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Are mechanical clocks relativistic clocks?
CLAUDIO BORGHI

Liceo Scientifico Belfiore, via Tione 2, Mantova, Italy

ABSTRACT. This work completes a research about the theoretical
and experimental issue of relativistic time. We analyze the behavior of
mechanical clocks, particularly pendulums and spring clocks, and we
deduce that their proper period is not in agreement with the predic-
tions of general relativity. We remark the importance of the concept
of effective mass and its relationship with the measurements obtained
by clocks whose proper period depends on the clock mass. Some con-
sequences about the measure of relativistic time are discussed in the
conclusive section.

1 Introduction

This paper is structured in three parts. The first one (section 2) sum-
marizes the ideas of Albert Einstein about the concept of relativistic
time and the measurement of durations in special relativity. The second
one (sections 3 and 4) provides a synthesis of the characteristics of re-
lativistic clocks according to general relativity and shows that atomic
clocks behave as relativistic clocks since their proper period correctly
depends on gravitational and pseudo gravitational potential. The third
one (sections 5 and 6) analyzes the behavior of pendulums, balance wheel
and mass-spring clocks and shows that they do not behave as relativistic
clocks. While pendulums were already recognized by Einstein himself
not to behave as relativistic clocks, we point out the absolute novelty
of the probable disagreement between the measurements obtained by
spring clocks and the relativistic predictions, also remembering that in
1905’s paper they were indicated as possible witness of the relativistic
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law of time dilation. Since the experiments have currently verified the
clock effect only on particular (cesium, optical, at resonant cavity, etc.)
clocks, in the conclusive section we suggest to reinterpret the relativistic
theory of time starting from an accurate survey about the operation of
real clocks.

2 Relativistic time

In 1905’s work on the electrodynamics of moving bodies [1], Albert Ein-
stein set the problem of the quantification of different temporal durations
by clocks of identical construction in different states of motion. After
introducing the definition of simultaneity between events, of which he
detects the relative nature, he obtains the Lorentz transformations from
the c-invariance principle and the principle of relativity extended to elec-
tromagnetic phenomena. Einstein then explores the physical meaning of
the equations, with particular regard to the behavior of rigid rods and
clocks in motion. In relation to the operations of measure it should be
observed that, while the quantification of the length of a rigid rod can
be made with a straight edge or a metric rope (in the case where the
rod is in motion the observer must determine, by means of suitably syn-
chronized clocks at rest located in the system at rest, in which points of
this system are the beginning and the end of the rod to be measured at
a given instant t), the quantification of a time duration must be made
with an appropriate instrument, of which, for reasons of consistency, the
internal structure should be investigated. Einstein shows little attention
to this operational aspect and admits, without delving into the issue,
that a duration can be measured by any clock (excluding pendulums
and hourglasses, for reasons that will be later clarified). If we suppose
that one of them marks the time ¢ when it is at rest with respect to the
inertial system K and the time ¢’ when it is at rest in the origin of the
system K, in uniform rectilinear motion with respect to K, Einstein asks
what marks the clock in the origin of K’ if observed from K. From the
Lorentz transformation of time:

vx

r_
t' = — (1)
V-~
and from the relation z = vt, that quantifies the distance traveled by

the clock in motion, he concludes that the clock located in the origin of
K’, with respect to the observer in K, will be delayed, for every second,



Mechanical relativistic clocks 97

of (1 —4/1— ;’—;) seconds, i.e., less than quantities of the fourth order
or higher, of %’p’—j seconds. It follows that, if in the points A and B of

K there are clocks at rest that, observed from the system at rest, are
synchronized, and if the clock in A is moved with velocity v along a line
that joins it with B, when it arrives in B the two clocks will be no longer
synchronized, but the clock moved from A to B will be delayed of %’C’—; t
seconds (neglecting effects of fourth order or higher), where ¢ = £ is time
taken by the clock in the trip from A to B, measured by the clock that
has not changed its speed. It may be immediately seen, says Einstein,
that this result is also true when the clock moves from A to B along an
arbitrary polygonal line, especially when the points A and B coincide.
Assuming that the result proved for a polygonal line is also valid in the
case of a continuously curved line, given in A two synchronized clocks, if
one of them moves along a closed path with constant velocity (neglecting
accelerations and decelerations) until it returns in A, this latter, when it
arrives in A, is delayed, compared to that which has not been moved, of
%Z—; t seconds. Einstein concludes that a balance wheel clock located at
the equator will have an infinitesimally slowed rate, due to the greater
tangential velocity linked to Earth’s rotation, with respect to a clock
of identical construction, subjected to the same conditions, located at a
pole. In summary, in the analysis of the consequences of the coordinate
transformations drawn in the quoted paragraph: a) the coordinate ¢
implicitly corresponds to a clock, that is supposed to be able to measure
it, and it is deduced that if it moves with velocity v along a line toward
another clock initially synchronized with it, when rejoined they no longer
march in step; b) it is suggested that the effect of loss of synchronization
can be verified through a balance wheel clock, that at the equator must
slow down compared to an identical clock placed at a pole, given the
different tangential velocities due to Earth’s rotation: the extent of delay
is a direct consequence of the axiomatic assumptions underlying the
theory. The Einsteinian reasoning clearly shows that the delay is only
caused by the speed. In the following developments of theory, thanks to
the four-dimensional spacetime model introduced by Minkowski in 1908,
the delay appears to be linked to the reduced length of the world line: the
issue of loss of synchronization, still in embryonic form in 1905’s work,
will be explicitly resolved, not without leaving, at a careful analysis,
room for doubt or discussion about the interpretation of experiments in
which the measures of real clocks are compared, in situations similar to
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those described in the above mentioned article. Limiting to this paper,
we can conclude that the c-invariance postulate and the principle of
relativity lead to new equations of transformation of the spatiotemporal
coordinates of events, whereby clocks in different states of motion must
provide different measures of durations, given the same extreme events.
Experimental verifications on real clocks, says explicitly Einstein, can
confirm whether or not the delay effect can be applied to the instruments
of measure.

3 Relativistic clocks

Simple theoretical considerations [2] developed within the conceptual
framework of general relativity, starting from the relationship between
the metric coefficient ggg associated to the coordinate ct and the potential

¢ ! in a static and weak gravitational and/or pseudo gravitational field:

goo =1+ 20% (2)
and from the relationship between the proper period of a clock and the
metric coefficient:

T

T= NG (3)

(where T} is the period outside the field), lead to deduce that the period
of a relativistic clock has to satisfy the approximate relation:

¥
T(p) = To(1 - 5) @
currently tested on atomic, optical, based on the use of maser or at
resonant cavity clocks, and that should also characterize all the other
clocks. It is fundamental to stress that a relativistic clock requires an
internal process that does not cease to occur in free fall.

1The gravitational potential is assumed equal to the Newtonian potential — GTm.

In the case of rotation, with angular velocity €2, of the reference frame with respect
to an inertial system, the pseudo gravitational potential, measured in a point by a
co-rotating observer, is given by the centrifugal potential —%QQTQ, where r is the
distance from the point to the center of the rotating reference. In the case of a
translational motion of the reference, at a constant acceleration a; with respect to
an inertial system, the pseudo gravitational potential, measured in a point by an
observer in the accelerated frame, is given by —a;h, where h is the distance from the
point to an appropriately prefixed zero level.
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4 Why atomic clocks are relativistic clocks

The original Einstein’s intention of testing relativistic effects on real
clocks proved to be very problematic. The issue of the experimental dis-
agreement between the behavior of some real clocks and the theoretical
predictions cannot in fact be simply attributed to the impossibility of
building ideals clocks or tending to an ideal model (as noted by Ludvik
Kostro [3], which underlines the need that relativistic clocks be prac-
tically point-like, since any real clock, having an extension and a mass,
will always be far from the model to which it should be close), but to
the fact that in nature there are clocks that cannot give measures in
accordance with relativistic predictions. We ask: why some clocks agree
and others do not agree with general relativity? Atomic clocks provide
measurements in accordance with theory because the energy difference
AF between two given quantum levels of an emitting atom, observed at
rest, depends on the gravitational potential ¢ according to the equation

[4, 5, 6]:
_ ¥
AE = AEy [14 22 (5)
¢

where AF) is the energy difference in a null potential. This dependence
has been verified also with atoms and nuclei at rest (with respect to a
corotating observer) on a disc that describes a uniform circular motion,
then in a pseudo gravitational potential. Since the proper period of
an atomic clock depends on the energy difference between two given
quantum states according to the equation:

h
T- o (6)

we obtain:

T(p) _ AE, _ 1 ¥ ™

TO AE 1/1—}-26%% C2

(where Ty is the proper period in a null potential), that is clearly in
agreement with equation (4). The different measures of a duration,
between two extreme events, given by atomic clocks in different gravit-
ational or pseudogravitational potentials are therefore a consequence of
their different proper period, as related to the energy of a given quantum
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transition 2. As we will explain in detail in the following sections, pendu-
lums and hourglasses, when working in references not in free fall, reduce
their frequency with increasing altitude while, according to theory, they
should increase it. We will also observe that spring clocks, in the pres-
ence of a gravitational or pseudo gravitational potential, do not change
their proper period or they change it non in accordance with law (4),
showing a clearly different behavior from that of cesium clocks.

5 Pendulums, balance wheel and mass-spring clocks

The only gravitational clocks that can be used (neglecting the hourglasses,
for reasons of practicality) to test the Einstein theory are pendulums,
that behave in clear disagreement with the predictions, as it can be
deduced from the known Newton’s classical law (for small oscillations):

l
T =2my/— 8
P (8)

Going up in altitude (increasing the gravitational potential) they reduce
their proper frequency of oscillation, while, according to (4), they should
increase it, as indeed cesium clocks do. Einstein himself, in a footnote
of his 1905’s work, discarded the possibility of using pendulum clocks 2,
as devices that do not work in zero gravity (for example, in free fall),
since the oscillations are present only in gravitational or acceleration
fields. Discarded therefore pendulums and hourglasses, we believe it is
interesting to observe if there are other mechanical clocks that behave as
relativistic clocks: we limit in this context to spring clocks, i.e. balance
wheel and mass-spring clocks. The mechanism of a balance wheel clock
is constituted by a swinging wheel, rotating around an axis, by a spiral
spring that develops an elastic force, and by an anchor (the system said
escapement) that gives the wheel small thrusts at the right time. Given
the complexity of the balance wheel mechanism 4, we can study the

2The analysis given for cesium clocks can also be applied, with little differences in
the theoretical approach, to optical clocks, to clocks based on the use of maser and
to clocks at resonant cavity.

3“physically a system to which the Earth belongs”

4Since the proper period of a balance wheel clock is given by T = 27 %, where
is the wheel’s moment of inertia with respect to the axis and & is the spring constant,
we believe that the following considerations about the independence of the proper
period of a mass-spring clock on the gravitational and pseudogravitational potential
can also be applied to a balance wheel clock.
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motion of a linear harmonic oscillator, a mass-spring system. In relation
to (4) it is interesting to know how this kind of clock behaves in the
presence of a potential linked to a gravitational field or to the acceleration
of the reference frame. A classical dynamical analysis leads to conclude
that the fundamental period, expressed by

T= QW\/T 9)

remains unchanged both in the case in which the system oscillates ® in
an horizontal plane, with respect to any inertial reference, and vertically,
in absence of gravity, for example in a free fall reference: this behavior,
unlike that of a pendulum, allows to consider a similar device suitable
for measuring relativistic durations, so it could belong to the set of re-
lativistic clocks. In fact, if it oscillates vertically in a (supposed inertial)
terrestrial laboratory, it is observed, compared to the experiment carried
out in a free fall reference frame, that both the center of oscillation and
the amplitude ¢ change, but not the period, still given by (9), since it is
independent on the position of the center and on the amplitude. If the
system vertically oscillates in an elevator that rises, for example, with
acceleration equal to £, an observer in the accelerated system detects
that the mass hanging from the spring (neglecting the mass of the lat-
ter) will be subjected to an apparent weight (the sum of the weight and
the apparent force) equal to 1,5 times the weight quantified by an iner-
tial observer: the effect is an harmonic oscillation with a different center
of oscillation and a different amplitude compared to the previous case,
but without variations of the period, that maintains the value given by
(9). We conclude that: 1) an oscillator-clock, relative to the observer
in the accelerated elevator, over that a gravitational also feels a pseudo
gravitational potential due to the acceleration of the reference, but it
maintains unchanged its proper period, given by (9); 2) the same period
is measured by an inertial observer on a clock in the laboratory. We
remember that, in the light of Minkowski’s theory, the different meas-
ures given by two clocks in different states of motion are caused by the
different length of the world lines they ideally describe, so that, if the

5The initial speed in all the following cases is assumed to be null.

6In the case of horizontal oscillation, for example in a terrestrial laboratory, or
of vertical oscillation in a free fall reference, the amplitude is always arbitrary, as
determined by the position, relative to the center of oscillation, from which the system
is started, while, in the vertical case in a reference not in free fall, it is assumed that
the oscillation starts at the point where the mass is hung on the spring.
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gravitational potential is the same, the two clocks must count a different
number of seconds without altering their proper period. However, in the
case where the variation of the measurement is linked to a variation of
the proper period of clock as a function of the potential (as it happens for
cesium clocks ), the above given analysis of the forces acting on a mech-
anical oscillating system does not lead to deduce a law for the period in
agreement with Einstein’s theory. Limiting to this classical dynamical
analysis, therefore, pendulum clocks, whose proper period depends on
gravitational potential, reduce their proper frequency when the poten-
tial increases, against the Einsteinian predictions, but they cannot be
considered relativistic clocks since they stop working in free fall refer-
ences; spring clocks, on the contrary, work in free fall references, but
they cannot be considered relativistic clocks because their proper period
is independent on the potential. With increasing altitude, the first ones
slow down their rate while the second ones keep it unchanged, whereas
both they should increase it. These elementary and seemingly obvious
considerations generate an undeniable interest in relation to the oper-
ational definition of time in physics and to the concept of relativistic
clock. We must therefore deepen the issue in the framework of general
relativity.

6 Spring clocks in general relativity. Effective mass

Time dilation, in special relativity, implies a different quantification of a
duration with respect to inertial observers in different states of motion,
according to whom a phenomenon occur at rest at the same point in
space, or in movement, whereby the initial and final events spatially do
not coincide. In this theoretical framework the different duration of the
phenomenon is an effect of the relative motion of the observers, verifi-
able without the need of comparing real clocks. Though often confused
and overlapped with the previous one, in general relativity an effect of
different nature is observed, linked to the physical process that charac-
terizes the operation of the device used for measuring time intervals. A
theoretical problem rises, linked to the behavior of the different instru-

"Both in Hafele-Keating (1971) and in Alley et al (1979) experiment were com-
pared the measurements of durations obtained by atomic clocks on a plane with those
obtained by atomic clocks remained on the ground, with which they were initially
synchronized. According to the analysis developed in [7], such experiments, in partic-
ular that of Hafele and Keating, can be interpreted in the light of the dependence of
the period of atomic clocks on the gravitational and pseudo gravitational potential.
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ments, in particular of spring clocks &, whose proper period, as above
shown, should be in agreement with equation (4). Through a theoretical
analysis developed inside the framework of general relativity, J.K. Ghose
and P. Kumar [8] have deduced that if a body, having mass m and rest
energy E = mc? outside a gravitational or pseudo gravitational field,
is brought inside the field, it is attracted from the source of the field
and so it increases its kinetic energy, which is radiated out in different
forms of energies if it is brought to rest. From (2) we can derive, in the
approximation to static and weak fields, the law:

E(p) =mc*\[1+ == (10)

which expresses the rest energy of the mass m as a function of the
gravitational and/or pseudo gravitational potential . ;From equation
(10) we deduce the law:

Me =M 14+ 22 (11)

which expresses the mass of the body within the field, that Ghose and
Kumar (limiting to the Newtonian potential ¢ = fGTm) call effective
mass ?. Law (11) implicitly quantifies a mass defect for a body within
the field compared to that measured outside. This implies a decrease of
the proper period of an harmonic oscillator (considering negligible the
variation of the elastic constant of spring) in a gravitational or pseudo
gravitational field, clearly in disagreement with law (4), that provides an
increase of the proper period of relativistic clocks inside the field with
respect to the same period measured outside. In the light of the concept
of mass defect theorized by Ghose and Kumar and of the concept of
effective mass by them introduced, spring clocks (particularly balance
wheel clocks, for which equivalent conclusions can be deduced) would
therefore not be relativistic clocks. Since all mechanical clocks seem

8We yet refer to the theoretical simplification of a mass-spring linear oscillator to
explore the issue of the dependence of the proper period on the potential.

9Equation (11) significantly differs from the law m. = m(1 + %), that A.
Grishaev [9] applies to a classical oscillator in the Newtonian gravitational poten-
tial generated by a body of mass M, where r is the distance from the oscillator to the
center of M. We point out that Grishaev (which in turn makes use of the concept
of effective mass) in the quoted work does not provide any bibliographic reference to
justify this law, whereby we believe he introduces it as necessary to equate harmonic
oscillators to relativistic clocks.
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not to behave as relativistic clocks, the same operational definition of
relativistic time, based on the implicit need for an homogeneous behavior
of all clocks, would be obviously compromised.

7 Conclusions

In special relativity the c-invariance and relativity principles lead
to Lorentz transformations and to Minkowski’s model of spacetime,
whereby a time duration should be differently quantified from observers
in motion along not equipollent world lines between two given extreme
events. The logical-operational leap from theory to instruments of meas-
ure (yet in dubitative form in 1905’s work) occurs therefore when these
times are not indirectly calculated, but directly measured through real
clocks that, initially synchronized, ideally describe different world lines
and finally rejoin. In general relativity the behavior of real clocks is cor-
rectly predicted only if their proper period agrees equation (4). Since,
as above remarked, only the period of atomic and other electromagnetic
clocks agree this equation, but not that of gravitational (hourglasses,
pendulums) or mechanical (mass-spring, balance wheel) clocks, we be-
lieve that relativistic time is a quantity that does not allow to measure
durations through clocks of different construction. Which is the reason
for this different behavior? Atomic clocks work well because the energy
difference between two fixed levels in an atom, observed at rest, depends
on the gravitational or pseudo gravitational potential, while the above
mentioned proper period of mechanical clocks is not in agreement with
law (4), that expresses the relationship between the proper period and
the potential. We stress as fundamental the issue of the effective mass,
since the measurements obtained by instruments whose proper period
depends on the device mass should decrease when they are in a gravit-
ational or pseudo gravitational potential as a consequence of the mass
defect theorized by Ghose and Kumar, in explicit contradiction with
equation (4), that provides an increase of the proper period of a relativ-
istic clock inside a gravitational or pseudo gravitational field. In fact,
the Einstein theory is a mathematical device that, about the measure
of durations, implies the agreement between the proper period of all
clocks and law (4), whereby the experimental tests on real clocks give an
important validity check not only of the consistency of the relativistic
theory of time, but also of the dynamical consequences of the spatiotem-
poral continuum theory. In the light of the remarks here proposed, we
believe that at least the relativistic theory of time should be reinter-
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preted [10]. The possibility exists that clocks of different construction
measure times of different physical nature, whereby the problem of time
can be resolved only starting from an accurate analysis of their possible
different behavior in the same experimental situations.
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