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Potential Theory in Classical Electrodynamics
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RÉSUMÉ. Dans la théorie classique d’électrodynamique de Maxwell les
champs électromagnétiques sont souvent exprimés en potentiels pour
faciliter la solution du système d’équations d’ordre primaire. Cette
méthode obscurcit, cependant, le fait qu’il existe une inconsistence
entre la loi d’induction de Faraday et la loi du flux de Maxwell. Il
résulte, de cette contradiction interne, la conséquence qu’il n’existe ni
invariance de jauge ni solutions en général. Il s’avère que les intégraux
retardés, en particulier, ne représentent pas de solutions propres des
équations d’ondes non homogènes.

ABSTRACT. In Maxwell’s classical theory of electrodynamics the fields
are frequently expressed by potentials in order to facilitate the solution
of the first order system of equations. This method obscures, however,
that there exists an inconsistency between Faraday’s law of induction
and Maxwell’s flux law. As a consequence of this internal contradiction
there is neither gauge invariance, nor exist unique solutions in general.
The retarded integrals, in particular, turn out not to represent proper
solutions of the inhomogeneous wave equations.

P.A.C.S.: 03.50.-z, 03.50.De

1 Introduction

Maxwell’s first order system of equations in vacuo specifies the diver-
gence and the curl of the electromagnetic fields ~E and ~B. In principle,
this allows to calculate the fields from the given sources ρ and ~j, but the
equations are coupled which confronts us with certain complications. In
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particular, it is not guaranteed that a unique solution exists at all, as it
was questioned in [1]. The two source-free equations impose a necessary
condition on the fields, if they exist: They must be derivable from a
vector and a scalar potential in the following way [2]:

~B = ∇× ~A , ~E = −∇φ− 1
c

∂ ~A

∂t
(1)

The potentials itself are to be determined from the inhomogeneous equa-
tions which represent a coupled system of second order equations depend-
ing on the sources.

Equation (1) leaves the fields unchanged when a “gauge transforma-
tion” is imposed on the potentials:

~A→ ~A+∇ψ , φ→ φ− 1
c

∂ψ

∂t
(2)

where ψ is an arbitrary differentiable function. As a consequence the
divergence of the vector potential is arbitrary to the same extent as
the Laplacian ∆ψ. This fact has been exploited to decouple the second
order system. There is, however, no proof in the literature that the
chosen procedure is viable and leads to unique solutions. In principle,
the potentials are defined by the inhomogeneous equations which depend
on the divergence of the vector potential ∇· ~A. Whether this dependence
cancels when the solutions of the second order system are substituted
into (1) is an open, non-trivial question. In Sect. 2 this problem is
investigated and it is found that ∇· ~A cannot be chosen arbitrarily. This
explains why solutions for the fields in Lorenz gauge are at variance with
those obtained in Coulomb gauge as was found in [1] and [3].

The standard procedure of solving Maxwell’s equations in Lorenz
gauge leads to decoupled inhomogeneous wave equations for the poten-
tials which are thought to be solved by retarded integrals. In [1], how-
ever, it was claimed that the inhomogeneous wave equations cannot be
solved in general, since they connect sources and potentials at the same
time, whereas in the retarded solutions the potentials and the sources
are to be evaluated at different times. This ambiguity is again analyzed
in Sect. 3 where it is shown for charges moving at constant velocity that
the Liénard-Wiechert scalar potential cannot be considered as a solution
of the inhomogeneous wave equation.

It turns out then that the system of Maxwell’s first order equations
does not permit a solution in general. Only the homogeneous wave
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equations, which were exclusively considered by Maxwell in the context
of his theory of light [1], are suitable to describe travelling electromag-
netic waves which are disconnected from their sources. The problem is
deeply rooted in an inconsistency of the first order system which is usu-
ally concealed by the potential ansatz (1). Analyzing the fields inside
a plate capacitor the ambiguity is made visible in Sect. 4. Concluding
remarks in Sect. 5 terminate this study on the potential method.

2 Dependence of the fields on the divergence of the
vector potential

When we substitute the potential ansatz (1) into the inhomogeneous
Maxwell equations we obtain the system:

∆φ = −4π ρ− 1
c

∂χ

∂t
(3)

∆ ~A− 1
c2
∂2 ~A

∂t2
= −4π

c
~j +∇χ+

1
c
∇∂φ
∂t

(4)

where the abbreviation∇· ~A = χ was used. Naturally, the gauge function
ψ does not enter into these equations, as it cancels according to (1)
in the expressions for the fields. The potentials, however, will become
a function of χ according to (3) and (4). One must now investigate
whether χ will also cancel in (1), when the solutions of (3) and (4) are
substituted. To this end one can exploit the linearity of eqs. (3, 4) and
split them in the following way:

φ = φ1 + φ2 (5)

∆φ1 = −4π ρ (6)

∆φ2 = −1
c

∂χ

∂t
(7)

This set of equations is entirely equivalent to (3). Similarly:

~A = ~A1 + ~A2 (8)

∆ ~A1 −
1
c2
∂2 ~A1

∂t2
= −4π

c
~j +

1
c
∇∂φ1

∂t
(9)
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∆ ~A2 −
1
c2
∂2 ~A2

∂t2
= ∇χ+

1
c
∇∂φ2

∂t
(10)

Applying Helmholtz’s theorem on the vector potential Chubykalo et al.
[4] have shown that the set of equations (6) and (9) determines the fields
uniquely, when the solutions φ1 and ~A1 are substituted into (1). In a
comment by V. Onoochin and the present author [5] it was pointed out
that Chubykalo’s procedure is equivalent to choosing χ = 0, or adopting
Coulomb gauge. It follows then by insertion of (5) and (8) into (1)

~B = ∇× ~A1 +∇× ~A2 , ~E = −∇φ1 −
1
c

∂ ~A1

∂t
−∇φ2 −

1
c

∂ ~A2

∂t
(11)

that the terms containing χ must vanish separately

∇× ~A2 = 0 (12)

∇φ2 +
1
c

∂ ~A2

∂t
= 0 (13)

in order to render the fields independent of the chosen gauge χ.

Let us check whether the solutions of (7) and (10) for an arbitrary
choice of χ satisfy the conditions (12) and (13). First we notice that ~A2

must satisfy the necessary condition

~A2 = ∇U (14)

because of (12). Inserting this into (13) yields

φ2 +
1
c

∂U

∂t
= 0 (15)

and equation (10) becomes

∆U − 1
c2
∂2U

∂t2
= χ+

1
c

∂φ2

∂t
(16)

The retarded solution of this wave equation – subject to the boundary
condition U ( ~∞) = 0 – is:

U =
−1
4π

∫∫∫
V

d3x′

|~x− ~x ′|

[
χ (~x ′, t′) +

1
c

∂φ2 (~x ′, t′)
∂t′

]
t′=t−|~x−~x ′|/c

(17)
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The instantaneous solution of the Poisson equation (7) under the bound-
ary condition φ2 ( ~∞) = 0 is:

φ2 =
1

4π c

∫∫∫
V

d3x′

|~x− ~x ′|
∂χ (~x ′, t)

∂t
(18)

where the integration has to be carried out over all space. Substituting
(18) into (15) yields an instantaneous solution for U after integration
with respect to time:

U =
−1
4π

∫∫∫
V

d3x′

|~x− ~x ′|
χ (~x ′, t) (19)

that is not compatible with (17) for an arbitrary function χ (~x, t). Choos-
ing, for example,

χ =
4√
π d3

exp
(
−r2

/
d2
)

sinω t , r =
√
x2 + y2 + z2 (20)

equation (18) yields:

φ2 =
ω

c

erf (r/d)
r

cosω t (21)

and (19) results in:

U = −erf (r/d)
r

sinω t (22)

On the other hand, one has from (17) and (21) the result

U = −
∫∫∫

V

d3x′

|~x− ~x ′|

[
exp

(
−r2

/
d2
)

π
3
2 d3

− ω2

4π c2
erf (r/d)

r

]
(23)

× sinω (t− |~x− ~x ′|/c)

The first term may be integrated analytically, but this is not possible
for the second one. Obviously, there is a discrepancy between (22) and
(23) which proves that the necessary and sufficient condition (15) cannot
be met by the solutions (17) and (18). Consequently, the electric field
expressed by the potentials is a function of χ in general, as the divergence
of the vector potential does not cancel in (1).

For the magnetic field one can draw a similar conclusion by writing
the inhomogeneous flux equation in integral form:∮

~B · d~l =
1
c

∫∫
©

(
4π~j +

∂ ~E

∂t

)
· d~S (24)
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If ~E depends on χ, this holds also for ~B due to the connection in (24). On
the other hand, if one takes the curl of (10), one obtains a homogeneous
wave equation for ∇ × ~A2 which has only the solution ∇ × ~A2 = 0
assuming ~A2 ( ~∞) = 0. This implies that the magnetic field does not
depend on χ in agreement with (12), but in contrast to (24). In Sect. 4
this ambiguity will be investigated in order to clarify whether Maxwell’s
equations have unique solutions at all. Before, however, let us analyze
an inhomogeneous wave equation of type (4) and demonstrate in the
next Section that it cannot be solved by a retarded integral in general.

3 Attempt to solve an inhomogeneous wave equation

Although the Coulomb gauge χ = 0 is the natural gauge, since it follows
also from Helmholtz’s theorem applied on the vector potential [4], most
textbooks make use of the Lorenz gauge

χ = −1
c

∂φL

∂t
(25)

which results in an inhomogeneous wave equation for the scalar Lorenz
potential by substitution into (3):

∆φL (~x, t)− 1
c2
∂2φL (~x, t)

∂t2
= −4π ρ (~x, t) (26)

We may also consider the Poisson equation in Coulomb gauge

∆φC (~x, t) = −4π ρ (~x, t) (27)

and subtract it from (26)

∆ (φL (~x, t)− φC (~x, t)) =
1
c2
∂2φL (~x, t)

∂t2
(28)

Note that the charge density cancels, since it is taken both in the instan-
taneous equation (27) and in the wave equation (26) at the same time
t when the potentials are evaluated. The formal unique solution for the
difference of the potentials is the integral:

φL (~x, t)− φC (~x, t) =
∫∫∫

d3x′
−1

|~x − ~x ′ |

[
1

4π c2
∂2φL (~x ′ , t)

∂t2

]
(29)
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assuming φC ( ~∞) = φL ( ~∞) = 0. This equation must be satisfied when
the individual solutions of (26) and (27) are substituted. In order to
check on this let us consider a point charge e moving along the x-axis
with constant velocity v. The instantaneous Coulomb potential resulting
from (27) is the well known expression

φC (x, t) =
e√

(x− x0 − v t)2 + y2 + z2

(30)

where x0 ist the position of the charge at t = 0. Liénard-Wiechert have
calculated the retarded integral for this situation obtaining [1]:

φL (x, t) =
e√

(x− x0 − v t)2 +
(
1− v2

/
c2
)
(y2 + z2)

(31)

On the x-axis expressions (30) and (31) are identical so that the integral
on the r.h.s. of (29) must vanish there. This is, however, not the case,
if one substitutes solution (31) into (29) and carries out the integration
over all space. One obtains (see Appendix):

φC (x, t)− φL (x, t) =
e v2

x (c2 − v2)
(32)

This proves that the retarded integrals are not proper solutions of the
inhomogeneous wave equations which appear not to have a solution at
all. The same conclusion was reached in [1] and [6].

4 An inconsistency in determining the magnetic
field

In order to facilitate the analysis of the flux law (24) let us consider an
axisymmetric case where a plate capacitor is charged up by a variable
current (Fig. 1). In cylindrical coordinates one has for the Z- component
of (24):

1
R

∂ (RBϕ)
∂R

=
4π
c
jZ +

1
c

∂EZ

∂t
(33)

In the region between the plates, where the conduction current vanishes,
one may integrate (33) and obtain for the circular magnetic field com-
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producing a magnetic field.  

Fig. 1  Magnetic field created by a quasi-stationary electric field in a plate capacitor 

I

E
B

B

Figure 1: Magnetic field created by a quasi-stationary electric field in a
plate capacitor

ponent

Bϕ =
1
cR

R∫
0

∂EZ

∂t
R′dR′ (34)

The quasi-static electric gradient field, which is created by the surface
charges on the capacitor plates according to (6), is easily obtained from
the global equations describing a capacitor. One has

Q = C V , I = dQ/dt , EZ = V /d (35)

where Q is the total charge, C the capacitance, V the voltage, I the
current, and d the distance between the plates. Inserting this into (34)
one obtains

Bϕ =
1
cR

R∫
0

I

dC
R′dR′ =

I R

2c dC
(36)

for the magnetic field between the plates. In fact, a measurement of
this field created by the “displacement” current was reported in [7] in
agreement with Stokes’ law (36). The slope of this magnetic field was
constant according to the results in Fig. 4 of Ref. [7]. Taking the curl of
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this field one obtains a spatially constant displacement current between
the plates that is proportional to the time derivative of EZ in agreement
with (35).

On the other hand, Faraday’s law predicts for the same field compo-
nent the expression

1
c

∂Bϕ

∂t
=
∂Ez

∂R
− ∂ER

∂z
= 0 (37)

as ER = 0 , EZ = V /d. Equation (37) yields upon integration over time
a magnetic field exclusively created by the solenoidal part of the electric
field, whereas the irrotational part in (35) produced by the charges on
the plates does not contribute. According to (37) the magnetic field
between the plates could never change, but in agreement with (36) and
the measurement as reported in [7] the changing electric gradient field is
well capable of producing a magnetic field in contrast to the prediction
of (37).

There is apparently an intrinsic inconsistency between Faraday’s law
of induction and Maxwell’s flux law. The discrepancy is not obvious as
long as the potential ansatz (1) is adopted. It guarantees that Faraday’s
law is satisfied automatically once the vector potential is determined
from the flux law. A temporal evolution of the magnetic field, however,
is only possible in the presence of a solenoidal electric field ~Es according
to Faraday’s law:

~B = −c
∫
dt∇× ~Es (38)

whereas by spatial integration one finds that the magnetic field is also a
function of the changing irrotational electric field ~Ei produced by charge
separation:

~B =
1
c

∫∫∫
V

d3x′

4π~j +
∂
(
~Es + ~Ei

)
∂t

× ~x− ~x ′

|~x− ~x ′|3
(39)

In general, equations (38) and (39) are incompatible as demonstrated by
the discrepancy between (36) and (37).
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5 Concluding remarks

The analysis presented in this paper forces us to recognize that Maxwell’s
system of first order equations cannot be solved consistently as it con-
tains an internal contradiction. The potential method – which was al-
ready adopted by Maxwell himself – conceals this fact, but it allows
deriving a second order wave equation for the vector potential mod-
elling electromagnetic waves successfully. Maxwell considered the ho-
mogeneous wave equation in a region far away from the sources and
formulated boundary conditions for its solution [1]. Possibly, he was
aware that an inhomogeneous wave equation is not solvable as shown in
Sect. 3. This is also true for the vector wave equation (4) regardless
which gauge is chosen.

Classical electrodynamics requires apparently a thorough revision
with special attention to the interaction of waves with matter. At this
point a concrete proposal is not available, but it is likely that Planck’s
constant must be built into the system of equations, since it plays a
major role in the quantum theory of light that has replaced Maxwell’s
theory of light.

Appendix

In Sect. 2 the volume integral (29) had to be evaluated:

I = − 1
4π c2

∫∫∫
d3x′

1
|~x − ~x ′ |

[
∂2φL (~x ′ , t)

∂t2

]
= − 1

4π c2

∫∫∫
d3x′

1
|~x − ~x ′ |

∂2

∂t2

[
e√

w2 + (1− β2) (y′2 + z′2)

]

=
e β2

4π

∫∫∫
d3x′

1
|~x − ~x ′ |

[
−2 (x′ − x0 − v t)2 +

(
1− β2

) (
y′2 + z′2

)
[w2 + (1− β2) (y′2 + z′2)]

5
2

]
w = x′ − x0 − v t

where β = v/c. Changing variables one may write

~x− ~x ′ = ~R

Evaluation at the time t = −x0/v when the charge has reached the origin
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yields on the x-axis:

I =
e β2

4π

∫∫∫
d3x′

R

−2 (x+Rx)2 +
(
1− β2

) (
R2

y +R2
z

)[
(x+Rx)2 + (1− β2)

(
R2

y +R2
z

)] 5
2


In spherical coordinates one has

Rx = R cos θ , Ry = R cosϕ sin θ , Rz = R sinϕ sin θ

and the volume element becomes

d3x′ = R2 sin θ dϕ dθ dR

This results in:

I =
e β2

4π

∞∫
0

RdR

π∫
0

sin θ dθ

2π∫
0

dϕ

×

−2 (x+R cos θ)2 +
(
1− β2

)
R2 sin2 θ[

(x+R cos θ)2 + (1− β2) R2 sin2 θ
] 5

2


Integration over the angles yields

I = −e β2 x

∞∫
0

RdR

√
(R− x)2 (R+ x)−

√
(R+ x)2 (R− x)√

(R− x)2
√

(R+ x)2 (x2 −R2β2)2

For R > x the integrand vanishes, and for R ≤ x the integral becomes

I = −2 e β2

x∫
0

dR
xR

(x2 −R2β2)2
=

− e β2

x (1− β2)
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