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ABSTRACT. The “dynamical mismatch” observed in quantum sys-
tems in the semiclassical regime challenge the Pilot wave model. Indeed
the dynamics and properties of such systems depend on the trajecto-
ries of the classically equivalent system, whereas the de Broglie-Bohm
trajectories are generically non-classical. In this work we examine the
situation for the model favoured by de Broglie, the theory of the Dou-
ble Solution (DS). We will see that the original DS model applied to
semiclassical systems is also prone to the dynamical mismatch. How-
ever we will argue that the DS theory can be modified in order to yield
propagation of the singularity in accord with the underlying classical
dynamics of semiclassical systems.

1 Introduction

The de Broglie-Bohm theory of motion, often known as the Pilot-wave
model, or the Bohmian model (BM), is undoubtedly attractive when
compared to the plague of interpretational problems affecting the for-
malism of standard quantum mechanics. These problems arise because
the theoretical entities of the formalism do not refer unambiguously to
objects and properties of the observable universe [1]. In the Bohmian
model instead [2, 3] the ontology is simple: the quantum world is made
up of waves and particles pursuing deterministic trajectories. Waves and
particles are taken to be real, allowing to unify the classical and quan-
tum descriptions of nature: ”there is no need for a break or ‘cut’ in the
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way we regard reality between quantum and classical levels” [4].

Nevertheless, the similarity of the Bohmian model relative to classical
physics (be it classical waves or classical mechanics) is very superficial [5].
On the one hand, the pilot waves are not defined in our four dimensional
physical space-time, but in a multidimensional configuration space. On
the other hand, the particle trajectories are highly non-classical. This
feature is readily understandable when needing to cope with entangled
states of several particles (as is well-known [2], the BM trajectories are
driven by a nonlocal quantum potential). The situation is perhaps less
understandable when considering semiclassical systems – quantum sys-
tems in which the wavefunction evolves according to the semiclassical
Feynman propagator, that is along classical trajectories [6]. Indeed in
semiclassical systems the Bohmian trajectories remain non-classical al-
though such systems display physical properties in correspondence with
those of classically equivalent systems (crudely speaking, systems hav-
ing the same Hamiltonian, previous to canonical quantization). These
features constitute a serious problem in accounting for the quantum to
classical transition within the Pilot wave model, as ad-hoc mechanisms
involving decoherence need to be postulated.

It is well-known that de Broglie was the first to propose the Pilot
wave theory [7], a quarter century before Bohm independently rediscov-
ered essentially the same model, supplementing it with further develop-
ments [8]. It is less well-known that de Broglie originally intended to
propose a more ambitious programme – the theory of the Double So-
lution – but gave presentations of the Pilot wave programme instead
because the double solution theory was plagued with difficulties (this is
recounted by de Broglie in Ref. [9]). The main difference with the Pilot
wave model is that no particle is postulated, but the discrete aspect in-
herent to quantum phenomena is assumed to be due to the singularity of
a physical wave, different from the pilot wave obeying the Schrödinger
equation. Such a physical wave would solve the first issue mentioned in
the preceding paragraph, concerning pilot waves living in a multiconfig-
uration space. But what about the second, dynamical aspect? This is
the question we will examine in this paper. We note at the outset that
the Double solution theory has not up to now become a full fledged re-
search programme that would allow to recover, at least in principle, the
results of standard quantum mechanics. So our remarks in the present
paper are rather intended to foresee the consequences of any potential
development of the theory with regard to the topic of understanding the
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dynamics of semiclassical systems.
In Sec. 2 we will give a brief presentation of the Double solution

theory. The main characteristics of semiclassical systems will be exposed
in Sec. 3, and the idea of the “dynamical mismatch” between the pilot
wave dynamics and the classical trajectories will be recalled. Sec. 4 will
be devoted to introduce a modification of the double solution theory in
order to solve the dynamical mismatch problem affecting the Bohmian
model. We will give our conclusions in Sec. 5.

2 Theory of the Double solution

In the Pilot wave model, the wavefunction ψ in the position representa-
tion is decomposed as [2, 3]

ψ(x, t) = Rψ(x, t) exp(iSψ(x, t)/~) (1)

where Rψ(x, t) is a real positive function. Since ψ obeys the Schrödinger
equation, Rψ and Sψ obey the coupled equations

∂R2
ψ(x, t)
∂t

+
1
m
5 ·

(
R2
ψ(x, t)OSψ(x, t)

)
= 0 (2)

and
∂Sψ(x, t)

∂t
+

(OSψ(x, t))2

2m
+ V (x, t) +Qψ(x, t) = 0, (3)

where V (x, t) is the usual potential and Qψ(x, t) is a term known as the
quantum potential given by

Qψ(x, t) ≡ − ~2

2m
O2Rψ
Rψ

. (4)

The momentum and the velocity of the particle are introduced via a
configuration space field defined from the polar phase function through
the “guiding equation”

pψ(x, t) = mvψ(r, t) = OSψ(x, t). (5)

vψ(r, t) is proportional to the standard quantum mechanical current
density associated with the Schrödinger equation, so that the particle is
guided along the probability flow.

In order to introduce the Double solution theory, de Broglie argues
[10] that ψ(x, t) is a statistical wave, not a physical wave, and that a
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particle can hardly be guided by a statistical quantity. He introduces a
wave

u(x, t) = a(x, t) exp(iSψ(x, t)/~) (6)

having the same phase as ψ(x, t) but an amplitude a(x, t) proportional
to Rψ(x, t) everywhere but in a small singular region. This singular re-
gion accounts for the discrete, particle-like aspect of quantum mechanics.
Whether u(x, t) should be a soliton-like solution of a non-linear equa-
tion, or if it can taken to be a singular solution of the linear Schrödinger
equation has remained an open question [11]. The important point for
de Broglie is that the guiding equation (5) still holds. This is formalized,
in a nonlinear context, by writing [10]

u(x, t) = u0(x, t) + w(x, t) (7)

where u0(x, t) is the solitonic ”bump” (a solution of a nonlinear equa-
tion having negligible amplitude except in a compactly localized and
mobile reigon), while w(x, t) is the physical (unnormalized) wave similar
to ψ(x, t):

w(x, t) = cψ(x, t) (8)

where c is a constant. Hence according to the Theory of the Double
solution, the solitonic bump is guided according to Eqs. (5) and (8) by
a linear wave, the physical wave w(x, t).

3 Classical dynamics in quantum systems and the
Dynamical Mismatch

The investigations of the quantum-classical correspondence, which has
its origins in the early days of quantum mechanics were revived in the
1980’s and 1990’s in the context of quantum chaos [6]. It is today well-
established that several types of quantum systems – known generically
as semiclassical systems – display the manifestations of properties be-
longing to the classical analog of these systems. This is due to the fact
that the wavefunction propagates essentially along the trajectories of
the corresponding classical system; indeed in these cases the semiclassi-
cal approximation to the path integral propagator, given by [12]

K(x0,x, t) =
∑
k

1
2iπ}

∣∣∣∣det
∂2Sk
∂x∂x0

∣∣∣∣1/2 exp (iSk(x0,x, t)/} + iφk) , (9)

becomes excellent up to certain time scales. Here the sum runs on all the
classical trajectories k connecting x0 to x in the time t. Sk is the classical
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action for the kth trajectory and the determinant is the inverse of the
Jacobi field familiar from the classical calculus of variations, reflecting
the local density of the paths; φk is a phase accounting for reflections
and conjugate points encountered along the kth trajectory.

Eq. (9) has observable consequences, like the recurrence of the wave-
function along classical periodic orbits that has been seen experimentally
for example in atomic spectra [13]. The corresponding de Broglie-Bohm
trajectories are not classical: the observed recurrences can be explained
in terms of hundreds of different types of Bohmian trajectories that re-
turn in the assigned time to the starting point so as to produce the
observed recurrences [14]. This is hardly surprising since according to
Eq. (9) the waves propagate along the trajectories of the corresponding
classical system, whereas according to Eq. (5) the solitonic singularity
propagates along the current density. The current density at some given
point results from all the waves with non-vanishing amplitude that in-
terfere at that point (in the simplest example discussed by Einstein [15]
criticizing the Pilot-wave model, a particle in an infinite well is described
by two semiclassical counter-propagating waves accounting for the to and
fro motion; their interference results in a static current density). Typi-
cally semiclassical systems are excited, and the fine-grained dynamics is
incredibly complex. The current density hence displays a high sensitivity
relative to the initial wavefunction: two slightly different initial wave-
functions can give rise to very different de Broglie-Bohm trajectories.
However the semiclassical propagator (9) depends solely on the system,
defined by the classical Hamiltonian whose canonical quantization yields
the Hamiltonian of the quantum system.

We have argued elsewhere [5] why this dynamical mismatch between
de Broglie Bohm trajectories and classical trajectories could be seen as
a difficulty for the Pilot wave model in accounting for the emergence
of classical dynamics. Indeed, the classical dynamics is already visible
in the structure and properties of the semiclassical systems, while the
Bohmian model predicts highly non-classical trajectories. The claim that
decoherence and interaction with a complex environment will render the
non-classical pilot-wave dynamics classical appears as somewhat con-
strained, since on the one hand classical trajectories are already at play
in the closed, non-interacting system, and on the other hand the deco-
herence mechanism is not a resource specific to the Bohmian model but
a standard quantum mechanical effect that is known to provide at best
a practical solution to understand the effective average disappearance of
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interferences, not a fundamental solution that would be applicable to an
ontological account [16].

4 Towards a new Double solution theory?

The dynamical mismatch we have just mentioned also holds for the The-
ory of the Double solution, because it is constructed, by Eqs. (6) and
(7) so as to recover the guiding equation (5). Now in the usual Bohmian
model involving a point-like particle, it seems that there is no way to
have a dynamics defined by something different than the guiding equa-
tion (5). The reason is that the quantum waves interfere and that the
particle needs to avoid the regions where the wavefunction vanishes, and
this is exactly what the current density achieves.

However, since the solitonic bump is a wave, from a conceptual view
point it can interfere with background waves, disappear or reappear.
Therefore, contrary to the particle of the Pilot-wave model, it is pos-
sible to envisage a double solution theory whose starting point would
be different from Eq. (6). The bump can then be ascribed to follow a
dynamical law different from the guiding equation (5).

As a starting point, let us write the wavefunction ψ(x, t) in a generic
semiclassical form as

ψ(x, t) =
∑
k

ψk(x, t) (10)

where

ψk(x, t) = ψ(xk0 , t = 0)
∣∣∣∣det

∂2Sk
∂x∂xk0

∣∣∣∣1/2 exp
(
iSk(xk0 ,x, t)/} + iφk

)
.

(11)
As in Eq. (9) the sum over k runs on the classical trajectories starting at
points xk0 within the regions in which the initial wavefunction ψ(x0, t =
0) has a non-vanishing amplitude.

Let us now introduce field functions

wk(x, t) = cψk(x, t) (12)

where c is a global constant. Note that the relative weight of each
wk(x, t) is given by a classical quantity, the amplitude det ∂2Sk/∂x∂xk0
along each classical path. Following the steps leading to the double solu-
tion, we have uk(x, t) ≈ wk(x, t) except that for one of the fields uk(x, t)
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say ukb(x, t) we will have a bump representing the discrete quantum. We
therefore put

uk(x, t) = uk0(x, t) + wk(x, t) (13)

where
uk0(x, t) = 0 for k 6= kb. (14)

The idea sketched here is that of a solitonic bump traveling on a
single semiclassical wave ukb

0 (x, t). This requires that

• (i) the initial position of the soliton lies randomly within the re-
gion in which the initial field w(x0, t = 0) has a non-vanishing
amplitude;

• (ii) the nonlinear wave is driven by essentially classical dynamics,
since each phase Sk(xk0 ,x, t) is a solution of the Hamilton-Jacobi
equation [that is Eq. (3) with Qψ = 0];

• (iii) the amplitude of the solitonic wave has to be strongly coupled
to all the waves wk(x, t) (and not only to the wave wkb(x, t) having
the same dynamics).

Point (iii) is the most important: in order to recover the correct
statistical predictions when a position measurement is made, a mecha-
nism coupling the solitonic wave ukb

0 (x, t) to all the linear waves wk(x, t)
should ensure that the interference effects are properly taken into ac-
count. The simplest mechanism one could think of is coupling the am-
plitudes of the different fields, so that the amplitude of ukb

0 (x, t) is
controlled by the amplitude of w(x, t). This would indeed account for
the effects observed in semiclassical systems, eg the fact that if two
different periodic orbits with amplitudes A1 and A2 and actions S1

and S2 have the same period, their recurrence strength is given by
|A1 exp iS1/~ +A2 exp iS2/~|2 .

Eqs. (10)-(14) were given here for systems in the semiclassical regime
(ie, ~/Sk → 0), but we could further speculate what these relations
would become deep in the quantum regime (Sk ≈ ~). In that case the
semiclassical propagator (9) should be replaced by the standard expres-
sion for the propagator in terms of a path integral. There would not
be a discrete number of functions wk(x, t) anymore but an infinite and
continuous number of such fields defined from any arbitrary path, the
contribution of each path κ being proportional to exp (iSκ(x0,x, t)/}).
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Eq. (14) defining the solitonic wave for a given preparation of the system
would then hold for one of these paths κ, yielding typically a random,
Brownian like motion.

5 Conclusion

In this paper we have recalled the existence of a dynamical mismatch
between trajectories of the Bohmian model and classical motion in semi-
classical systems. This dynamical mismatch has serious implications
concerning the empirical acceptability of the de Broglie-Bohm theory as
describing the real behaviour of the quantum world.

In this context, we have discussed whether the theory of the Double
Solution, initially (and ultimately) favoured by de Broglie over the Pilot-
wave model, could avoid this dynamical mismatch. We have sketched
how this could be the case, namely by assuming that the solitonic bump
is attached to a single semiclassical wave, rather than to the entire wave-
function. From this perspective, the Double Solution theory appears to
be more flexible than the Bohmian model, though it should be kept in
mind that this programme faces serious difficulties [17] for multiparti-
cle generalisations if the linear waves are taken to be defined over our
4-dimensional space-time (rather than in configuration space), as advo-
cated by de Broglie [18].
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