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ABSTRACT. The time-independent Schroedinger and Klein-Gordon
equations - as well as any other Helmholtz-like equation - turn out to be
associated with exact sets of Hamiltonian ray-trajectories (coupled by a
"Wave Potential" function, encoded in their structure itself) describing
any kind of wave-like features, such as diffraction and interference.
This property suggests to view Wave Mechanics as a direct, causal and
realistic, extension of Classical Mechanics, based on ezact trajectories
and motion laws of point-like particles "piloted" by de Broglie’s mono-
energetic matter waves and avoiding the probabilistic content and the
wave-packets both of the standard Copenhagen interpretation and of
Bohm’s theory.

RESUME - Les équations indépendantes du temps de Schroedinger
et de Klein-Gordon, ainsi que toutes les autres équations d’Helm-
holtz, sont associées a des systémes de trajectoires hamiltoniennes cou-
plées par une function (le "potentiel d’onde”) codée dans leur struc-
ture méme, qui permettent de décrire tous le phénoménes ondulatoires,
comme le diffraction et l'interférence. Cette propriété suggére d’envisa-
ger la Mécanique Ondulatoire comme une extension directe, causale et
réaliste de la Mécanique Classique (basée sur les trajectoires exactes de
particules ponctiformes pilotées par des ondes materielles monochro-
matiques) évitant a la fois le probabilisme et les paquets d’ondes de
Uinterpretation de Copenhagen et de la théorie de Bohm.
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Klein-Gordon equation - Quantum potential - Bohm’s theory - Quantum
trajectories - Wave potential.

1 Introduction

“[La Mécanique Quantique|, que je connais bien, puisque je
I’ai longtemps enseignée, est trés puissante et conduit & un
trés grand nombre de prévisions exactes, mais elle ne donne
pas, & mon avis, une vue exacte et satisfaisante des phéno-
meénes qu’elle étudie. Cela est un peu comparable au réle joué
naguére par la thermodinamique abstraite des principes qui
permettait de prévoir exactement un gran nombre de phé-
nomeénes et était par suite d’une grande utilité, mais qui ne
donnait pas une idée exacte de la réalité moleculaire dont le
lois de la thermodynamique des principes ne donnaient que
les conséquences statistiques”.

(Louis de Broglie, 1972 [1])

Any kind of monochromatic wave phenomena may be dealt with,
as we shall see, in terms of an exact, ray-based kinematics, encoded in
the structure itself of Helmholtz-like equations. The ray trajectories and
motion laws turn out to be coupled by a dispersive " Wave Potential"
function, which is responsible for any typically wave-like features such as
diffraction and interference, while its absence or omission confines the
description to the geometrical optics approximation.

We extend this wave property, in the present paper, to the case of
Wave Mechanics, thanks to the fact that both the time-independent
Schrodinger and Klein-Gordon equations (associating monochromatic de
Broglie’s matter waves [2, 3] to particles of assigned total energy) are
themselves Helmholtz-like equations, allowing to formulate the Hamilto-
nian dynamics of point-like particles in terms of ezact trajectories and
motion laws under the coupling action of a suitable Wave Potential, in
whose absence they reduce to the usual laws of classical dynamics. We
make use of relativistic equations, in agreement both with de Broglie’s
firm belief that Wave Mechanics is an essentially relativistic theory [4-7]
and with the first (unpublished) approach considered by Schrddinger,
before his non-relativistic choice [8, 9.

As long as the association of exact ray-trajectories with any kind of
monochromatic waves was not yet known, the intrinsically probabilistic
interpretation of Wave Mechanics turned out to be the most plausible
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one : if indeed, according to de Broglie, the current interpretation “ne
donne pas une vue exacte et satisfaisante des phénomenes qu’elle étu-
die”, which is the hidden reality 7 The newfound general possibility of
ray-trajectories [10-12] appears now to suggest that an "ezacte et satis-
faisante" description may be obtained from the same Wave-Mechanical
equations viewed so far as unavoidably probabilistic. We show in Sect.2
how to obtain, both in Classical and Wave-Mechanical cases, consistent
sets of exact kinematic and/or dynamic ray-based Hamiltonian equa-
tions, and discuss in Sects.3 and 4 the proposal of viewing Wave Me-
chanics as an ezxact, non-probabilistic physical theory running as close
as possible to Classical Mechanics and based on a Hamiltonian dynami-
cal system whose treatment doesn’t require any simultaneous solution of
Schrédinger or Klein-Gordon equations.

We do not aim to develop here a systematic theoretical structure
akin to the Copenhagen and/or Bohmian Mechanics, but to face - and,
possibly, to avoid - the radical change of the classical vision involved by
those interpretations.

We are not proposing, with respect to the Copenhagen and/or Boh-
mian interpretations, an equivalent route, nor a different level of approxi-
mation, nor a particular case : we are proposing a different conception
of physical reality.

2 Dispelling commonplaces on wave trajectories

2.1 - We shall assume, in the following, both wave monochromaticity
(strictly required by any such typically wave-like features as diffraction
and interference) and stationary media (usually imposed by the experi-
mental set-up). Although our considerations may be easily extended to
most kinds of waves, we shall refer in this sub-Section, in order to fix
ideas, to classical electromagnetic waves traveling according to a scalar
wave equation of the simple form
2 o2

vip o Oy (1)
¢z 0t?
where ¥ (z,y, z,t) represents any component of the electric and/or ma-
gnetic field and n(z,y, z) is the (time independent) refractive index of
the medium.

By assuming
b =u(F,w)e ", (2)



98 A. Orefice, R. Giovanelli, D. Ditto

with 7 = (x,y,2), we get from eq.(1) the well-known [13] Helmholtz
equation

V2u + (n ko)?u =0 (3)
(where kg = 2—2 = ¢), and look for solutions of the (quite general) form
u(Fw) = R(F,w) et ) (4)

with real R(7,w) and ¢ (7, w), which represent respectively, without any
probabilistic meaning, the amplitude and phase of the monochromatic
waves.

Contrary to the commonplace that a treatment in terms of ray-
trajectories is only possible for a limited number of physical cases (such
as reflection and refraction) ascribed to the so-called geometrical optics
approzimation, eq.(3) was shown in Refs.[10-12] to determine the sta-
tionary frame on which an exact, ray-based description is possible. By
defining, in fact, the wave-vector

k=V¢ (Fw) , (5)

a set of rays, orthogonal to the phase surfaces ¢ (7, w) = const, turns out
to travel, in stationary media, along stationary trajectories given by a
simple Hamiltonian system of kinematical equations (both ray geometry
and motion laws : see Appendiz), under the basic action of a “Wave
Potential” function

LV2R(F, w)

WEw) = = o REw)

(6)
inducing a mutual perpendicular coupling between the relevant mono-
chromatic ray-trajectories, which is the one and only cause of wave-like
features such as diffraction and interference. An important consequence
of this perpendicularity is the fact of leaving the intensity of the ray velo-
city unchanged, confining the coupling action to a mere deflection, while
any possible variation of the speed amplitude is due to the refractive
index of the medium. The limit of geometrical optics is reached when
the space variation length L of the wave amplitude R(7,w) turns out to
satisfy the condition kg L >> 1. In this case the role of the Wave Po-
tential is negligible, and the rays travel independently from one another
under the only action of the refractive index, according to the "eikonal
equation" [13]

k= (V 6)* 2 (n ko)’ (7)
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obtained in the Appendiz as eq.(AT).

2.2 - Let us pass now to the dynamics of single (spinless) particles with
rest mass mg and assigned energy F, launched into a force field deriving
from a stationary potential energy V(7). Their relativistic behavior is
described by the time-independent Hamilton-Jacobi equation [14-17]

= EiV(F’)P

VS E)* = — (mg ¢)? (®)

c
where the basic property of the function S(7, E) is that the particle
momentum is given by the relation

7 =VS (7 E). (9)

In other words, the Hamilton-Jacobi surfaces S(7, E) = const, perpen-
dicular to the momentum of the moving particles, "pilot” them, in Clas-
sical Mechanics, along a set of fized trajectories, determining also their
motion laws.

One of the main forward steps in modern physics, giving rise to Wave
Mechanics, was performed by de Broglie’s association of mono-energetic
material particles [2, 3] with suitable monochromatic “matter waves”,
according to the correspondence

p/h = VS(F,E)/h — k = V. (10)

The Hamilton-Jacobi surfaces S(7, E') = const were assumed therefore as
the phase-fronts of these matter waves, while maintaining their original
role of "piloting" the particles - just as in Classical Mechanics - according
to eq.(9).

The successive step was the assumption [8, 9] that these monochro-
matic matter waves satisfy a Helmholtz-like equation of the form (3), and
that the laws of Classical Mechanics - represented here by eq.(8) - pro-
vide the eikonal approrimation of this equation. By recalling, therefore,
egs. (7)-(10), one may perform the replacement

.S, E-V(@

mo C
(n kO)Q o~ ]412 —>p2/ﬁ2 = (VE)2 [ — 0

2 - (Rely (11)

into eq.(3), reducing it to the time-independent Klein-Gordon equation

E-V mg C

Vit (S (R

lu = 0, (12)
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holding for the de Broglie waves associated with particles of total energy
E moving in a stationary external potential V(7).

As is well known, the existence of the waves predicted by de Broglie
was very soon confirmed by the experiments performed by Davisson
and Germer on electron diffraction by a crystalline nickel target [18] :
de Broglie’s (mono-energetic) pilot waves were therefore shown to be
objective physical quantities (in configuration space), as testified by their
measurable properties.

Contrary to the commonplace that no exact particle trajectory may
be defined in a Wave-Mechanical description, the same treatment pro-
viding the stationary ray-trajectories of the Helmholtz eq.(3) may now
be applied to the particle trajectories associated with the Helmholtz-like
eq.(12). Recalling eqs.(4) and (10), we assume therefore, in eq.(12),

u(F, E) = R(, E) e " 5B/ (13)

where the real functions R(7, E) and S (7, E) represent, respectively,
without any probabilistic meaning, the amplitude and phase of de Bro-
glie’s mono-energetic matter waves, whose objective reality is established
beyond any doubt by their observed properties of diffraction and inter-
ference. After the separation of real and imaginary parts, eq.(12) splits
then into the system

V-(R*VS)=2RVR-VS +RV-VS =0 (14)
R E-— V2R(F, E)
2 2 2 32 ) 1
(F8)2 = [ (moo)? = 12 (15)
and the differentiation %g A7+ %—g -dp = 0 of the relation
2R(7, E
H5E) = V() + \/(p0)2+(m062)2 2 R

obtained from eq.(15) is seen to be satisfied by the exact and self-
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contained Hamiltonian set of wave-dynamical equations

dv 0H Ap
G- op - B-V(D a7)
dﬁ_ OH e B E o
= ar =~ VV@® EVE VQ(r,E) (18)
V- (R*%)=0 (19)
with 5 9 w9
B R ¢ V2R(F, E
QB = - e (20

2E R(FE)

describing the particle motion along a set of stationary trajectories. The
exact dynamical laws 7(E,t) and p(E,t) are completely determined
by the initial conditions 7#(E,t = 0) and F(E,t = 0) and by the wave
amplitude distibution R(7(E, t = 0))over the wave launching surface.

It is interesting to observe that eq.(17) coincides with the "gui-
dance velocity" proposed by de Broglie in his relativistic " double solution
theory" [4-7], and that ¥ = % # p/m, although maintaining itself pa-
rallel to the momentum p.

The function Q(7, E), which we call once more, for simplicity sake,
“Wave Potential”, has the same basic structure and coupling role of the

function W(rw) = — % % of eq.(6) : it has therefore not so
much a "quantum”, as a "wave" origin, entailed into quantum theory by
de Broglie’s matter waves. Just like the external potential V' (7), the Wave
Potential Q(7, E) is “encountered” by the particles along their motion,
and plays, once more, the basic role of mutually coupling the trajectories
relevant to each mono-energetic matter wave. Once more, the presence
of the Wave Potential is the one and only cause of diffraction and/or
interference of the waves, and its absence reduces the system (17)-(19)
to the classical set of dynamical equations, which constitute therefore, as
expected, its geometrical optics approximation. Another interesting ob-
servation is that such phenomena as diffraction and interference do not
directly concern particles, but their (stationary) trajectories. The overall
number of traveling particles is quite indifferent, and may even be vani-
shingly small, so that, for instance, speaking of self-diffraction of a single
particle is quite inappropriate. Each particle simply follows, according to
the dynamical motion laws (17)-(19), the stationary trajectory, pre-fized
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from the very outset, along which it’s launched : although, in the XVIII
century, Maupertuis attributed this kind of behaviour to the "wise ac-
tion of the Supreme Being", we limit ourselves to state that it is encoded
in the structure itself of Helmholtz-like equations.

Eq.(14) plays the double role of "closing” the Hamiltonian system
(17)-(19) by providing step by step, after the assignment of the wave
amplitude distribution R(7, E) over a launching surface, the necessary
and sufficient condition for the determination of R(7, E') over the next
wave-front (thus allowing a consistent "closure" of the Hamiltonian sys-
tem), and of allowing to show (as in the previous case : see Appendiz)
that the coupling "force" V Q(7, E), of wave-like origin, is perpendicular
to the particle momentum p, so that that no energy exchange is involved
by its merely deflecting action : any possible energy change may only
be due to the external field V(7). The assignment of the distribution
R(7, E) on the launching surface has the role, in its turn, of describing
the essentials of the experimental set up. Let us finally notice that, in the
particular case of massless particles (i.e. for mg = 0), the Klein-Gordon
equation (12), by assuming the Planck relation

E = hw, (21)
reduces to the form
Viu + (nw/e)? u =0, (22)
with
n(F,E)=1-V(F)/E. (23)

Eq.(22) coincides with eq.(3), which may be therefore viewed as the
time-independent Klein-Gordon equation holding for massless point-like
particles.

2.3 - The same procedure applied in Sect.2.2 to obtain the stationary
relativistic Klein-Gordon equation (12) was applied by Schrodinger [8,
9] to obtain his non-relativistic time-independent equation

2m
_~_7

V2u(7, E) =

[E—V(P)]u( E)=0 (24)
from the non-relativistic time-independent Hamilton-Jacobi equation

(VS =2m[E-V(f)] , (25)
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The association of eq.(24) with the self-contained non-relativistic Hamil-
tonian system

di  O0H _ p

A== m 20)
I )

% _ _6;’; = _V[V(?) + QF E)] (27)

may be obtained along the same lines of the previous case, in terms of
the trajectory-coupling "Wave Potential"

h? V2R(7,E)

P E)= — 2
L (29)
and of the Hamiltonian function
2
H(F.E) = 5+ V() + Q. E). (30)

The time-independent Schrodinger equation (24) directly provides, in
conclusion, the exact, non-probabilistic point-particle Hamiltonian sys-
tem (26)-(28), reducing to the usual (non-relativistic) point-particle dy-
namical description when the Wave Potential Q(7, E') is neglected, i.e.,
once more, in the limit of geometrical optics.

2.4 - Many examples of numerical solution of the Hamiltonian particle
dynamical system (26)-(28) in cases of diffraction and/or interference
were given in Refs.[10-12], by assuming, for simplicity sake, the absence
of external fields and a geometry allowing to limit the computation to the
(z, z)-plane, for waves launched along the z—axis. The particle trajecto-
ries and the corresponding evolution both of de Broglie’s wave intensity
and of the Wave Potential were computed, with initial momentum com-
ponents p,(t = 0) = 0; p.(t = 0) = pp = 27h/Ng, by means of a
symplectic numerical integration method. We limit ourselves to present
in Fig.1, on the (z, z)—plane, the case of the diffraction of a Gaussian
particle beam traveling along z and starting, from a vertical slit centered
at z = z = 0, in the form R(x;z = 0)+ exp(— x2/w3), where the length
wy is the so-called waist radius of the beam. We plot on the left-hand
side of Fig.1 the particle trajectory pattern, and on the right-hand side
the initial and final transverse intensity distributions of the wave.
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Fig. 1 - Particle trajectories and transverse initial and final wave intensity
distribution on the (z, z)-plane for a Gaussian beam with \o/wo = 2 x 10~ *.

The two heavy lines represent the analytical approximation

2(z) = + w§+</\02>2 : (31)

™ Wo

given by the so-called parazial theory [19], of the trajectories starting (at
z = 0) from the waist positions x = =+ wy . The agreement between
the analytical expression (31) and the numerical results provides, of
course, an excellent test of our approach and interpretation. It was shown
in Ref.[12] that the uncertainty relation Ax Ap, > h turns out to be
violated close to the slit, but is asymptotically verified far enough from
the slit, thanks to the trajectory-coupling role of the Wave Potential
Q7 E).

3 The Copenhagen and Bohmian approaches

3.1 - Let us now recall that, starting from egs.(2), (21) and (24), one
obtains [14] the ordinary-looking wave equation

2m 0%
v 22, (32)

describing the propagation and dispersive character of mono-energetic
de Broglie matter waves. By means, however, of the same egs. (2), (21)
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and (24) one may also get the equation [8, 9, 14, 15|

2mi E 0¢  2mi 0y 33

h hw 0t R Ot’ (33)
which is the usual form of the time-dependent Schrédinger equation for
particles moving in a stationary potential field V(7). Since eq.(33) is
not a wave equation, any wave-like implication is due, in its case, to its
connection with the time-independent Schrodinger equation (24), from
which it is obtained. Eq.(24) admits indeed, as is well known, a (discrete
or continuous, according to the boundary conditions) set of energy eigen-
values and ortho-normal eigen-modes, which (referring for simplicity to
the discrete case) we indicate respectively by E, and u,(7); and it’s a
standard procedure, making use of egs.(2) and (21) and defining both
the eigen-frequencies w, = E, /h andthe eigen-functions

2 2
VI V() Y=~ By = -

Dn(7t) = up(F) et = up (P e Pt/ (34)

to verify that any linear superposition (with constant coefficients ¢,,) of

the form
() = en Un(F 1), (35)

is a general solution of eq.(33).

Since eqs.(32) and (33) hold at same level of mathematical truism,
one may wonder what different roles they play in the treatment of de
Broglie’s waves.

At first glance, the time-dependent Schrédinger equation (33) ap-
pears to describe the deterministic evolution of an arbitrary superposi-
tion of monochromatic waves ,,(7,t), each one of which travels accor-
ding to a wave equation of the form (32) (with E = E,,) along the Helm-
holtz trajectories determined by the relevant time-independent Schro-
dinger equation (24).

Mainly because, however, of the energy-independence of eq.(33) and
of the property of the u,(7) of constituting a complete ortho-normal
basis, Born [20] proposed for the function (35) a role going much beyond
that of a simple superposition : although eq.(33) is not - by itself - a
wave equation, its solution (35) was assumed, under the name of "Wave-
Function", to represent the most complete description of the physical
state of a particle whose energy is not determined : a vision giving to
eq.(33) a dominant role both with respect to eq.(32) and to eq.(24).
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Even though “no generally accepted derivation has been given to
date" [21], this "Born Rule" aroused, together with Heisenberg’s uncer-
tainty relations, an intrinsically probabilistic conception of physical rea-
lity, associating moreover to the continuous and deterministic evolution
given by eq.(33) the further Postulate of a discontinuous and probability-
dominated evolution process, after interaction with a measuring appa-
ratus, in the form of a collapse (according to the probabilities |cn|2, in
duly normalized form) into a single eigen-state. Because of the Born
Rule, a sharp distinction is made, therefore, between a superposition of
independent mono-energetic waves ¥, (7,t) and their inextricable cou-
pling (due to the assumption of |)(7,¢)|* as a probability density) in a
single "Wave-Function" ¢ (7,t) evolving as a whole : a statistical mix-
ture which becomes even more inextricable (and non-local) for a system
of N particles, still assumed to be described by a single time-dependent
Schrédinger equation and Wave-Function.

The Born Rule provided a plausible interpretation of Schrédinger’s
equations (24) and (33) as long as the possibility of associating exact
ray-trajectories with any kind of Helmholtz-like equation was not yet
known. Such a newfound possibility suggests, however, the possibility
of a less striking interpretation of physical reality, limiting itself to view
the function (35) (in duly normalized form) as a simple average taken
over a superposition of independent mono-energetic waves ¥, (7, t), each
one piloting point-like particles along exact Helmholtz trajectories per-
taining to their own energy FE,, under the action of their own Wave
Potential Q(7, E,,). Being a merely mathematical assembling of either
observational or hypothetical information (the set of coefficients ¢,),
this average is not bound, of course, to respect the locality properties
of classical observables. Notice that, in any case, the property of any
U, (7, t) of undergoing its own Wave Potential Q(7, F,,)leads in general
to the progressive spreading of the "wave-packet" ¥ (7, ).

Reminding that, according to E.T. Jaynes [22], "our present quan-
tum mechanical formalism is (...) an omelette that nobody has seen how
to unscramble, and whose unscrambling is a prerequisite for any future
advance in basic physical theory", the mono-energetic de Broglie waves
- when considered as independent from one another (i.e. not scrambled
together) - could allow a non-probabilistic description in terms of exact
point-particle trajectories, providing a straightforward Wave-Mechanical
extension of Classical Dynamics.

3.2 - It’s worthwhile reminding that, although the time-dependent Schro-
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dinger equation (33) is a simple consequence of the time-independent
equation (24), its “stronger" version

2m - ~ 2mi oY

containing a time-dependent external potential V' (7,¢), may only be
considered as a Postulate, and is often assumed, indeed, as a First Prin-
ciple at the very beginning of standard textbooks.

Even though it cannot be obtained from de Broglie’s basic assump-
tion (10), it was accepted by de Broglie himself [5] with these words :
“The form of [eq.(33)] allows us to go beyond single monochromatic
waves and to consider superpositions of such waves. In addition, it sug-
gests the way to extend the new Mechanics to the case of fields varying
with time. Indeed, since it permits us to go beyond monochromatic waves,
time no longer plays a special part, and it is then natural to admit
that the form of the equation must be preserved when V depends on time
as the gemeral form of the equation of propagation of Y waves in the
non-relativistic Wave Mechanics of a single particle”. We limit ourselves
to observe that eq.(36) cannot lose, in its induction from eq.(33), its
statistical character.

3.3 - Let us finally come to the case of Bohm’s theory [23-34], and to its
connections with the present analysis. Bohm’s first step was to express
Born’s Wave-Function (35) (preserving its statistical interpretation) in
the form

Y(F,t) = R(7,t) e * GHO/R (37)

which leads, when introduced into eq.(36) - after separation of real and
imaginary parts - to a couple of well-known fluid-like equations (which
we shall omit here for brevity sake) where the main role is played by a
so-called “Quantum Potential” term of the form

12 VPR(7,t)

@p(rt) = =5 R(7,t)

(38)

K2 V2R(7,E) f
2m R(.E) ©
eq.(29), of which it represents in fact, for stationary external potentials
V(7), a time-evolving average.

formally coinciding with the mono-energetic Q(7, E) = —

Bohm’s replacement (37) - shaped on eq.(13), i.e on de Broglie’s
mono-energetic pilot-waves, whose objective reality was established once
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and for all by the Davisson and Germer experiments - depicts the func-
tion (7, t) of eq.(35) as a physical wave hopefully sharing the same ob-
jective reality of de Broglie’s (mono-energetic) waves. Bohm’s approach
is indeed a strong attempt to dress with plausibility the Born Rule by
presenting the Wave-Function (7, ¢) as the most general "pilot-wave".

The use of the Quantum Potential term is avoided (but implicit) in
modern Bohmian Mechanics (which remains fully equivalent to Bohm’s
original formulation) by means of the time integration, starting from an
initial position 7(¢ = 0), of the apodictic "guidance equation"

hog 6¢) B * Vo —p Vo
mi 2m i P ap*

(39)
where the term V G (7, ) is immediately obtained from eq.(37). Eq.(39)

requires of course the simultaneous solution, step by step, of a time-
dependent Schrédinger equation.

Since, as is shown in any standard textbook of Quantum Mechanics
[14, 15], the Born Wave-Function ¢ is associated with a probability cur-
rent density of the form J = L~ (¢* V ¢ — ¢ V ¢*) (a quantity

2mi

whose statistical nature extends to stationary states, for which J may
be shown to be time-independent), the vector field VG/m turns out
to coincide with J/(R?), representing therefore, in the general case, the
average velocity at which a fluid-like probability density is transported
along the flux lines.

While, indeed, de Broglie’s basic Ansatz p = h k= ﬁS, concer-
ning monochromatic matter waves, draws its objective reality from the
Davisson-Germer experiments, no experimental evidence allows to pass
off the (most general) probabilistic expression (35) of Born’s Wave-
Function as a "pilot wave" with an exact particle momentum of the
form p=hk = VG.

We outline our comments on the Bohmian approach as follows :

1) the quantity W;|2, in Bohm’s own words, is "a probability density
belonging to a statistical ensemble" ;

2) The Bohmian interpretation doesn’t differ too much, therefore,
from the "Copenhagen" one, which it basically endows with a visual
representation of the lines of probability flow ;

3) A statistical wave appears to be logically inadequate to act as a
force (deriving from Bohm’s Quantum Potential) on the moving particle ;



From Classical to Wave-Mechanical Dynamics 109

4) In case the Bohmians remain apodictically convinced of having
obtained a set of exact and objective point particle trajectories, holding
in the most general case (35), they don’t appear to have ever stressed
the contradiction of this fact with the Uncertainty Principle;

5) no distinction is made, in Bohmian works, between the (exact) sta-
tionary case and the (statistic) general case (35), and no perception is
shown that, at least in the stationary case, the presence of exact trajec-
tories would disprove the Uncertainty Principle;

6) no Bohmian paper appears to have ever pointed out the most
important property of de Broglie’s (monochromatic) pilot waves : the
presence of a wave-like Potential acting perpendicularly to the relevant
trajectories, limiting itself to deflect the particle motion without any
energy exchange;

7) last not least, the integration of eq.(39) requires the simultaneous
solution, step by step, of a Schrodinger time-dependent equation - a prac-
tical obstacle which is fully bypassed by our dynamical system (26)-(28),
and may explain the exiguous number of trajectory patterns computed,
for instance, in Ref.[31].

4 Discussion and conclusions

Our discussion is summarized in Tables I and II :

TAB.I TAB.II
EXACT (POINT-PARTICLE) PROBABILISTIC (WAVE-PACKET)
DESCRIPTION DESCRIPTION
a7 7 L0y Ry -
T m hgr ~om VO VO
dp - h2 V2R(7, E) = S (7
t m  R(F, E) dt — mi Y(7, 1)
V- (R*p) =0

TAB.I refers to our own approach, whose basic equations are enco-
ded in the structure itself of Schrodinger’s time-independent equation,
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and provide the exact trajectories of point-particles of assigned energy
E, piloted by a de Broglie matter wave of amplitude R (a wave whose
objective reality is shown by its diffractive properties), without requiring
the simultaneous solution of any Schrodinger equation ;

TAB.II, referring to the Bohmian approach, provides, on the other
hand, a set of probability flux-lines built up step-by-step by the simulta-
neous solution, starting from an assigned wave packet, of Schrodinger’s
time-dependent equation.

We are not proposing, in conclusion - with respect to the Copenhagen
and/or Bohmian interpretations - an equivalent route (in the sense, for
instance, of the Newtonian/Hamiltonian equivalence in Classical Mecha-
nics), nor a different level of approximation, nor a particular case : we
are proposing a different conception of physical reality.

The Bohmian Mechanics —whatever its role may be - is far from
the spirit of the present paper, whose aim is to suggest an exact, non-
probabilistic, uncertainty-free Wave Mechanics, running as close as pos-
sible to Classical Mechanics.

APPENDIX

After the use of eq.(4) and the separation of real and imaginary parts,
the Helmholtz eq.(3) splits into the system

V- (R’V¢)=2RVR V¢ + R*V.- =0 (A1)
D, k, w) = ZL[k2 — (nko)?] + W(7,w) =0 (A2)
0
where
Lo ¢ V2R(F,w)
W(r,w) = - %W ) (AS)

and the differentiation % - dr+ %—D - dk =0 of eq.(A2) is satisfied by

Bl
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the kinematic self-contained Hamiltonian system

di 9D _ck
& oF ke (A
dk oD cko .
i W_ V[ (Fyw) — W(F,w)] (A5)
V- (R?k)=0 (A6)

associating with the Helmholtz equation an exact stationary set of tra-
jectories along which the monochromatic rays (each one characterized by
its launching position and wave vector) are driven. Since no new trajec-
tory may arise in the space region spanned by the wave trajectories (so
that V-Veé =0), eq.(A1) tells us that VR - V¢ =0 : the amplitude
R(7,w) of the monochromatic wave - together with its derivatives and
functions, including W (¥, w) - is therefore distributed over the relevant
wave-front, normal to k = V ¢ (F,w), and the coupling term v W (7, w)
acts perpendicularly to the relevant ray trajectories. Eq.(Al) provides
moreover step by step, after the assignment of the wave amplitude dis-
tribution R(7,w) over the launching surface, the necessary and sufficient
condition for the determination of R(7,w) over the next wave-front, thus
allowing a consistent "closure” of the Hamiltonian system.

When, in particular, the space variation length L of the wave am-
plitude R(7, w) turns out to satisfy the condition koL >> 1, eq.(A2)
reduces to the well-known [13] eikonal equation

k2 = (V ¢)% = (n ko)2. (A7)
In this geometrical optics approximation the coupling role of the Wave

Potential is neglected, and the rays travel independently from one ano-
ther under the only action of the refractive index.
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