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ABSTRACT. Since de Broglie’s pilot wave theory was revived by
David Bohm in the 1950’s, the overwhelming majority of researchers
involved in the field have focused on what is nowadays called de Broglie-
Bohm dynamics and de Broglie’s original double solution program was
gradually forgotten. As a result, several of the key concepts in the
theory are still rather vague and ill-understood. In the light of the
progress achieved over the course of the 90 years that have passed
since de Broglie’s presentation of his ideas at the Solvay conference
of 1927, we reconsider in the present paper the status of the double
solution program. More than a somewhat dusty archaeological piece
of history of science, we believe it should be considered as a legitimate
attempt to reconcile quantum theory with realism.

RÉSUMÉ. Depuis que les idées de de Broglie furent revisitées par
David Bohm dans les années ’50, la grande majorité des recherches
menées dans le domaine se sont concentrées sur ce que l’on appelle au-
jourd’hui la dynamique de de Broglie-Bohm, tandis que le programme
originel de de Broglie (dit de la double solution) était graduellement
oublié. Il en résulte que certains aspects de ce programme sont en-
core aujourd’hui flous et imprécis. A la lumière des progrès réalisés
depuis la présentation de ces idées par de Broglie lors de la conférence
Solvay de 1927, nous reconsidérons dans le présent article le statut du
programme de la double solution. Plutôt qu’un fossile poussiéreux de
l’histoire des sciences, nous estimons que ce programme constitue une
tentative légitime et bien fondée de réconcilier la théorie quantique avec
le réalisme.
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1 Introduction

The Copenhagen interpretation and Everett’s Many Worlds interpre-
tation are undoubtedly very popular among the majority of quantum
physicists. However, it is often conveniently forgotten that these two
interpretations were severely and (most importantly) quite convincingly
criticized, most notably by John Bell [1]. Bell criticized in particular the
fact that the Copenhagen interpretation presupposes the coexistence of
two regimes of temporal evolution, during and in absence of a measure-
ment. However, the theory does not offer any objective criterion which
would make it possible to infer when one of these particular regimes
is valid (this is the problem of the so-called Heisenberg cut). Inter-
pretations of quantum mechanics that do not recognise wave function
collapse, such as the de Broglie-Bohm or many worlds interpretations,
do not require Heisenberg cuts and offer some answer to the objectifica-
tion problem: roughly speaking, during a measurement, one particular
potentiality is actualized. Although in both theories decoherence does
play a role in the answers they provide, one might still find them not
fully satisfying.1 It is also well-known that the decoherence program per
se does not bring a satisfactory reply to the objectification problem [2].

As a result it is commonly accepted, by those who are aware of these
criticisms, that the measurement problem is, for now, still a largely open
problem and that no particular interpretation of quantum mechanics can
be established nor privileged, solely on empirical grounds. Ultimately,
the interpretation of quantum theory is still a personal choice, dictated
by philosophical orientations rather than by facts. This does not mean of
course that one should discard the possibility that future experimental
data might, one day, allow one to discriminate between certain inter-
pretations. This is why we think it is necessary to have as complete
a picture as possible of the different plausible interpretations of quan-
tum theory and of the experimental implications these force upon us, by
which one may hope, one day, to be able to differentiate between them.
This picture must include theories which, over the past decades, might

1In a measurement-like situation, the wave-function evolves into a superposition
of macroscopically distinct states which will cease to interfere. In the de Broglie-
Bohm theory, the actual configuration will get trapped in one particular branch and
all other branches can be neglected for all practical purposes (these are the so-called
empty waves, and this aspect of the theory has been criticized many times). In
the many worlds interpretation, decoherence defines these many worlds. However,
positing extra worlds, just to explain that each potential result gets actualized in one
world, might seem excessive to some.
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not always have received their fair share of attention. One such theory
is de Broglie’s double solution program, which is a purely wave-monistic
theory, contrary to subsequent re-formulations of the theory such as the
pilot wave formulation or the Bohmian approach. As de Broglie wrote
concerning the double solution program [3]:

“[A] set of two coupled solutions of the wave equation: one, the Ψ
wave, definite in phase, but, because of the continuous character of its
amplitude, having only a statistical and subjective meaning; the other, the
u wave of the same phase as the Ψ wave but with an amplitude having
very large values around a point in space and which . . . can be used to
describe the particle objectively.”

It is probably not very well known however that the first attempt
to solve the wave-particle duality in favour of a pure wave picture – in
fact by considering nonlinear wave equations – can be traced back to
Einstein who, in 1909, wrote the following to Lorentz [4]:

“ [T]he essential thing seems to me to be not the assumption of sin-
gular points but the assumption of field equations of a kind that permit
solutions in which finite quantities of energy propagate with velocity c in
a specific direction without dispersion. One would think that this goal
could be achieved by a modification of Maxwell’s theory. . . . Contrary
to the opinion advanced in my last publication, it seems possible to me
that the differential equations that are to be sought are linear and homo-
geneous . . . However, one would be forced to do the latter [i.e., introduce
nonlinear or inhomogeneous equations], in my opinion, if one wished to
manage without introducing singular points, which certainly would be the
most satisfactory thing to do.”

This quote shows that Einstein contemplated the idea of introducing
nonlinear corrections in order to obtain solitary wave solutions, and that
he had some reservations when it came to the deliberate introduction of
singularities into the theory. One should keep in mind that he wrote this
before the advent of general relativity, in an era still governed by linear
equations.

Later, in the 1920’s, de Broglie proposed the so-called double-solution
program [3] as a way of solving the puzzle of wave-particle duality, start-
ing from the idea that particle-like properties can be explained solely in
terms of waves. By the 1950’s however, as a result of discussions with
Vigier (see [3], chapter VIII, section 1), de Broglie realized that his pro-



22 S. Colin, T. Durt and R. Willox

gram requires a nonlinear correction to the Schrödinger equation.2 His
goal, phrased in modern language, was to explain the stability of particles
in terms of solitonic properties of wave packets, for which wave-packet
spreading would be counterbalanced by nonlinearities. Unfortunately,
at the time, soliton theory still had to be invented.

de Broglie also thought that the pilot-wave theory, which he first
presented at the fifth Solvay conference of 1927 [8] (and which was later
rediscovered by Bohm in 1952 [6, 7]), was a degenerate double-solution
theory in which moving soliton-like solutions have been replaced with
point-particles (see [9] for a review and the contribution of D. Fargue,
same issue). More explicitly, the pilot-wave theory, in its non-relativistic
version, says that a single particle is not only described by a wave-
function ψ(t,x) but also by a position x(t). The wave-function always
evolves according to the Schrödinger equation, whereas the velocity of
the particle is given by the gradient of the phase of the wave-function
(evaluated at the actual position of the particle), but the exact mecha-
nism through which this coupling occurs is not made precise (contrary
to the double solution program in which the precise description of the
coupling of the u and ψ waves is one of the main stumbling blocks to
the development of such a theory). An ensemble of particles, on the
other hand, is described by the wave-function ψ(t,x) and by a distri-
bution of particle positions, denoted by ρ(t,x). A priori ρ(t,x) is not
related to the standard quantum distribution |ψ(t,x)|2, but the pilot-
wave theory reproduces the predictions of standard quantum mechanics
only if ρ(t,x) = |ψ(t,x)|2. If this last condition holds at some initial
time, it will hold for any later time, which is why such a distribution is
referred to as a quantum equilibrium distribution. The theory can be
generalized to many-particle systems [10, 6] and it can also be extended
in order to reproduce the predictions of standard quantum field theory

2As was noted by Vigier ([3], chap. VIII section 1), Einstein, in collaboration
with Grommer [5], had a very similar objective in the framework of his theory of
general relativity in the 20’s: the postulate of geodetics would not be an extra hy-
pothesis, but would be obeyed, de facto, by peaked solutions of Einstein’s nonlinear
equations moving on a weakly varying metric background. This idea presents many
deep similarities with de Broglie’s guidance equation which lies at the heart of the
de Broglie-Bohm hidden variable theory [6, 7]. In fact, Bohm-de Broglie trajectories
are the counterpart of geodetic trajectories in Einstein’s unitarian version of general
relativity. Of course, this similarity is not amazing because, as is well-known, de
Broglie and Einstein never accepted the Copenhagen interpretation in the first place
and favoured wave “monism” over wave-particle dualism in accordance with their
quest for a unitary explanation of all physical phenomena.
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[7] (in that case, fermionic particle positions and bosonic field configu-
rations, together with wave functionals, provide a complete description
of the universe).

Although in 1927 nobody fully understood the profoundness of the
conceptual problems linked to the interpretation of quantum theory [8],
de Broglie’s attempt [10] to derive a many particle guidance equation al-
ready contained germs of what would later be called the nonlocality issue.
In [10], de Broglie struggled with the necessity to formulate the guid-
ance equation in configuration space, rather than in “real” 3-dimensional
space. It was only in 1935, with the infamous EPR and Schrödinger cat
paradoxes that the issues of nonlocality and the measurement problem
were explicitly identified.3

Since de Broglie’s pilot wave theory was revived by David Bohm in
the 1950’s, the overwhelming majority of researchers involved in the field
have focused on what is nowadays called de Broglie-Bohm dynamics and
de Broglie’s original double solution program was gradually forgotten.
As a result, several of the key concepts in the theory are still rather vague
and ill-understood. For example, de Broglie himself, during his life time,
at times thought of particles as singular solutions to the Schrödinger
equation (see e.g. Ref. [13] and article of D. Fargue, same issue), but
sometimes also as peaked, but finite, (hump or lump like) waves. de
Broglie’s vacillation on this topic has a modern equivalent in the confu-
sion that surrounds so-called rogue waves in present-day nonlinear sci-
ence: are these indeed best described by peaked but finite, particular
solutions to certain nonlinear model equations, or might there be cases
where they are in fact mistaken for blow up-type solutions to such equa-
tions? These problems are the topic of section 3.2, where different types
of rogue and solitary waves and their relevance to the double solution
program will be discussed.

3It should be pointed out that, in 1926, Born [11] also struggled with entangle-
ment, when he described a typical scattering experiment between a projectile and
a target. Nowadays this is well-known: after A is scattered by B, the full system
A-B is highly entangled because of conservation of momentum: the recoil of B must
compensate the change of momentum of A [12]. At the time however, Born settled
this problem by conditioning the A-states on the B-states, an idea that reappears
much later in the framework of the modal interpretation. It is also worth remember-
ing that Bohm’s personal contribution, 25 years later, to the pilot wave theory was
in fact double: he showed explicitly how in its non-relativistic formulation, and in
an EPR like approach, the guidance equation is nonlocal. Moreover, he also under-
stood that what is nowadays called decoherence, actually provides a tool to solve the
measurement problem, when added to the pilot wave approach.
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Over the past 50 years, enormous progress has been made in the
study of solitonic solutions to nonlinear PDEs (cf. section 3), as a result
of which various nonlinear generalisations of the Schrödinger equation
have been studied. Fargue [9] has shown that in the free case there exist
several nonlinear PDEs that admit finite solitonic solutions (localised
humps) propagating in accordance with the de Broglie-Bohm guidance
equation. These equations are labeled ‘free’ in the sense that, apart from
a self-focusing nonlinearity, no external potential acts on the particle.
Moreover, all of these equations are Galilei invariant, which provides
an alternative explanation (see [14], section 2, and paper of T. Durt,
same issue) of why de Broglie’s guidance relation is fulfilled in the free
case. To our knowledge however, the original double solution program
has never been fully realised, despite the sporadic proposals of nonlinear
generalisations of the Schrödinger equation that have been made over
time. In section 2, we give a partial historical survey of these attempts.

In parallel to these largely inconclusive attempts, several ‘no-go’ the-
orems also inhibited research in the direction outlined by de Broglie in
1927. In the present paper we shall discuss two of these: Derrick’s no
go theorem [16] related to the stability of de Broglie like solitary waves
(in section 3.1) and Gisin’s theorem linking nonlinearity and nonlocality
(section 4.1). As we have shown in a previous paper [17], Derrick’s no-
go theorem suffers from a basic flaw, which is that it implicitly assumes
that the evolution equation is not norm-preserving (a sketch of the rea-
soning can be found in appendix C). Moreover, as we show in section
4.4, Gisin’s theorem can be circumvented provided the spatial distribu-
tion of de Broglie solitons obeys the Born rule. The dynamics however
remains nonlocal, just as in the case of certain classical nonlinear PDEs,
which we shall discuss in section 3.3 in relation to the role played by
conservation laws and resonant solutions for such equations.

In the light of these insights and of the progress achieved over the
course of the 90 years that have passed since de Broglie’s original ideas,
we hope we are now finally able to reconsider the status of the double
solution program. More than a somewhat dusty archaeological piece
of history of science, we believe it should be considered as a legitimate
attempt to reconcile quantum theory with realism4. An essential ingre-

4There have of course been other attempts in this direction, that do not fit nicely
with the wave monism of de Broglie. Here we have in mind Bohm’s theory in which
particles are represented in terms of material points, or spontaneous localisation
models, where wave particle duality is implicitly assumed to be present from the
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dient of this program, in our eyes, is nonlinearity. In this sense it differs
radically from the text-book formulations of quantum theory. In accor-
dance with Bell’s analysis and Gisin’s no-go theorem, this nonlinearity
is accompanied by nonlocality and the violation of Lorentz covariance,
which are also important departures from the mainstream formulation
of modern physics. As we shall discuss, nonlocality (in the sense of no-
signaling (section 4.5)) seems to be the price to pay if one wishes to adopt
a realistic interpretation of quantum theory (section 4.2), in full agree-
ment with Bell’s analysis which says that local realism is excluded by
the violation of Bell’s inequalities, while nonlocal realism most definitely
is not.

On the other hand – leaving aside questions of interpretation for a
moment – it could in fact very well be that the “missing link” between
quantum theory and general relativity (which is fundamentally a nonlin-
ear theory) is in fact nonlinearity, as was already suspected by J-P Vigier
several decades ago (from de Broglie’s recollection in [3]). If this is indeed
the case, it is imperative to pursue de Broglie’s program in depth in the
context of what are nowadays called ‘semi-classical’ gravitation theories
(an overview can be found in appendix B). Such a study might contribute
to the dissolution of the schism between quantum theory and gravita-
tion theories, which constitutes the most pressing theoretical challenge
in today’s physics.

It is worth noting that, quite recently, de Broglie’s point of view has
been revived, be it indirectly, by experimental observations in hydrody-
namics, which show that certain macroscopic objects, so-called walkers
(bouncing oil droplets), exhibit many of the features of the de Broglie-
Bohm (dB-B) dynamics [18, 19, 20, 21]. These unexpected developments
not only show that de Broglie’s ideas encompass a large class of systems,
but they might in the future also allow us to build a bridge between
quantum and classical mechanics, where ingredients such as nonlinear-
ity, solitary waves and wave monism play a prominent role (see also [15]
and the paper of C. Borghesi, same issue).

beginning. One may wonder whether de Broglie’s double solution program might not
be the last hope for a theory reconciling quantum theory and realism, that respects
wave monism.
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2 Historical developments surrounding the double solution
program

In this section, we provide an overview of some important ideas relevant
to the double solution program. These include developments in nonlinear
quantum mechanics, but also in general relativity and in interpretations
of standard (linear) quantum mechanics such as the pilot-wave theory.
The presentation of these contributions follows their timeline and is def-
initely not exhaustive.

2.1 de Broglie 1923–1927

The idea of the Broglie, back in 1923, was that propagation of a wave
should be associated to any corpuscular motion. Considering a corpuscle
or particle as a tiny clock, de Broglie realized that, in the simplest case
of free motion, the only way for the particle and the monochromatic
wave to remain in phase is if the energy (momentum) of the particle
is equal to the wave frequency (number) multiplied by a universal con-
stant (found to be the Planck constant). These now famous de Broglie
relations were first verified experimentally by Davisson and Germer in
1927, for electrons. To de Broglie’s mind, only the phase of the wave
(whose amplitude is the same everywhere in this simple case) had phys-
ical significance, which led him to call it the phase wave. Subsequently,
Schrödinger found a general equation of motion for the wave (called al-
ternatively the ψ-wave or quantum wave-function). However, later on,
due to the development of the probabilistic Copenhagen interpretation
by Bohr, Heisenberg and Born, the particle itself disappeared entirely
along the way.5 This was highly dissatisfying for de Broglie and in his
effort to reinstate the role of the corpuscle in the theory, he started to
develop his double solution program (1925-1927), the (first) core idea of
which is that there should be two synchronous, coupled, solutions of the
wave equation:

• a ψ-wave, the phase of which has physical significance but the
amplitude of which does not,

• and a u-wave, which is a solution describing a moving singularity,
the singularity corresponding to the particle. A trivial example

5It is actually stronger than that: the realistic character of the interpretation
disappeared entirely. Wave-monism does not necessarily preclude a realistic interpre-
tation (Schrödinger’s idea). However, wave-monism plus linearity does, in agreement
with Born’s analysis [11].
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would be u(t,x) = 1
|x−x(t)|e

iS(t,x)/~.

The phase of the u-wave is required to be equal to that of the ψ-
wave and the u-wave itself is supposed to provide a description of
the physical reality.

The second main idea of the program is that the singularity described by
the u-wave should follow the flow lines of the wave equation. de Broglie
in fact also wanted to get rid of configuration space, but we shall come
back to this idea later in this section. For the time being, it suffices
to say that the difficulties de Broglie [10] was confronted with arose
in his analysis of two interacting spinless particles.6 According to the
double-solution program, there should then be two u-waves, one for each
particle: u1(t,x) and u2(t,x). In order to obtain the equation satisfied
by both u1 and u2, de Broglie assumed that each u-wave would feel the
potential generated by the other. More precisely, in the presence of an
external potential V = V (x), the Klein-Gordon equation becomes

∆u− 1
c2
∂2u

∂t2
+

2i
~c2

V
∂u

∂t
− 1

~2
(m2c2 − V 2

c2
)u = 0, (1)

(the equation obtained from the free K-G equation by replacing the
energy operator by E + V ).

de Broglie therefore assumed that the system of coupled equations
was the following one

∆u1 −
1
c2
∂2u1

∂t2
+

2i
~c2

V1
∂u1

∂t
− 1

~2
(m2

1c
2 − V 2

1

c2
)u1 = 0, (2)

∆u2 −
1
c2
∂2u2

∂t2
+

2i
~c2

V2
∂u2

∂t
− 1

~2
(m2

2c
2 − V 2

2

c2
)u2 = 0, (3)

where V1 = V (|x − x2(t)|) and V2 = V (|x − x1(t)|), x1(t) and x2(t)
being the positions of the singularities and V being a classical potential
(a Coulomb or Yukawa potential for example). Here u1 and u2 are now
assumed to be of the form u1(t,x,x2(t)) and u2(t,x,x1(t)).

However, de Broglie did not attempt to solve this complex system.
Instead, as a preliminary theory, de Broglie replaced each u-wave by its

6As mentioned in the introduction, the difficulties met in the two-particle case are
precursors of the nonlocality problem, recognized some years later in the EPR paper,
and fully recognized by John Bell only several decades later.
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position. On the basis of the existence, in classical mechanics, of a func-
tion φ(x1,x2) for which the velocities are proportional to the gradients
of φ, he assumed that this is also the case in quantum mechanics. In non-
relativistic quantum mechanics, the last piece of the theory then comes
from the identification of this function φ with the phase of a function
Ψ which satisfies a 2-body Schrödinger equation. Doing so, he obtained
what is now referred to as the de Broglie-Bohm pilot-wave theory, a the-
ory which he saw as a mere approximation of the double-solution, but
which he nevertheless presented at the fifth Solvay congress (a detailed
analysis of [10] can be found in [8]). At the Solvay conference, the theory
faced serious objections and de Broglie soon rallied to the Copenhagen
camp. (de Broglie writes about this in the preface of his book [3], or in
[22] for example.)

2.2 Darmois - Einstein 1927

In 1927, de Broglie still lacked a crucial ingredient for his program: the
fact that ψ should obey a nonlinear wave-equation. In hindsight, this
problem should of course be viewed in parallel to the contemporary de-
velopments that took place in general relativity.

Around the same time, Einstein and Grommer, and Darmois inde-
pendently (see [22], page 971, [23] and references therein), tackled the
following problem. In general relativity, one has the nonlinear Einstein
field equations and it is further assumed that a corpuscular test parti-
cle follows a geodesic. The question is whether the geodesic equation
of motion can be derived from the Einstein field equations alone, if we
interpret the corpuscular test particle as some kind of singularity of the
field. In some cases it is indeed possible to show that, starting from a so-
lution of Einstein’s field equations, it is possible to add to this solution
a function describing a moving singularity and still obtain a solution,
provided that the singularity follows the geodesic equation of motion. In
other words, the field equations impose a particular guidance equation
on the particle (seen as a singularity in the field).

2.3 Bohm 1952

The starting point of Bohm [6] was to use the polar decomposition

Ψ(t,x1, . . . ,xN) = R(t,x1, . . . ,xN)e
i
~ S(t,x1,...,xN) (4)
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in the Schrödinger equation

i~∂tΨ = −
n=N∑
n=1

~2

2mn
∆nΨ + V (t,x1, . . . ,xN)Ψ, (5)

where mn is the mass of the n-th particle and V a classical potential.
This leads to a continuity equation for R2 and a Hamilton-Jacobi equa-
tion, if we admit that there is an extra potential, the quantum potential

Q(t,x1, . . . ,xN) = − ~2

2R

n=N∑
n=1

∆nR

mn
, (6)

and if we assume that the velocity of each particle is given by the gradient
of the phase, with respect to the corresponding coordinate, divided by
the mass of the particle.

The theory can also be formulated in a quasi-Newtonian fashion, if
the acceleration of each particle is given by

an(t) = −∇n(V/mn +Q)
∣∣∣∣
x1=x1(t),...,xN=xN(t)

. (7)

This dynamics reproduces the predictions of the standard interpreta-
tion of quantum mechanics, provided that the positions of the particles
are initially distributed according to Born’s law over an ensemble, and
provided that the velocities are initially given by

vn(ti) =
1
mn

∇nS(ti,x1, . . . ,xN)
∣∣∣∣
x1=x1(ti),...,xN=xN(ti)

. (8)

Note that (8) does not have quite the same status as (7): (8) is an initial
condition which can in principle be relaxed (see [24]) whereas (7) is a
dynamical law.

Another major contribution of Bohm was the detailed analysis of a
measurement situation [7], in order to explain the apparent reduction of
the wave-function. This analysis can be sketched as follows.

Let us denote by x (resp. y) the collection of positions belonging to a
system (resp. apparatus). We want to measure some observable Â of the
system thanks to the apparatus. The initial wave-function Ψ(ti, x, y) is
a product of the wave-function of the system with that of the apparatus

Ψ(ti, x, y) = ψsys(x)ψapp(y) = (
∑

n

cnan(x))ψapp, (9)
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where the an(x) are the eigenstates of Â. A ‘measurement’ amounts to
turning on some interaction Hamiltonian between the system and the
apparatus, which will correlate the eigenstates an(x) of Â to eigenstates
φn(y) of the apparatus (these φn(y) are macroscopically distinct states,
like pointer up or pointer down states). Therefore, at the end of the
measurement, the wave-function is

Ψ(tf , x, y) =
∑

n

cnan(x)φn(y) =
∑

n

cnΦn(x, y) , (10)

where the states Φn are the different branches of the wave-function, each
branch corresponding to a potential result of the measurement. These
branches have almost no overlap in the position basis (x, y). During
the measurement, the actual configuration (x(t), y(t)) finally becomes
trapped in one branch, say Φn0 , because the different branches are sepa-
rated by regions where |Ψ|2 ≈ 0 in which the configuration cannot move
into. Inside the branch n0, the actual configuration will only feel the
influence of Φn0(x, y) as far as the guidance equation (7) is concerned,
which explains why we can discard the other branches (which are there-
fore often referred to as empty waves). It is also virtually impossible
for the branches to overlap subsequently, because of the interaction of
the apparatus with the environment (an overlap would also require an
overlap in z – where z collectively denotes the positions of the particles
belonging to the environment – which is practically impossible). This
is how the theory answers the objectification problem mentioned in the
introduction.

In the same article [7], Bohm even proposed an extension to relativis-
tic bosonic fields.

2.4 de Broglie after 1952: some remarks

The work of Bohm caused a renewal of de Broglie’s interest in his aban-
doned double-solution program. In particular, de Broglie introduced a
new hypothesis, which he considered as indispensable, which is the non-
linearity of the equation of motion, i.e.: there should be a nonlinear
correction VNL to the Schrödinger equation

i~∂tψ = − ~2

2m
∆ψ + VLψ + VNLψ, (11)

which should only be important for peaked solutions (in order to preserve
the success of the standard interpretation). (For the time being we only
consider the case of a single particle.)
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VNL will contain a parameter, let us call it g, which measures the
strength of the coupling to ψ (for example as in VNLψ = −g|ψ|2ψ).
There are, in fact, strong experimental bounds on the value of g (see for
example [25, 26, 27]).

We shall now make a few crucial remarks concerning the double so-
lution program in the light of this new hypothesis of nonlinearity.

2.4.1 Remark 1: the connection to Einstein’s ideas

Let us assume that we have a ψ-wave solution to the nonlinear equation,
which is approximately equal to a standard quantum solution, i.e. to a
solution to the linear Schrödinger equation. Let us now consider a u-wave
which is possibly singular around a moving point. It is assumed that the
u-wave has the same phase as the ψ-wave: ψ(t,x) = R(t,x)eiS(t,x)/~.
One possible form for u is then r(x−x(t))ei~−1S(t,x) (where the function
r can be singular at the origin). Alone, just by itself, u is not a solution.
The hope of de Broglie, however, was that the sum of u and ψ would be a
solution, provided that x(t) moves along the flow lines, that is provided
that

v(t) =
1
m
∇S(t,x)

∣∣∣∣
x=x(t)

. (12)

The guidance equation would therefore arise from the nonlinear wave
equation in the same way as the geodesic equation of motion arises from
the Einstein field equations in general relativity.

This amounts to showing that the following equation is satisfied:

i∂t(r(x− x(t))eiS) = (− 1
2m

∆ + VL)reiS

+VNL[(R+ r)eiS ](R+ r)eiS − VNL[ReiS ]ReiS , (13)

(where ~ = 1) provided that mdx(t)
dt = ∇S(t,x).

de Broglie never gave an explicit form of the nonlinear correction
VNL to the Schrödinger equation (for an explicit proposal, see [28, 9]
and appendices B and C). However, once we specify a nonlinear term,
the above question can in principle be investigated.

2.4.2 Remark 2: from configuration space to physical space

In the standard interpretation of quantum mechanics, the wave-function
Ψ(t,x1, . . . ,xN) = Rei~−1S describing a system of N particles is defined
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on a configuration space of dimension 3N . Statistical predictions can be
obtained from this function Ψ. In particular, for a system of 2 particles
the probability density to find particle 1 at position x1 and particle 2
at position x2, is given by R2(t,x1,x2), and we have the continuity
equation

∂R2

∂t
+∇1 · (R2∇1S)

m1
) +∇2 · (R2∇2S)

m2
) = 0. (14)

In the double solution model, however, everything should be expressed
in physical space. The question is then how to reproduce the predictions
of the standard interpretation. In the following we present some insights
into this question from de Broglie and his collaborator Andrade e Silva.
These are supposed to be valid for the double solution program and the
pilot-wave theory.

For simplicity, let us consider the two-particle case. Instead of having
the wave-function Ψ(t,x1,x2), we have 2 functions, ν1 and ν2 (one for
each particle), defined on the physical space. It is assumed that these
functions are of the form

ν1(t,x,x2(t)), ν2(t,x1(t),x), (15)

where x1(t) and x2(t) are the positions of the moving singularities (or
particles). Let us call r1 and r2 the respective amplitudes, where r1 =
r1(t,x,x2(t)) and r2 = r2(t,x1(t),x). Each νn satisfies a wave-equation,
which is not yet specified however: all that is assumed is that there are
continuity equations for r21 and r22:

∂r21
∂t

+∇ · (r21v1) = 0,
∂r22
∂t

+∇ · (r22v2) = 0. (16)

In their attempt to derive configuration-space equations from those in
physical space, de Broglie and Andrade e Silva define R(t,x1,x2) =
r̃1(t,x1,x2)r̃2(t,x1,x2), where r̃1(t,x1,x2) is the expression obtained
from r1(t,x,x2(t)) by replacing x by x1 and x2(t) by x2 (similarly for
r̃2(t,x1,x2)). They then go on to show [29] that R2 satisfies the above
continuity equation (14), because of (16).

So far, it has only been assumed that ν1 and ν2 have associated
continuity equations, but their respective equations of motion have not
been specified yet. de Broglie and Andrade e Silva first assumed that
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the equations were of the form

i~∂tν1 = − ~2

2m1
∆ν1 + V (x− x2(t))ν1, (17)

i~∂tν2 = − ~2

2m2
∆ν2 + V (x1(t)− x)ν2. (18)

But these equations are too simple and they ran into difficulties in their
attempt to reproduce the standard predictions. They therefore assumed
that

i~∂tν1 = − ~2

2m1
∆ν1 + V (x− x2(t))ν1 + V ′

1(x− x2(t))ν1, (19)

i~∂tν2 = − ~2

2m2
∆ν2 + V (x1(t)− x)ν2 + V ′

2(x1(t)− x)ν2, (20)

where V ′
1 and V ′

2 are potentials of quantum interaction. In a series of
notes [30, 31, 32], Andrade e Silva considers cases of increasing com-
plexity (from 2 to 3 particles). What is clear from these notes is that
the new terms V ′ become more and more complex. More importantly,
however, is that the equations for the νn are nonlinear ones, as can be
inferred from (19) and (20) because the quantum potential V ′, like (6),
depends on the amplitudes of the waves. It also seems that the case of
indistinguishable particles was never treated.

This approach bears some resemblance to the notion of conditional
wave-functions and to the attempt of Norsen to express the de Broglie-
Bohm pilot-wave theory in physical space [33]. However this approach is,
in fact, significantly different in the sense that Norsen proceeds the other
way around: he derives the equations valid in physical space from the
one(s) that one has in configuration space. If one has a wave-function
Ψ(t,x1,x2) and two positions x1(t) and x2(t), the starting point of
Norsen’s approach is to define two conditional wave-functions

ψ1(t,x) = Ψ(t,x1,x2)
∣∣∣∣
x1=x,x2=x2(t)

, (21)

ψ2(t,x) = Ψ(t,x1,x2)
∣∣∣∣
x2=x,x1=x1(t)

. (22)

Since the equations of motion for Ψ and for the positions x1(t) and x2(t)
are known, the equation of motion for the conditional wave functions
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can be obtained. If one insists on writing the equation in terms of local
beables, it becomes a complicated equation with many new fields whose
role is to enforce entanglement. In particular, it is non-unitary.

The lesson to be drawn from this remark is that the wave equations in
physical space become highly complicated and in particular they become
nonlinear (even if there is no nonlinear correction to the Schrödinger
equation on configuration space).

2.4.3 Remark 3: the origin of the Born rule

If the particle positions are initially distributed according to |ψ(ti,x)|2
over an ensemble, they will be distributed according to |ψ(tf ,x)|2 for
any later time. This is a consequence of both the continuity equation
and of the fact that the velocity of the particle is equal to the quantum
mechanical current divided by |ψ|2. A concern of de Broglie was the
justification of |ψ|2 as a probability density (echoing an early objection
of Pauli to the pilot-wave theory). Two different answers have been
provided to this question (see also the contribution of Aurélien Drezet
to this volume).

One is due to Bohm and Vigier [34] who assumed the existence of
a sub-quantum fluid and showed that it can drive an out-of-equilibrium
distribution (ρ 6= |ψ|2) to equilibrium (ρ = |ψ|2) thanks to stochastic
fluctuations.

Another answer is due to Antony Valentini [35] and it does not sup-
pose any modification of the quantum theory. Valentini and Westman
[36] have simulated the evolution of a non-equilibrium distribution for a
particle whose wave-function is a superposition of the first 16 modes of
energy (over a domain that is a two-dimensional square box). They have
shown that the distribution quickly relaxes to equilibrium on a coarse-
grained level. This relaxation to quantum equilibrium was expected
from earlier theoretical results. In [37], the coarse-grained H-function is
defined:

H̄(t) =
∫
dq1 . . . dq3N ρ̄ ln (

ρ̄

|ψ|2
) (23)

where the bar over a quantity denotes a coarse-graining. It is shown that
dH̄(t)

dt ≤ 0. Since the minimal value of that function (zero) can only be
reached if ρ̄ = |ψ|2, it indicates a tendency to go to equilibrium. Since
then, many more numerical simulations have been performed in order
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to study various aspects of the relaxation process: how modifications
of the pilot-wave theory affect the relaxation [38], how the relaxation
time scales with the number of modes [39], whether relaxation to quan-
tum equilibrium occurs for fermions [40], how it behaves for longer times
[41], as well as the identification of systems with residual non-equilibrium
[42, 41]. The origin of the relaxation process has also been better un-
derstood since then (see [43, 44]). See also the contribution of Christos
Efthymiopoulos et al. to this volume.

2.4.4 Remark 4: the normalization of the wave-function

Independently from de Broglie’s double solution program, several at-
tempts have been made to add a nonlinearity to the Schrödinger equa-
tion (see for example [25, 45, 46] and the first two appendices to the
present paper). One relevant example for this remark is a formalism due
to Steven Weinberg.

In 1989, Weinberg enlarged the formalism of standard quantum me-
chanics in order to allow the possible existence of nonlinear corrections
to the Schrödinger equation [47]. His goal was to devise experimental
tests for the existence of such corrections [48]. However his formalism is
very restrictive, because it does not aim to explain the reduction of the
wave-function and there is still a collapse postulate in the formalism. As
such, Weinberg can only consider nonlinear corrections for which Zψ is
a solution if ψ is a solution (where Z is an arbitrary complex number).
Such nonlinear corrections are called homogeneous and they allow for
a rescaling after a measurement has occurred. Weinberg puts it very
clearly that the nonlinear Schrödinger (NLS) equation (which is similar
to the Schrödinger-Newton equation discussed in appendix B and is also
introduced in appendix C)

i∂tψ = − 1
2m

∆ψ + ε|ψ|2ψ (24)

does not belong to his formalism.

However, if positions exist together with the wave-function, as in the
de Broglie-Bohm pilot-wave theory, such a restriction can be overcome
altogether. To make this claim clear, let us sketch such a theory.

A system would be described by a collection of particles positions
x(t) and by a wave-function ψ(t, x) obeying a nonlinear wave equation.
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An ensemble, on the other hand, is described by a wave-function ψ(t, x)
and by a distribution of particle positions ρ(t, x). For many nonlin-
ear equations (such as the NLS equation or the Schrödinger-Newton
equation), the continuity equation is identical to that of the linear
Schrödinger equation. Therefore, if the particles move according to the
standard guidance equation and if we start from a distribution such that
ρ(ti, x) = K|ψ(ti, x)|2, it will be of the form ρ(tf , x) = K|ψ(tf , x)|2 for
any later time tf (since in this case it is not possible to rescale the solu-
tion and obtain another one, a constant factor K needs to be introduced
to ensure that ρ is normed to 1).

In a measurement-like situation, we could end up with a superpo-
sition of branches

∑
n

cnΦn(x, y) (similarly to (10)). Another possibil-

ity would be for the wave-function to collapse naturally to one state
Φn0(x, y) (for example, in the case of a gravitational collapse of the
wave-function). In any case, the actual configuration will get trapped
inside one branch and will only feel the influence of this branch as
far as the guidance equation goes. If we repeat the experiment many
times, what is the probability to find the result n0? Over many ex-
periments the position configurations will be distributed according to
ρ(tf , x, y) = K|Ψ(tf , x, y)|2 and the probability to see the result n0 is
equal to the probability of the configuration being in the support of
Φn0(x, y), which is |cn0 |2.

Notice that the absence of rescaling does not cause any problem for
a pilot-wave theory with nonlinear evolution of the wave-function, for
the simple reason that |ψ|2 is not a probability density and does not
need to be normed to 1 (ρ is the probability density). The difference
between |ψ|2 and ρ was made very clear in the work of Valentini on the
possible existence of quantum non-equilibrium. Regarding the latter, if
we depart from ρ(ti,x) = K|ψ(ti,x)|2, it is worth investigating whether
there is a relaxation to ρ(tf ,x) = K|ψ(tf ,x)|2 (where,as before, the tilde
denotes a coarse-graining), despite the fact that ψ undergoes a nonlinear
evolution.

Such reasoning can in fact be carried over to the double-solution
program. In conclusion, there is in fact no need for ψ to be normalized,
whether ψ obeys a linear or a nonlinear equation in the double-solution
(be it the watered-down pilot-wave theory or not).



L. de Broglie’s double solution program: 90 years later 37

3 Nonlinearity and nonlocality in a classical context

Dispersion is a well-known property of solutions of linear wave equations.
It is also the main reason why the stability of particles, if interpreted
as waves, cannot be explained within in the framework of the linear
wave mechanics of Schrödinger or de Broglie. This apparent failure of
a pure (in this case linear) wave picture then leaves the door wide open
to dualist interpretations à la Copenhagen. In the framework of nonlin-
ear partial differential equations however the situation is quite different,
and many examples are known of nonlinear wave equations that admit
solitary waves or even solitons as exact solutions. As a result, there
exists a long tradition in mathematical physics and particle physics to
consider solitons or in a broad sense, soliton-like, localized quasi-stable
solutions to certain field equations, as quasi-particles or effective parti-
cles (see [49] for a thoughtful review and e.g. [50] for a recent extension
of the soliton-particle paradigm to supersymmetric gauge theories). This
approach is motivated not only by the fact that solitons are such that
their spreading due to dispersion is exactly compensated by nonlinear
effects, but also by the fact that solitons can undergo collisions, cross
each other etc, without losing their ‘individuality’: after a while the
number of “bumps” as well as the heights and speeds of these bumps in
a multi-soliton solution are the same as before the collision. This seems
to suggest that they would be ideal candidates for realizing de Broglie’s
program. However, the remarkable stability properties with respect to
mutual interactions exhibited by genuine solitons, as opposed to mere
traveling or solitary waves (i.e., localized hump-like waves that evolve
without changing shape but which lack the stability of the solitons w.r.t.
to mutual interactions), those properties only occur in integrable mod-
els. Integrability being a very stringent condition for a nonlinear PDE,
one immediately realizes that the number of possible model equations
which describe genuine solitons must be quite limited. A possibly even
more serious limitation however, is the fact that genuine integrability
(in the sense of complete stability for all possible interactions between
all soliton modes in a given model) appears to be limited to nonlinear
PDEs in 1+1 or 2+1 dimensions.7

7The well-known connection [51, 52] of many 1+1 and 2+1 dimensional soliton
equations with the self dual Yang-Mills (SDYM) equations not withstanding: al-
though the SDYM equations contain most of the known traditional soliton systems
as special reductions, no 3+1 dimensional solitonic solutions to SDYM seem to be
known.
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Since integrability therefore seems far too stringent as a requirement,
one is forced to conclude that genuine solitons (in the strict, mathemat-
ical, sense) are perhaps not the best candidates for the u wave that
describes physical particles in the double solution program. There is
however still the possibility that special solitary wave solutions to some
suitably chosen nonlinear wave equation could play that role. Especially
if this equation possesses certain nonlocal features, which for example
would make that sufficiently narrow (peaked) solitary waves never quite
collide, for example by scattering before collision. The notion of nonlo-
cality in classical nonlinear waves equations is discussed in section 3.3.

3.1 A classical no-go theorem

First it is necessary, however, to dispel a common misconception re-
garding the stability of solitary waves in higher dimensional models.
As pointed out above, genuine solitonic interactions seem to be a phe-
nomenon that is limited to 1+1 or 2+1 dimensional nonlinear wave equa-
tions. Traveling wave solutions, however, exist for large classes of non-
linear systems, in any dimension. For reasons that are not immediately
clear to these authors, it seems that for the past 50 years a sizeable part
of the physics community has interpreted a result by Derrick [16], as
definite proof that no stable localized wave solutions can exist for higher
dimensional nonlinear wave equations that arise from a variational prin-
ciple and that possess some sort of Galileian invariance. However, the
class of variational problems for which the mathematical argument in
[16] is correct, turns out to be much narrower than its author intended.
Namely: if the wave equation one is studying also conserves the norm
of the solution, then its energy is actually bounded because of norm
preservation, and stable localized solutions do exist! In Appendix C we
explain the problem with Derrick’s argument in detail on the example
of the nonlinear Schr̈odinger (NLS) equation, a paradigm of solitonic
evolution, for which the original argument of [16] – when taken at face
value – mistakenly predicts that the solitons must be ‘unstable’.

3.2 Rogue waves vs. solitary waves as de Broglie’s u waves

It is important to stress that the appearance of solitons in, say the NLS
equation (equation (34) in the appendix), or of the ground state in the
Schrödinger-Newton equation (30) discussed in Appendix B, is always
due to the same deterministic mechanism: an initial condition radiating
excess energy (and in the integrable case, possibly breaking up in the
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process) and thereby relaxing to a stable state. Contrary to what one
is accustomed to in quantum theory, there is no ‘collapse’ or quantum
jump that needs to be postulated as some deus ex machina to obtain a
reduced system. The relaxation process described above is completely
deterministic and is intrinsic to the evolution described by the nonlinear
wave equation one is dealing with. In the context of nonlinear extensions
of quantum theory this is quite an appealing feature, since a determin-
istic equation with such a property can be interpreted as a model that
incorporates a spontaneous collapse process.

It is in this context that the concept of a rogue wave might play an
important role. Rogue waves are often defined as waves with extreme
amplitudes, appearing suddenly and apparently spontaneously, as if out
of nothing, just to disappear as suddenly as they arose. Adhering to this
definition for now, numerous well-established testimonies attest to the
existence of oceanic rogue waves of which a deep understanding (see [53])
is still lacking today. Recently however, decisive progress in the field has
been realized in relation to nonlinear optics, in which optical rogue waves
have been produced and observed repeatedly in a laboratory setting [54].
One could of course wonder whether this concept of a rogue wave, as an
emergent and in most cases ephemeral phenomenon, is related to that of
a solitary wave, which is inherently a persistent feature of the dynamics
in a nonlinear model.8 As mentioned above, solitary waves are stable,
localized, wave packets that emerge from initial perturbations (or wave
fronts) that are most often of comparable size to the emerging wave.
Rogue waves, on the contrary, typically arise from much smaller initial
perturbations, sometimes even from mere noise.

An interesting result in this respect is reported in [55], where numer-
ical simulations of a nonlinear system with third order dispersion show
that incoherence in the system can induce three different rogue wave
regimes. If the incoherence in the system is small, then a large ampli-
tude solitary wave emerges from small initial fluctuations and persists
asymptotically, i.e.: it is stable even when interacting with the small
scale fluctuations that remain in the system. If incoherence increases,
there is an intermediate regime for which such a solitary wave appears
and disappears intermittently, and finally when incoherence is too high,
very short-lived rogue waves can appear, but only sporadically. It is

8We shall, for the time being, leave aside the possibility of ‘rogue waves’ that
would emerge spontaneously but persist afterwards, for example because of soliton
resonances. Such resonances will be described in section 3.3.
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reported in [55] that the statistics (in time) of these rogue wave events
differs considerably from that of the intermittent behaviour in the inter-
mediate regime. This leads to the conclusion that the amount of noise
in a nonlinear system might actually determine the type of event that
can take place.

Noise is of course known to drastically change the dynamics in many
nonlinear systems (see e.g. [56] for a review). For the NLS equation
for example, although the stability of solitons in the one (space) dimen-
sional case is unchanged, when in two or three space dimensions additive
or multiplicative noise is added to the system, any solution will suffer
a blow-up in finite time [56, 57]. Thus, in higher dimensions, in the
presence of noise, sharply peaked ‘rogue waves’ that only appear spo-
radically, might very well be indistinguishable from solutions that blow
up because of a singularity appearing in finite time.

Even in cases where the amplitude of the rogue wave is too small for
it to be considered a ‘singularity’ that developed in a solution to some
nonlinear wave equation, it seems undeniable that rogue waves are in
many cases indeed related to such singularities. A popular technique
for describing rogue waves for a host of nonlinear, mainly integrable,
equations is as rational solutions to these equations [58]. Such ratio-
nal solutions are often obtained as special limits of soliton solutions or,
more generally, as degenerate cases of algebro-geometric solutions for in-
tegrable PDEs (see e.g. [59] for a very general theory of such rogue wave
solutions). Perhaps the most famous example is the so-called Peregrine
soliton ∣∣ψ(ξ, τ)

∣∣ ∝ ∣∣∣ 4(1 + 2iξ)
1 + 4τ2 + 4ξ2

− 1
∣∣∣ (25)

which is considered to be the basic rational solution to the self-focusing
NLS equation [60]:

i
∂ψ

∂ξ
+

1
2
∂2ψ

∂τ2
+ |ψ|2ψ = 0. (26)

This rational solution is of course non-singular for real ξ and τ , i.e. as
a solution to the physical self- focusing NLS equation, but it clearly
does have a singularity locus in the complex (τ, ξ) plane: the rational
curve ξ2 + τ2 = −1/4. Hence, the sudden appearance and subsequent
disappearance of the Peregrine soliton (depicted in figure 1) can be un-
derstood as the result of the closest approach of this solution in the real
(ξ, τ) plane to this singularity locus. The closest approach obviously
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occurs at (ξ, τ) = (0, 0), which corresponds to the maximal amplitude of
the Peregrine soliton in figure 1.

Figure 1: Three dimensional plot of the Peregrine soliton (25) in the
(τ, ξ) plane, clearly showing both the finite spatial and finite temporal
extent of the wave.

Traveling wave-reductions of 1+1 dimensional nonlinear PDEs, gener-
ically, have movable singularities in the complex plane (i.e., singularities
the positions of which are not fixed by the coefficients of the equation,
but which depend on the initial conditions). Hence, for a given non-
linear PDE, some of its traveling wave solutions will – in real time and
space – necessarily pass ‘near’ a complex movable singularity, the po-
sition of which depends on the initial conditions one chooses. For all
practical purposes, such solutions will therefore exhibit rogue wave be-
haviour. Whether this type of behaviour is related to the blow-up phe-
nomenon for certain nonlinear PDEs is not entirely clear, but it does
seem to be at the heart of the rogue wave phenomenon. This being
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said, since general solutions to such traveling wave reductions of nonlin-
ear PDEs will, generically, involve Painlevé transcendents, they cannot
be expressed in closed form. Hence, only very special solutions will be
representable in analytic form, and algebro-geometric solutions (involv-
ing theta functions) and their degenerations such as rational solutions
therefore constitute an important class of examples.

Although such rational solutions are very special, they do appear
to have some bearing on the rogue wave phenomenon as observed in
the real world. It took a considerable amount of time before the exis-
tence of the Peregrine soliton in a physical (optical) system (described by
the self-focusing NLS) could be experimentally confirmed [60], but since
then it has been observed, for example, in multicomponent negative
ion plasmas [61] and in experimental water-wave tanks [62]. Moreover,
higher-order Peregrine solitons (e.g. degenerations to rational solutions
of multi-soliton solutions) have also been observed [63]. Indeed, a rather
popular technique for simulating rogue waves in experimental situations
is to start from well-defined initial conditions, more or less tailored to
match very specific exact solutions to the model equations under con-
sideration (e.g. rational solutions in the NLS case or special shaped line
solitons in the case of the Kadomtsev-Petviashvili (KP) equation [64]).
Recent numerical results [65] show that, at least in the KP case, i.e. for
rogue waves in shallow water, the solitonic approach fits rather well with
the initial value problem for selected initial profiles. However, contrary
to what is known for the one dimensional NLS equation [66], it is not
clear yet whether these candidates really fit with the experimentally ob-
served rogue waves. In other words, it is unclear whether they can be
connected to generic initial conditions for the nonlinear PDEs of interest,
especially in the presence of noise.

A more fundamental problem however – if one thinks of applications
to quantum theory – is that there does not seem to be a valid analytic
description yet of rogue waves in 3+1 dimensions. This problem is of
course mainly due to the aforementioned dearth of integrable systems
in higher dimensions. Furthermore, so far, no family of special solu-
tions to NLS (or any other nonlinear wave equation for that matter) has
been identified that would exhibit the sort of transition between different
regimes that has been observed in [55] and it is not clear whether the
behaviours in these three regimes are due to the same phenomenon or
rather, whether solitary wave-type (i.e. persistent) behaviour is actually
fundamentally different from (sporadic) rogue-wave like behaviour. It is
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therefore still possible that, one day, the difference between ‘rogue’ and
‘solitary’ waves turns out to be a mere semantic one, i.e. that they are
essentially the same phenomenon but simply with relaxation time scales
(and frequencies of occurrence) that differ according to the physical cir-
cumstances. For the time being it seems best however to treat them as
separate phenomena, where the term ‘rogue wave’ refers to a short-lived
(ephemeral) localized wave appearing and disappearing sporadically, and
where a ‘traveling’ or ‘solitary’ wave is a localized wave that persists af-
ter it was created (or introduced as an initial condition) in the nonlinear
evolution. In this sense, rogue waves might be useful in the context of
deterministic models for spontaneous collapse (cf. appendix A and B)
but in the context of de Broglie’s double wave program it is the solitary
wave concept that seems more relevant.

3.3 Nonlocality and instability in nonlinear wave equations

As mentioned before, if de Broglie’s u wave is to be interpreted as a
solitary wave, then this wave will almost certainly be a solution to a
non-integrable nonlinear wave equation. In which case this equation
must contain sufficiently many ‘nonlocal’ features, if one wants to avoid
problems with colliding solitary waves in a description of a many par-
ticle system. No definite candidate for such a model equation has been
found yet, but in [14], section 2 (see also [15] and [17]), some plausible
candidates are investigated.

‘Nonlocality’ in a nonlinear PDE comes in many forms. The
Schrödinger-Newton equation (cf. equation (30) in Appendix B) is man-
ifestly nonlocal because of its integro-differential term, but its purely
differential formulation

i~
∂Ψ(t,x)

∂t
= − ~2

2m
∆Ψ(t,x) +mV (t,x) Ψ(t,x)

∆V = 4πGm
∣∣ψ(t,x)

∣∣2, (27)

is of course equally nonlocal because of the coupling of the ψ and V fields
through a Poisson equation. Other interesting examples of systems with
this type of nonlocality are the generalized Manakov system

iat + axx ± λ|a|2a+ 2a(η + ζ) = 0 ,
ηtt − c2Lηxx = −µL(|a|2)xx , ζtt − c2T ζxx = −µT (|a|2)xx, (28)
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which arises in the description of nonlinear acoustic surface waves in
crystals [67], or the system(

∂2
x + ∂2

y

)
A+ 2ik ∂zA+

2k2

η0
η A = 0 , ∆η = −κ̃

∣∣A∣∣2, (29)

which is a paraxial nonlinear wave equation that describes light in a
medium with an optical thermal nonlinearity that induces a change in
the refractive index η of the medium [68].

As described in [67] (pp. 213), although non-integrable9, system
(28) has solitary wave type solutions that possess a remarkable and in
the present context highly desirable property: above a certain threshold
velocity, collisions of solitary waves are impossible because the solitary
waves effectively ‘brake’ before colliding and practically come to rest at
a finite distance from each other. This sort of behaviour is of course only
possible because of the nonlocal character of the interaction.

The dynamics described by system (29) have even more spectacular
nonlocal features. As described in [68], the (optical) solitary waves that
arise in the medium described by (29) can be shown, experimentally,
to attract each other even when their optical fields do not overlap. A
three dimensional experimental set-up even led to observations of solitary
waves capturing each other in a spiralling motion on a circular orbit, with
tangential velocities that are in fact independent of the distance between
the solitary waves.

However, nonlinear wave equations do not always need to have an
explicit nonlocal term in order to exhibit nonlocal features in their so-
lutions. In fact, because of the global nature of the conservation laws
for such wave equations, it is possible for an interesting interplay be-
tween nonlinearity and nonlocality to manifest itself. As is well known,
classical field equations that can be derived from a variational principle
with a symmetry group with a finite (or countably infinite) number of
generators10 have local conservation laws of the form ρt = divF , and
hence their conserved quantities have to be expressed as integrals over

phase space :
∂

∂t

∫
Ω

ρ dv = 0.

9The reduction λ = µT = 0, ξ(x, t) ≡ 0 of (28) is the usual Zakharov system which
is a known integrable system, integrable through inverse scattering techniques.

10It might be less well-known that variational problems with symmetries with a
non-countable number of infinitesimal generators, like those arising in general rela-
tivity or general gauge theories, might not have proper conservation laws at all. This
is essentially the content of Noether’s second theorem [69].
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In the case of linear or linearizable systems, for well separated states,
the superposition principle still guarantees some sort of ‘approximate’
local conservation of such conserved quantities. For example, although
the energy or momentum of such a system is only ever given exactly by
an integral over the full phase space Ω, as long as two localized waves
in a linear system are well separated, their respective energies and mo-
menta will approximately be conserved locally, over the extent of each
wave separately. This approximate view would allow us to consider each
solitary wave as an individual entity in such a system. On the other
hand, for nonlinear systems, such an approximate local conservation is
not guaranteed at all. For example, take a situation where two solitary
waves evolve according to a nonlinear evolution rule, at a considerable
distance from each other. In the absence of a superposition principle
such a two-hump state will not be an exact solution to the nonlinear
equation and it will, over time, relax to a stable state through some ra-
diative process. Now, since the conservation laws for such a system only
dictate global invariance, over the whole of Ω, locally almost anything
can happen: one of the solitary waves might for example radiate all or
most of ‘its locally visible’ mass and energy out into the rest of phase
space and suddenly disappear, or at least change its amplitude consid-
erably. Moreover, if there is no maximum speed (a ‘speed of light’) in
the system, the radiative part of the solution that is generated in this
relaxation process will permeate the entire phase space instantaneously.
Which means that in such a system, at least in principle, there will be
some spooky action at a distance, as this radiation perturbs the other
solitary wave instantaneously.

For example, in [70], an extremely weak and long-range interaction
between optical cavity solitons in an optical fibre is described. Since
these are interactions in a real physical system, their speed is of course
limited by the speed of light, but even then it was reported that the
acoustic waves in the fibre responsible for the interaction were able to
influence solitons separated by an effective distance of the order of an
astronomical unit.

Another feature of nonlinear wave equations which plays an impor-
tant role in manifestations of such ‘implicit’ nonlocality11, is that of
so-called resonant solutions [71, 72]. These are solitary wave solutions
to certain nonlinear (not necessarily integrable) wave equations that are
intrinsically unstable in the sense that they either ‘decay’ into several

11As opposed to the ‘explicit’ nonlocality of equations (27–29).
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stable solitary waves or, conversely, merge into a solitary wave that is
asymptotically stable. The exact instant in time however where such
fission or fusion of solitary waves will take place is governed by an in-
ternal phase of the solution, and is therefore in principle unknowable to
an outside observer. The existence of such solitary waves in atomic non-
linear chains has been demonstrated in [73]. An example of a resonant
solution to the equation discussed in [72] is shown in figure 2.

Figure 2: A plot in the xt−plane of the resonant solitary wave
4 ∂2

∂x2 log
(
1 + ek3t−kx + e[1+3k(k−1)]t−x+δ

)
with amplitude 1 and velocity

1 + 3k(k − 1), which decays into two smaller but stable solitary waves
(with amplitudes k and (1−k), and speeds k2 and (1−k)2 respectively)
for k = 0.6 and internal phase constant δ = 0. Time runs from t=-300
to 260.

Decaying resonant solutions are extremely interesting in the context
of nonlocality because of their intrinsic instability. Since the internal
phase that determines the instant at which the resonant state will decay
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is, in general, strongly influenced by the interactions with other waves
in the system, even the tiniest perturbation of this metastable state, in
the most remote part of phase space, might provoke an instant decay, as
it were resetting the internal clock of the resonant wave. Moreover, as
will often be the case, if the system is non-relativistic then this influence
will be instantaneous, offering a dramatic example of a counter intuitive
nonlocal effect (in a classical, non-quantum, sense), solely due to the
nonlinearity of the system.

4 No-go theorems: nonlinearity vs. nonlocality and no-
signaling

4.1 Gisin’s no-go theorem.

Several authors (Polchinski [74], Gisin [75], Czachor [76] and others)
have shown that nonlinear generalisations of the Schrödinger equation,
at the level of the configuration space, are generically nonlocal. Roughly
summarized, Gisin’s argument [75] goes as follows: nonlinear corrections
to the linear Schrödinger equation make it possible, in principle, to dis-
tinguish different realizations of the same density matrix (this is related
to the so-called mobility property [76], made explicit by Mielnik [77]).
By performing a local measurement on a system A that is entangled
with a distant system B, one is able, by collapsing the full wave func-
tion, to obtain realizations of the reduced density matrix of the system
B which differ according to the choice of the measurement basis made in
the region A. Therefore, in principle, nonlinearity can be a tool for send-
ing classical information faster than light, contradicting the no-signaling
property valid in the framework of linear quantum mechanics [75].

These nonlocal features have been used (Christensen and Mattuck
[78], Durt [79]) to explain the violation of Bell inequalities in the frame-
work of the so-called Bohm-Bub model [80], which is a stochastic hidden
variable model aimed at simulating the collapse process thanks to a non-
linear modification of the linear quantum theory. Actually, the Bohm-
bub model is a prototype of what are nowadays called collapse models,
which aim at providing a realistic description of quantum phenomena
and in particular of the collapse process, which in this context, is as-
sumed to result from the presence of an intrinsic nonlinear modification
of the Schrödinger evolution.

As has been shown by Gisin, a large class of collapse models (e.g. the
collapse models discussed in [81, 82, 83, 84, 85, 86]) as well as a more
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standard interpretation of quantum theory in which a von Neumann
collapse occurs during the measurement process, in accordance with the
Born rule, in fact do not contradict the no-signaling property thanks
to the combination of stochasticity and nonlinearity in these models,
which somehow conspires so as to respect causality “on average” [87].
This property is explicitly addressed in appendix D where the relation
between the Born rule and no-signaling is discussed.

4.2 Realism and nonlocality

The question of nonlocality, as well as the question of relativistic in-
variance are problematic in all realistic interpretations of the quantum
theory. For instance, in an apparently Lorentz covariant collapse model
(cf. appendix A) – the so-called flash ontology proposed by Tumulka [86]
– it is assumed that spontaneous localizations are distributed according
to a Lorentz-covariant distribution, when computed in different inertial
frames. However, as noted in [88], one is always required in this model
to select a privileged frame to begin with. Once such a frame is selected,
Tumulka’s model makes it possible to compute the influence of quan-
tum jumps (flashes) on the wave function assigned to the system (here
N non-interacting particles obeying Dirac’s equation), but this aspect of
the model is manifestly not Lorentz covariant, although the resulting dis-
tribution of quantum jumps (flashes or events in space-time) is Lorentz
covariant. This is a general feature of dB-B and collapse models (and
more generally of all collapse models, as explained in [89]): a privileged
frame must be chosen in which nonlocality is necessarily present.

As mentioned above, the no-signaling condition is respected in all
these models thanks to a quasi-miraculous conspiracy of stochasticity
and nonlocality, which results in the disappearance of nonlocal action-
at-a-distance after it has been averaged in accordance with the Born
rule.12

It is however generally admitted that Gisin’s no-go theorem does
hold in the case of purely deterministic generalisations of the linear
Schrödinger equation, such as the aforementioned Schrödinger-Newton
equation (30) [90, 91] or the NLS equation, for the simple reason that in
the case of deterministic evolution equations, stochasticity is in principle

12This is also true for what concerns less realistic theories in which the collapse
process is induced by the measuring apparatus: the no-signaling theorem is valid
provided the Born rule is obeyed. We shall come back to this point in the Appendix
D.
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absent. This being said, as we shall discuss next, there do exist several
different ways to interpret Gisin’s result.

4.3 Circumventing Gisin’s theorem (1): nonlinearity without nonlocal-
ity

Gisin’s argument relies on a nonlinear modification of the Schrödinger
equation due to Weinberg [47] (cf. section 2.4.4). Now, it could be that
there exist specific nonlinear modifications of the Schrödinger equation
that do not belong to the class considered by Gisin, but no such modifi-
cation is known. For instance, Bilianicki-Birula has proposed a nonlinear
potential [25, 27] that factorizes into local potentials whenever the full
wave function factorizes into a product of local wave functions. This
property is not sufficient however to escape the limitations imposed by
Gisin’s theorem if the subsytems are entangled. Another example is
provided by the so-called Hartree regime, which is valid precisely in sit-
uations where no entanglement appears between the subsystems A and
B, as discussed in [12]. In theorem 3 of that reference, the following is
shown:

A bipartite system, initially prepared in a factorisable (non-necessarily
pure) state

ρAB(t = 0) = (ρA(t = 0)⊗ ρB(t = 0)) ,

remains in a factorisable state throughout the evolution,

ρAB(t = 0) = (ρA(t = 0)⊗ ρB(t = 0)) ∀t ≥ 0,

if and only if the effect of the Hamiltonian can be factorised as follows:

∀t ≥ 0, [HAB(t), ρAB(t)]

= ([Heff
A (t), ρA(t)])⊗ ρB(t) + ρA(t)⊗ ([Heff

B .(t), ρ(t)]),

where [Heff
A (t), ρA(t)] = TrB([HAB(t), ρAB(t)]) and [Heff

B (t), ρB(t)] =
TrA([HAB(t), ρAB(t)]), in which case i~ ∂

∂tρA(t) = [Heff
A (t), ρA(t)] and

i~ ∂
∂tρB(t) = [Heff

B (t), ρB(t)]. This constitutes what is called the mean
field or Hartree approximation in which any subsystem “feels” the aver-
age potential generated by the other subsystems. Obviously, the reduced
dynamics of the subsystems A and B is highly nonlinear because the lo-
cal, effective, dynamics of one subsystem contains averages performed on
the second subsystem. Contrary to Gisin’s argument however, the ensu-
ing dynamics does not make it possible to distinguish different realiza-
tions of a same initial density matrix ρAB(t = 0) = ρA(t = 0)⊗ρB(t = 0),
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as the dynamics is of first order in time, and formulated only in terms
of the density matrix ρAB(t) = ρA(t)⊗ ρB(t).

4.4 Circumventing Gisin’s theorem (2): Chaotic dynamics, equilibrium
distribution and onset of the Born rule

One of the most interesting aspects of de Broglie’s pilot-wave theory
is the possible existence of so-called quantum non-equilibrium distri-
butions [35], which are distributions in which the configurations (po-
sitions or fields) are not distributed according to Born’s law (e.g.,
ρ(t,x) 6= |ψ(t,x)|2 for a single particle system). Results from experi-
ments realized on such systems would obviously disagree with standard
quantum mechanics. Although there is no doubt that such systems are
in principle allowed in the pilot-wave theory, one has to admit that none
have been observed to this day (as all experiments realized on quantum
systems yield results that are in perfect agreement with Born’s law).
Therefore, if quantum non-equilibrium distributions existed in the early
stages of the universe, they must have quickly relaxed to quantum equi-
librium. This process of relaxation to quantum equilibrium is supported
by numerous numerical simulations [36, 38, 39, 40] and the process of
relaxation has been thoroughly investigated within chaos theory in [43].
Despite the fact that dB-B theory is a no-collapse theory – thus pro-
hibiting the use of arguments such as those used in the Appendix where
the collapse process is invoked – it is well-known that it does respect the
no-signaling requirement, provided equilibrium has been achieved. Once
again, no-signaling results in this case from of a perfect balance between
stochasticity (à la Born) and signaling.

All these results suggest a possible route for circumventing Gisin’s
theorem: if, in accordance with the de Broglie double solution program,
particles are identified with solitonic solutions of a nonlinear modifica-
tion of Schrödinger’s equation such that the trajectories of these solitons
obey dB-B dynamics, then, making use of the aforementioned results
concerning the Born rule and no-signaling (section 4.1 and appendix D),
the no-signaling condition is respected once the process of relaxation is
achieved.

4.5 Not circumventing Gisin’s theorem (3): supraluminal telegraphy

Another interesting line of research is that where one accepts the impli-
cations of Gisin’s theorem, for instance in the framework of semi-classical
gravity models à la Diosi-Penrose, which leads to the question of when
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and where nonlocal, supraluminal communication is possible. It is worth
mentioning that several experiments were performed by Gisin’s group in
the past in order to reveal hypothetical finite speed influences (spooky ac-
tions at a distance) that might occur during the collapse process. These
experiments were realized with long-distance entangled pairs of photons
[92] and they all led to negative results, confirming thereby the standard
predictions of the quantum theory (see also [93] for proposals of similar
tests to be realized in satellites13). In the past [79], it has been shown
however, that certain nonlinear modifications of Schrödinger’s dynamics
(e.g. the Bohm-Bub dynamics) make it possible to reproduce a large
set of experimental data, even when entangled systems are involved. To
our knowlegde, no systematic study of nonlinearity induced signaling has
been performed up to now. For instance, the aforementioned negative
result experiment [92] certainly imposes experimental bounds on non-
linearity induced signaling, but it is not clear yet to which extent the
various nonlinear extensions of the Schrödinger equation mentioned in
that paper have been ruled out by this type of experiment.

5 Discussion and conclusion

5.1 de Broglie versus Bohm

This review paper, sketching the context and relevance of de Broglie’s
double solution program in present-day physics, led us to discuss several
properties that are usually not considered in the framework of the so-
called causal interpretation of de Broglie-Bohm.

This is because most often de Broglie’s original ideas were forgotten,
as they disappeared in the simplified version of the double solution pro-
gram that is the pilot wave theory (see contribution of D. Fargue, same
issue). In the pilot wave formulation, the mechanism through which
the real wave and the Ψ wave interact is silenced, and in the Bohmian
approach, the u wave is replaced by a material point.

13It is also well-known in the context of general relativity that, in principle, Lorentz
invariance is broken by the gravitational interaction [93]. However at the surface of
the Earth, no violation of Lorentz symmetry has been measured so far. In CERN for
instance the standard model has been repeatedly confirmed, which confirms indirectly
that local physics can be explained by relativistic quantum field theory. In Gisin’s
lab in Geneva, where violations of Bell’s inequalities have been realized with pairs
of entangled photons separated by a spacelike distance of 10 km, the quest for a
privileged reference frame has also systematically led to negative results [92].
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This simplifying approach however invites certain important criti-
cisms. For example, the mere idea of a material point violates what is
termed the ‘No Singularity Principle’ in [94], according to which

“[L]ocal infinity in physics is not admissible, that is to say . . . nature
(locally) abhors infinity . . . ”.

Material points (as well as the singular solutions of de Broglie’s dou-
ble solution program) of course violate this principle, but this is obviously
not the case for hump-type, non-singular solutions of de Broglie’s pro-
gram which are characterized by a finite-but-non-zero size and a finite
amplitude.

Whereas in the Bohmian approach the linear structure of the dynam-
ical equation is respected, our analysis shows that important features
of the dB-B dynamics such as nonlocality and nonseparability can be
shown to derive from the assumption that the evolution of the system is
governed by fundamentally nonlinear PDEs.

Last but not least, as noted by Bush [21], the physics of ‘walkers’
(outlined in the next paragraph) is reminiscent of de Broglie’s double
solution program, rather than of the dB-B interpretation, since in hy-
drodynamics, at the macroscopic level, only continuous and non-singular
quantities can define the state of the system: the physics of walkers is
wave-monistic.

5.2 Walkers: a macroscopic realization of the double solution program?

Even in the field of quantum wave mechanics, de Broglie-Bohm (dB-
B) trajectories [3, 6, 95] remained for years a rather confidential and
academic topic14. Recently however, they have regained a certain
prominence since they were realized in a laboratory setting in artifi-
cial macroscopic systems, as bouncing oil droplets or so-called walkers
[18, 19, 20, 21]. These take the form of oil droplets bouncing off the
surface of a vibrating bath of oil, excited in a Faraday resonance regime
(the walkers are prevented from coalescing into the bath, the vibration
of which creates a thin film of air between its surface and the droplet,
and therefore seem to levitate above it).

14Although dB-B trajectories [3, 6, 95] have been studied in relation with the mea-
surement problem, they are often considered as conceptual tools rather than empirical
realities, among other reasons because the dB-B dynamics is often considered to be
an ad hoc reinterpretation of the standard quantum theory.
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Walkers exhibit rich and intriguing properties. Roughly summarized,
they were shown experimentally to follow dB-B-like quantum trajecto-
ries. For instance, when the walker passes through one slit of a two-slit
device, it undergoes the influence of its “pilot-wave” passing through
the other slit, in such a way that, after averaging over many dB-B like
trajectories, the interference pattern typical of a double-slit experiment
is restored and this despite the fact that each walker passes through only
one slit. The average trajectories of the drops exhibit several other quan-
tum features such as orbit quantization, quantum tunneling, single-slit
diffraction, the Zeeman effect and so on. Another surprising feature is
a pseudo-gravitational interaction that has been observed between two
droplets. In [19], for instance, it is mentioned that:

[D]epending on the value of d [which represents the impact parameter
of the collision] the interaction is either repulsive or attractive. When re-
pulsive, the drops follow two approximately hyperbolic trajectories. When
attractive, there is usually a mutual capture of the two walkers into an
orbital motion similar to that of twin stars . . . .

These observations suggest that a ‘fluidic’, hydrodynamical formula-
tion of wave mechanics is possible, in which the droplet would play the
role of de Broglie’s u wave, while the properties of the environmental
bath are assigned to the Ψ wave of de Broglie.

5.3 Conclusion.

Nearly one century after their genesis, de Broglie’s ideas remain largely
unexplored. To this day, only a few serious attempts have been realized
in order to reformulate quantum dynamics as a nonlinear dynamics.
This approach might, however, constitute an interesting bridge towards
quantum formulations of gravitation15 which has the merit that it draws
from general relativity the lesson that nonlinearity and gravitation are
indissociable. It also has the merit that it might explain, in gravitational
terms, the cohesion of elementary particles (and, to a larger extent, of
matter as a whole), a problem Einstein already faced when he developed
the theory of the photon (cf. the quote in the introduction) and which
was originally addressed by Poincaré himself in 1905 when he introduced
the so-called Poincaré pressure in order to explain why electrons, viewed
as force fields, do not spread with time. This approach also forces us to

15Penrose argued that [96] [T]he case for “gravitizing” quantum theory is at least
as strong as that for quantizing gravity . . . , an idea to be compared to Møller and
Rosenfeld’s views on quantum gravity (cf. appendix B).
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adopt a rich and colorful description of Nature in which typical quantum
features such as nonlocality and interdependence share the stage with
typical features of complex classical systems such as unpredictability and
nonlinearity. This might be the price to pay if one wishes, following de
Broglie, to develop a non-dualistic representation of the physical world.

We hope that these ideas will ultimately lead to new predictions that
could be tested in the laboratory, and bring these ‘old’ debates about
the measurement problem and the interpretation of the quantum theory
back into the realm of experimental physics.
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A Collapse models

The main idea behind collapse models is to replace the deterministic
and linear Schrödinger equation by a stochastic and nonlinear one. This
approach was pioneered by Pearle [97] and Ghirardi, Rimini and Weber
[81] (whose model is commonly referred to as the GRW model). The
aim of these models is to solve the measurement problem by explaining
why macroscopic objects are localized.

The basic ingredient of the GRW model is a hypothetical mechanism
of spontaneous localization (SL) which would be active everywhere in
our universe and which would ultimately explain why classical objects
are characterized by an unambiguous localisation in space [83]. The
GRW model [81] predicts for instance that the quantum superposition
principle is violated in such a way that a macroscopic superposition (a
Schrödinger cat state) will collapse into a well-resolved localised wave
packet (with an extent of the order of 10−7 m) after a time inversely
proportional to the mass of the pointer. This time becomes very small
in the classical limit, seen here as the large mass limit. For instance, the
original GRW model predicts that the collapse time is of the order of
10−7 s, for a pointer of mass equal to 1023 a.m.u..
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Towards the end of the 1980’s several refinements of this model, such
as the continuous spontaneous localization (CSL) model ([82] and [98]),
appeared and there now exists an extended zoology of SL models, such
as those attributing the source of spontaneous localization to

• a dedicated universal localization mechanism (GRW [81], CSL
[82, 98], Quantum Mechanics with Universal Position Localization
(QMUPL) [83, 84] and Adler’s SL models [85]),

• self-gravitation (Diósi [84] and Penrose [99]),

• fluctuations of the spacetime metric (Károlyházy, Frenkel et al.
[100]),

• quantum gravity (Ellis et al. [101, 102])

and so on. In spite of their differences, these models have in common
that they lead to accurate predictions regarding the quantum-classical
transition [103]. We invite the interested reader to consult the recent
and exhaustive review paper of Bassi et al. dedicated to this topic [83]
as well as reference [104] where a careful estimate of the SL parameters
assigned to these various models is provided.

B The Schrödinger-Newton equation

In the 1960’s, Møller [105] and Rosenfeld [106] proposed that the source
term in Einstein’s equations would be the mean quantum stress-energy
tensor. The basic idea behind this proposal is that whereas matter is
quantized, space-time is not. In the non-relativistic limit, this leads
[107, 108] to the Schrödinger-Newton integro-differential equation:

i~
∂Ψ(t,x)

∂t
= −~2 ∆Ψ(t,x)

2m
−Gm2

∫
d3x′

ρ(t,x′)
|x− x′|

)Ψ(t,x), (30)

where ρ(t,x′) is the quantum density. An immediate consequence of
this equation is that even a “free” particle will feel its own gravitational
potential, due to the source ρ(t,x′) = |Ψ(t,x′)|2. In other words, the
full energy now contains a contribution from the gravitational self-energy,
proportional to

−Gm
2

2

∫
d3xd3x′

ρ(t,x)ρ(t,x′)
|x− x′|

= −Gm
2

2

∫
d3xd3x′

|Ψ(t,x)|2|Ψ(t,x′)|2

|x− x′|
,

(31)
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which is the average value, with weight ρ = |Ψ|2, of

−Gm
2

2

∫
d3x′

ρ(t,x′)
|x− x′|

. (32)

Perhaps the most interesting feature of the Schrödinger-Newton equa-
tion is its essential nonlinear character. Non-linearity is of course already
present at the classical level due to the fact that the gravitational field
also contributes to the stress-energy tensor. At the quantum level how-
ever, nonlinearity is an intrinsic feature of the mean field approximation.
This has been noted by a series of physicists (Jones [109], Penrose [99]
and many others), who insisted on the fact that, if we want to provide a
quantum formulation of the gravitational interaction, it is inconsistent
to neglect the intrinsic nonlinear nature of gravitational self-interaction.
It was also recognised very early on that gravitational self-interaction
might have something to do with spontaneous localisation [107].

The Schrödinger-Newton equation is part of a larger class of in-
teresting physical models called Wigner-Poisson (or quantum Vlasov-
Poisson) systems that describe particle density functions in phase-space
[110, 111]. In this context, global existence and uniqueness of solutions to
the Schrödinger-Newton equation has been shown by Illner and Zweifel
in [111], where the asymptotic behaviour of its solutions for the case
of a repulsive (Coulomb) potential was also discussed. As explained by
these authors, the difference between the repulsive and the attractive
(gravitational) cases is in fact far greater than a mere change in sign in
the interaction term in the equation. Essential differences arise when
one tries to discuss the stability and asymptotics for generic solutions
for both types of systems. The general asymptotics and stability of so-
lutions to the Schrödinger Newton equation (30) is discussed by Arriola
and Soler in [112], refuting the widely held belief that “[A]n attractive
force might lead to a blow-up in finite time . . . ” (as claimed in [113],
where the existence of solutions for the repulsive case was first proven).
The stability of stationary solutions to the Schrödinger-Newton equa-
tion (30) was proven much earlier by Cazenave and Lions [114] and,
independently, by Turitsyn [115]. Moreover, it has been shown in [112]
that there exist spherical symmetric solutions for the static Schrödinger-
Newton equation corresponding to excited states with breather-like prop-
erties. Numerical evidence for such states also seems to exist (cf.[116]).
Furthermore, numerical results [117] for axially symmetric solutions to
the static Schrödinger-Newton equation, show that these correspond to
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energies that are higher than that of its spherically symmetric ground
state.

Another interesting result is due to Arriola and Soler [112], who have
shown that for negative values of the energy, the natural dispersion of
a state is inhibited by the nonlinearity in (30) and that this leads to
a collapse16 to solutions that oscillate around the ground state of the
equation. In a physical setting, this criterion yields a lower bound on
the mass of self-gravitating objects of a given size below which such a
collapse cannot occur. Several attempts have been made at simulating
the Schrödinger-Newton equation [118, 119, 120, 121, 116, 122] mostly
in the spherically symmetric case (although general schemes do exist,
cf.[116]) with the aim of demonstrating the existence of such a gravi-
tational collapse. Numerical evidence presented in [122] indicates that
for sufficiently ‘massive’ initial conditions (such that they have negative
energy), there is indeed a clear contraction of the initial condition to a
unique and stable state. Moreover, the author of [122] gives a condition
(based on some numerical estimates) for an initial gaussian wave packet
to undergo such a collapse :

√
r2, its spatial extent, should satisfy the

inequality √
r2 ≤ (1.14)3(~2/GM3). (33)

These results seem to suggest that the irreversible mechanism of such a
collapse for the equation (30) is of the same nature as the mechanism
that leads to the appearance of stable solitons in the case of the nonlinear
Schrödinger (NLS) equation [17]: by radiating part of their mass (norm),
wave packets diminish their energy until they reach a ground state (soli-
tonic in the case of NLS) for which energy and norm conservation forbid
further radiation.

C No-go theorems: Derrick’s theorem.

In his famous paper [16] Derrick sets out to show that stable traveling
wave type solutions cannot exist in three or more dimensions. To this
end he uses what is essentially a variational argument, but as we shall see
(and as was explained in great detail in [17]), this argument should be
treated with great care! As the mathematical reasoning in [16] is in fact
applicable to equations in just a single space dimension (+time) as well,

16More precisely: in [112] it is shown that initial states with positive energy will
expand asymptotically, and inhibition of such dispersion with an ensuing collapse is
only possible for initial stationary states with negative total energy.
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we choose a particular example on which it will become immediately
clear not only that the entire reasoning is false, but also why that is the
case.

Let us consider the one dimensional NLS equation

i
∂ψ

∂s
+
∂2ψ

∂z2
+

∣∣ψ∣∣2ψ = 0, (34)

which can be derived from a variational principle for the action

ANLS(ψ) =
∫∫ +∞

−∞

[
i

2
(
ψ∗
∂ψ

∂s
− ψ

∂ψ∗

∂s

)
−

∣∣∂ψ
∂z

∣∣2 +
1
2

∣∣ψ∣∣4] dzds, (35)

and which is known to have remarkably stable localized (travelling) wave
solutions: the so-called NLS solitons. It is a well known fact that (suffi-
ciently fast decaying) initial conditions necessarily evolve towards trains
of such solitons (while radiating excess energy) and that the solitons
are not only stable for small perturbations but even scatter completely
elastically among themselves.

The action (35) is invariant under gauges ψ(z, s) 7→ eiεψ(z, s), trans-
lations z 7→ z + ζ and s 7→ s + σ, and Galilean transformations:
(z, s, ψ) 7→ (z − vs, s, e−i( v

2 z+ v2
4 s)ψ ). By Noether’s theorem, the first

three of these symmetries (of the action) give rise to the following con-
served quantities for NLS:

N(ψ) =
∫ +∞

−∞

∣∣ψ∣∣2dz, P (ψ) = i

∫ +∞

−∞

(
ψ∗
∂ψ

∂s
− ψ

∂ψ∗

∂s

)
dz

and E(ψ) =
∫ +∞

−∞

(∣∣∂ψ
∂z

∣∣2 − 1
2

∣∣ψ∣∣4)dz.
Moreover, the fourth variational symmetry (the Galilean invariance)
yields the relation

dR

ds
=
P (ψ)
N(ψ)

for R(ψ) =
1

N(ψ)

∫ +∞

−∞
z
∣∣ψ∣∣2dz,

which shows that the center of mass of a solution to NLS moves with
constant speed and hence, that any localized travelling wave solution∣∣ψ(z, s)

∣∣2 =
∣∣φ(z − vs)

∣∣2 can be put to rest by a Galilean transforma-
tion. It is therefore natural to look for stationary solutions of the form
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Ψ(Z, S) = eiβSϕ(Z), which for some parameter β ≥ 0 (if one wishes this
solution to be localized in space) must satisfy:

∂2ϕ

∂Z2
+

∣∣ϕ∣∣2ϕ = βϕ.

Derrick points out that the energy of such a stationary solution is (still)
given by

E(ϕ) =
∫ +∞

−∞

(∣∣ ∂ϕ
∂Z

∣∣2 − 1
2

∣∣ϕ∣∣4) dZ, (36)

and then considers dilated functions ϕζ(Z) = ϕ(ζZ) (ζ ∈ R>0), with
regard to which he wishes to minimize the energy. For this purpose he
defines

Eζ :=
∫ +∞

−∞

(∣∣∂ϕζ

∂Z

∣∣2 − 1
2

∣∣ϕζ

∣∣4) dZ = ζEK +
1
ζ
EP ,

in terms of a strictly positive ‘kinetic energy’ term EK =
∫ +∞

−∞

∣∣ ∂ϕ
∂Z

∣∣2dZ
and a potential energy term EP = − 1

2

∫ +∞
−∞

∣∣ϕ∣∣4dZ which is always
strictly negative. In this set-up, ϕ(Z) = ϕ1(Z) is supposedly ‘stable’
with respect to dilations if (and only if) it minimizes Eζ at ζ = 1. How-
ever, as the following simple calculation shows17

dEζ

dζ

∣∣∣
ζ=1

≡ EK − EP = 0 ⇔ EK = EP ,

this is impossible as the kinetic and potential energies, by definition,
have opposite signs.

The conclusion therefore seems to be that no stable traveling wave so-
lution can exist for the NLS equation, which is obviously incorrect given
the existence of soliton solutions for this equation. There is however
a glaring oversight in Derrick’s argument, which is that the equations
he wants to discuss might have other variational symmetries (and con-
servation laws) than the two he needs in his variational set-up: time
translational and Galilean invariance. Coming back to our example: al-
though the NLS evolution is clearly (L2) norm preserving, the dilated

17One also finds that
d2Eζ

dζ2

˛̨̨
ζ=1

= 2EP ≤ 0, which would indicate that the energy

can only reach a maximum at ζ = 1, instead of a minimum.
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functions ϕζ(Z) used in Derrick’s variational argument do not preserve
this norm. Hence, so-called ‘stability’ with respect to such dilations is
irrelevant when it comes to the real dynamics of the equation. Instead,
one must formulate a variational argument for a class of functions with
constant norm, which amounts to considering a variational principle with
a Lagrange multiplier for the conserved norm.

In particular, the stationary NLS equation
∂2ϕ

∂Z2
+

∣∣ϕ∣∣2ϕ = βϕ can
be derived from the variational principle for the action

A =
∫ +∞

−∞

(∣∣ ∂φ
∂Z

∣∣2 − 1
2

∣∣φ∣∣4) dZ + γ

∫ +∞

−∞

∣∣φ∣∣2dZ
for φ(Z) = ϕ(Z) , γ = β.

Consider now the class of functions ϕξ(Z) = ξ−1/2ϕ(Z/ξ) and vary the
action A over ϕξ(Z), instead of the original dilations. This variation
is now norm preserving. Requiring that ϕ(Z) ≡ ϕ1(Z) minimizes the
action

Aξ = γN + ξ−2EK + ξ−1EP

at ξ = 1, and we obtain

dAξ

dξ

∣∣∣
ξ=1

= −(2EK + EP ) = 0 ⇔ EP = −2EK ,

for a kinetic and potential energy as defined above. Note that the sta-
tionary NLS equation tells us that −EK − 2EP = βN , and hence that

EK =
βN

3
, EP = −2βN

3
⇒ E = −β N

3
≤ 0,

with energy E as in (36).

Moreover, if we consider a rescaled function ϕη(Z) = η−1ϕ(Z/η),
which can be shown by similar arguments to be still a solution of the
stationary NLS equation but with η-dependent norm (and energy), we
find that

β = −EK + 2EP

N
∝ N2,

so that the total energy scales as N3 : E = −β1N
3

3
(for some β1 ≥ 0).
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In particular, the well-known solitonic solutions of NLS equation

ϕ(Z) =
√

2λ
cosh(λZ + δ)

, β = λ2,

correspond to the values N = 4 |λ|, E = − 4
3 |λ|

3 and β1 = 1
16 .

Hence, the energy of a localized (single hump) solution to the sta-
tionary NLS (i.e., a stationary soliton) is indeed, a priori, unbounded:
it decreases with increasing norm. The energy is however, de facto,
bounded from below through the norm of the initial condition (

√
N0 ):

E = −4
3
|λ|3 ≥ −N

3
0

48
,

as the dispersive character of the NLS equation makes that any initial
condition will lose energy and, necessarily norm, as it evolves in time
(and, as a matter of fact, converges to a collection of solitons).

A similar conclusion can be reached for many nonlinear evolution
equations with analogous symmetry/conservation properties [123, 115]:
as soon as a nonlinear evolution equation possesses extra conservation
laws (e.g. for the norm of the solution), Derrick’s argument fails and
a stable traveling wave becomes a possibility, in any dimension. For
example, the Schrödinger-Newton equation

i~
∂Ψ(t,x)

∂t
= − ~2

2m
∆Ψ(t,x)−Gm2

∫
R3

|Ψ(t,x′)|2

|x− x′|
d3x′ Ψ(t,x)

can be derived from the action

ASN (ψ) =
∫∫

dtd3x
[ i~

2
(
ψ∗(x, t)

∂ψ(x, t)
∂t

− ψ(x, t)
∂ψ∗(x, t)

∂t

)

− ~2

2M

∣∣∇ψ(x, t)
∣∣2 +

GM2

2

∫
d3y

∣∣ψ(y, t)
∣∣2

|x− y|
∣∣ψ(x, t)

∣∣2]
as discussed in great detail in ref.[17]. It obeys the same virial-like
relation as the NLS equation for its energy : 2EK + EP = 0, and has a
‘ground state’ with total energy E(ϕ) = − e

3N(ϕ)3 G2M5

~2 (for e ≈ 0.163).
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D Appendix: Born rule and no-signaling.

Let us consider an alternative formulation of the standard quantum the-
ory in which the probability of observing the outcome of an observable
would not be equal to the square of the modulus of the projection of the
initial quantum state, prior to measurement, onto the eigenspace asso-
ciated to this outcome, but in which it would rather be proportional to
another power of this modulus.18 In this case, as we shall see, the no-
signaling condition would no longer be satisfied. Technically, the proof
is very simple. Let us consider, as in the preamble of Gisin’s no-go the-
orem, a bipartite entangled system composed of a subsystem A and a
subsystem B, while both subsystems are subject to local measurements.

For convenience we shall limit ourselves to a proof in which only
pure states are involved, but the generalisation to non-pure states (mix-
tures) is straightforward. Let us assume that Alice and Bob’s sys-
tems are prepared in the pure (but not necessarily factorizable) state
|Ψ〉AB =

∑d−1
i,j=0 αij |i〉A ⊗ |j〉B (where |i〉A and |j〉B are states from or-

thonormalized reference bases) and that Bob measures a local observable
in the B region. Such an observable is represented by a local self-adjoint
operator of the form Id.A ⊗OB so that its average value is equal to

d−1∑
i,j,i′,j′=0

α∗ijαi′j′〈i|A ⊗ 〈j|BId.A ⊗OB |i′〉A ⊗ |j′〉B

=
d−1∑

i,j,i′,j′=0

α∗ijαi′j′δi,i′〈j|BOB |j′〉B

=
d−1∑

j,j′=0

d−1∑
i=0

α∗ijαij′〈j|BOB |j′〉B .

It is worth noting that the results of Bob’s local measurements are
the same as those that he would obtain had he prepared his system in
the state described by the effective or reduced density matrix19 ρB =∑d−1

j,j′=0

∑d−1
i=0 α

∗
ijαij′ |j′〉B〈j|B . Formally, this matrix can be obtained by

18Born assumed e.g., in first instance, [11] that the probability would be propor-
tional to the modulus of the projection, not to its square, before he changed his mind
when he expressed the rule carrying his name.

19Actually, when the full state is entangled, there does not exist a local pure state
that would reproduce the statistical distribution of local measurement outcomes.
Instead, this statistics is described by the so-called reduced density matrix.



L. de Broglie’s double solution program: 90 years later 63

tracing out external degrees of freedom (in this case Alice’s degrees of
freedom):

TrA(|Ψ〉AB〈Ψ|AB)=TrA(
d−1∑
i,j=0

αij |i〉A ⊗ |j〉B
d−1∑

i′,j′=0

α∗i′j′〈i′|A ⊗ 〈j′|B)

=
d−1∑
k=0

〈k|A(
d−1∑
i,j=0

αij |i〉A ⊗ |j〉B
d−1∑

i′,j′=0

α∗i′j′〈i′|A ⊗ 〈j′|B)|k〉A

=
d−1∑
k=0

(
d−1∑
i,j=0

αijδk,i|j〉B
d−1∑

i′,j′=0

α∗i′j′δk,i′〈j′|B

=
d−1∑

i,j,j′=0

αij |j〉Bα∗ij′〈j′|B = ρB .

If Alice now imposes a local unitary transformation to her qudit,
which sends the state |i〉A onto |̃i〉A, unitarity ensures that 〈iA|i′A〉
= 〈̃iA |̃i′A〉 = δi,i′ so that, after repeating the same (tilded) com-
putation, we obtain the same result. This shows that the average
value of OB is not affected by the unitary transformation imposed
by Alice to the subsystem in her possession. Similarly, if Alice per-
forms a measurement in the |i〉A basis, she will project Bob’s state
onto a state proportional to the state

∑d−1
j=0 αij |j〉B with probability

Pi =
∑d−1

j=0 |αij |2. The projector onto such a state, conveniently renor-

malized, is equal to 1
Pi

∑d−1
j,j′=0 αij |j〉Bα∗ij′〈j′|B so that after averag-

ing over all possible outcomes of Alice (i : 0...d − 1), we obtain that
〈OB〉 =

∑d−1
i=0

Pi

Pi

∑d−1
j,j′=0 αijα

∗
ij′〈j′|BOB |j〉B , which is equivalent to the

average value that we derived in the absence of Alice’s measurement.
In other words, Bob’s reduced density matrix is independent of the

measurement performed in A and/or of Alice’s local modifications of the
Hamiltonian HA, and it is actually equal to the effective density matrix
characterising the subsystem B in absence of any local measurement on
the system A. This is the essence of the no-signaling condition. Now, it
is easy to check that if we average the projectors on the collapsed states
of the subsystem B, in accordance with a distribution P̃i which does not
obey the Born rule, we find a reduced density matrix for the B system of
the form 〈OB〉 =

∑d−1
i=0

P̃i

Pi

∑d−1
j,j′=0 αijα

∗
ij′〈j′|BOB |j〉B which, generally,
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depends on whether or not one carries out a measurement on the A sub-
system and also depends, in principle, on which local observable on the
system A one chooses to measure. This means that when the Born rule
is not respected, signaling occurs. In such circumstances (when the Born
rule is not valid), in a frame where the collapse process is instantaneous,
quantum correlations could in principle be used for sending classical in-
formation faster than light (which means supraluminal signaling or, as it
is commonly called in the literature, signaling that constitutes “spooky
action-at-a-distance”, as originally considered by Einstein).
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