarzschild black hole is the magnitude
of the 4-acceleration of a static observer at r∗ as measured by a static
observer at r =∞.

Note : A static observer at r must be accelerated ; on the contrary
its motion would be geodesic i.e. in free fall.

Let us compute κ. The 4-acceleration of a particle or observer at r
is

aµ =
Duµ

dτ
=
dxν

dτ

Duµ

dxν
=
dxν

dτ
(∂νu

µ + Γµ
νρu

ρ)

=
dxν

dτ
∂νu

µ + Γµ
νρ

dxν

dτ

dxρ

dτ
=
d2xµ

dτ2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
.

(165)

The (non vanishing) Christoffel symbols Γα
βγ = 1

2g
αδ(∂βgγδ + ∂γgβδ −

∂δgβγ) of the Schwarzschild metric are given by

Γr
rr = − r∗/r

2(r − r∗)
, Γr

θθ = −(r − r∗), Γr
φφ = −(r − r∗)sin2θ,

Γθ
φφ = −sinθcosθ, Γt

tr =
r∗/r

2(r − r∗)
,

Γθ
θr = 1/r, Γφ

φr = 1/r, Γφ
φθ = cotgθ, Γr

tt =
r∗

2r3
(r − r∗).

(166)
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So, from (161) and (166), the 4-acceleration of an observer at rest at r
is

aµ = (0,−c
2r∗

2r2
, 0, 0), aµ = gµνa

ν = (0,
c2r∗

2r2(1− r∗/r)
, 0, 0), (167)

and therefore

aµa
µ = −(

c2r∗

2r2
)2

1
1− r∗/r

≡ −a2 (168)

with

a(r) =
c2r∗

2r2
1

(1− r∗/r)1/2
=
GM

r2
1

(1− r∗/r)1/2
. (169)

Notice that a(r) → ∞ as r → r∗+, what means that to maintain an
observer at rest at the horizon it is necessary an infinite acceleration. In
other words, “the acceleration of gravity at the horizon is infinite". Since
acceleration or force leads to work, and this can be later transformed
into radiation, the infinite red shift of a(r) is the same as that of ν(r)
i.e.

a∞(r) = cf(r)a(r) =
GM

r2
=
c2r∗

2r2
. (170)

Thus, the surface gravity is

κ = a∞(r∗) =
GM

r∗2
=

c2

2r∗
=

c4

4GM
. (171)

κ decreases with M because κ ∼ 1/r∗2 and r∗ increases with M .

IV.2. Rindler approximation and Hawking temperature

Define the radial coordinate ρ through

r − r∗ =
ρ2

4r∗
, r > r∗. (172)

Then ρ = 2
√
r∗(r − r∗) ∈ (0,+∞), with [ρ] = [L]. From the definition

of κ, r∗ = c2

2κ , and so r = r∗ + ρ2

4r∗ = c2

2κ + κ
2c2 ρ

2 = c4+(κρ)2

2κc2 ; for r ' r∗

i.e.

ρ ≤ ρmax <<
c2

κ
, (173)
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that is, in the neighborhood of the horizon, r ∼= c2

2κ ; then 1
r
∼= 2κ

c2 and so
1− r∗

r = 1− 2κc2

c4+(κρ)2
c2

2κ = (κρ)2

c4+(κρ)2
∼= (κρ)2

c4 . From (172), dr = 1
2r∗ ρdρ =

κ
c2 ρdρ, dr2 = κ2

c4 ρ
2dρ2, and for the Schwarzschild metric one has the

approximation

ds2 ∼=
(κρ)2

c4
c2dt2 − dρ2 − c4

4κ2
d2Ω. (174)

Let us study the 2-dimensional time-radial part of this metric. The
change of variables

T =
ρ

c
Sh(

κt

c
) ∈ (−∞,+∞), X = ρCh(

κt

c
) ∈ (0,+∞) (175)

leads to

ds21+1 =
(κρ)2

c4
c2dt2 − dρ2 = c2dT 2 − dX2. (176)

That is, in the neighborhood of the black hole horizon the time-radial
part of the metric is Minkowskian and therefore flat.

Defining the dimensionless time coordinate λ := κt
c ([λ] = [L]0),

ds21+1 = ρ2dλ2 − dρ2, (177)

which clearly is of the Rindler form (28) (see Figure 2), except for the
limited range of the coordinate ρ. From (175), X2 − (cT )2 = ρ2 and so
(choosing the right wedge)

X = X(T ) = +
√
ρ2 + c2T 2 (178)

with X(0) = ρ and X T→±∞−→ |cT |. Also,

cT

X
= Thλ i.e. cT = (Thλ)X. (179)

So, λ = const. =⇒ cT = const.X. Proper acceleration α is defined by

(
c2

α
)2 = ρ2 = (

c2

κ
)2e2κξ/c2

. (180)

Then,

X2 − (cT )2 = (
c2

κ
)2e2κξ/c2

, (181)
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which is (17) with a = κ, t = T , and x = X. ξ, with [ξ] = [L], varies
between −∞ when ρ→ 0+ and ξmax = c2

κ ln(κρmax

c2 ). Since ln(κρmax

c2 ) <
0, ξ ≤ ξmax < 0. From (180),

α = κe−κξ/c2
. (182)

So, α → +∞ for ξ → −∞ but never reaches the value κ since, in
the approximation considered, ξ is always negative. Also, from (180),
dρ = eκξ/c2

dξ i.e. dρ2 = e2κξ/c2
dξ2, then

ds2 = e2κξ/c2
(c2dt2 − dξ2) (183)

which is the Rindler metric (24) with Rindler coordinates (t, ξ) and
a = κ. As shown in section III.2., an accelerated observer “sees" the
temperature

T =
~κ

2πkBc
(184)

which, in the present context, is the Hawking temperature, i.e. T =
THawk.

We remark that, in contradistinction with the result (135), the result
(184) does not involve the proper time of the accelerated observer, but
the coordinates of the Rindler wedge. I.e., the acceleration appearing in
the r.h.s. of (184) is not the proper acceleration of the observer, but the
surface gravity of the black hole.

V. Conclusions.
Hyperbolic motion in special relativity induces a natural partition

of Minkowski space time in four wedges, one of which, for convention
the right one (R), is identified as the Rindler spacetime. We study R
in various coordinate systems ; discuss orbits in the different wedges, in
particular in the right and left (L) ones, and interprete them in terms
of classical motions of particles and antiparticles ; also, we give a de-
tailed proof of how Minkowski spacetime turns out to be the maximal
analytic extension of Rindler spacetime, in complete analogy as how
succesive extensions of spacetimes in black hole physics lead to corres-
ponding maximal analytic extensions, e.g. Schwarzschild → Eddington-
Finkelstein → Kruskal (Townsend, 1997). The Penrose spaces as com-
pact manifolds with boundary (usually termed “Penrose diagrams") of
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Rindler and Minkowski spaces are constructed step by step. The thermal
effect in the vacuum of a quantum field in Minkowski space produced
when this vacuum is observed from a uniformly accelerated system, i.e.
the Unruh effect, is described in detail and applied to the determination
of the Hawking temperature in the neighborhood of the horizon of a
Schwarzschild black hole, where the Rindler metric is a good approxi-
mation to the time-radial part of the Schwarzschild solution. Of course,
the same approximation can be done for more complicated black holes,
like Reissner- Nordstrom (Reissner, 1916 ; Nordstrom, 1918), and the
stationary Kerr-Newman (Kerr, 1963 ; Newman et al, 1965) cases, each
with two horizons (Camargo and Socolovsky, 2014).
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