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ABSTRACT. A modified Gibbs’s rotation matrix is derived and the
connection with the Euler angles, quaternions, and Cayley−Klein pa-
rameters is established. As particular cases the Rodrigues and Gibbs
parameterizations of the rotation are obtained. The composition law of
two rotations from the quaternion representation is presented showing
a convenient expression for calculating the successive rotations.

1 Introduction

The aim of this investigation is to derive the most convenient form of the
rotation matrix that would provide with the simplest equation describ-
ing combinations of several rotations, and to compare different rotation
group parameterizations. The rotation group is defined as all rotation
transformations around the origin of the 3D Euclidean space (R3) and
it is the Lie group. The group operations are smooth for the manifold
of the structure. The rotation transformation is a linear transforma-
tion x′a = Rabxb (a,b=1,2,3 and, we imply a summation on repeated
indexes, the Einstein summation), which leaves the length of the vec-
tors invariant x

′2 = x2, and preserves the angles between the vectors
(the SO(3) group). Therefore, the rotation transformation preserves the
dot product. The linear transformation with a reflection of all coordi-
nates (x → −x) is named an improper rotation. The composition of
two rotations possesses the associative property and, therefore, it results
in a different rotation that can be accomplished in one step. The rela-
tion RabRcb = δac (or RRT = I, where I is an identity matrix, RT is
the transposed matrix, RTab = Rba, δac is the Kronecker delta) follows
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from preservation of the vector length, i.e. x
′2 = x2. Matrices with

the property RRT = I are called orthogonal matrices and corresponding
transformations (the group O(3)) include proper and improper rotations.
For orthogonal matrices, one obtains detR = ±1. If detR = +1 the
transformations form the special orthogonal group SO(3) (subgroup),
but the transformations with detR = −1 are improper rotations that
include the reflection. If we make two consequent improper rotations R1

(detR1=-1) and R2 (detR2=-1) then the resultant rotation is the proper
rotation detR2R1 = 1 and it does not form a subgroup. For general
two rotations R2R1 6= R1R2 which means that the rotation group is
non-Abelian group, and therefore, it is important to follow the order for
several consecutive rotations.

The Euler theorem states [1]: “the general displacement of a rigid
body with one point fixed is a rotation about some axis”. According to
Euler’s rotation theorem [1] every proper rotation (the fixed point is the
origin) can be represented as a 2-dimensional single rotation about some
axis by an angle α in the plane orthogonal to this axis. The axis of
the rotation can be characterized by the unit vector n̂ (n̂2 = 1) with
two independent parameters which remain unchanged by the rotation.
If the angle of the rotation is zero then the axis is not uniquely defined.
Thus, the rotation group possesses three independent parameters (three
degrees of freedom) n̂, α. One can use a non-normalized 3-vector v
(a rotation vector) with the length depending on the angle of rotation
(α). It should be mentioned that v is not a real vector because for two
successive rotations with vectors v1 and v2 the resultant rotation vector
v is not the sum of v1 and v2 (v 6= v1 + v2). Therefore, the finite
rotation is not a real vector, and we can consider the v as a collection
of three parameters (v1, v2, v3). If v = tan(α/2)n̂, one has the Gibbs
representation [2], [3] and if v = αn̂, we come to the Rodrigues parameter
[4]. In this paper, we use the rotation vector with the normalization
v = sin(α/2)n̂ (see also [5], [6], [7], [8]). Such representation has some
advantage compared to Rodrigues and Gibbs representations, and thus
can be successfully used in various applications. Another way to describe
the rotation is to use three Euler angles [9], [10], [11], quaternions [12],
[13], [14], [15], [16] and Cayley−Klein parameters [17], [10], [18], [19]. It
should be mentioned that all representations are suitable explicit forms
of the exponential map:

S1 × S2 3 (α, n̂) 7→ exp{αW (n̂)} ∈ SO(3), WT = −W,
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S2 = SO(3)/S1, and the Euler theorem is by no means global.
The goal of this paper is to derive a convenient parameterization of

the rotation group and to obtain the simplest composition law of two
rotations within the modified Gibbs parametrization. This is important
for cases when there are many rotations and the resultant rotation matrix
has to be obtained.

The paper is organized as follows: In Sec. 2, we derive the general
expression for the rotation matrix with non-normalized rotation vector.
The connection of the rotation vector with Euler angles, quaternion,
and Cayley−Klein parameters is presented in Sec. 3. In Sec. 4, we
obtain the composition of two rotations from the quaternion rotation
representation. This allows us to find the resultant rotation parameter
in a simple manner for the case of many rotations. The Rodrigues and
Gibbs representations of the parametrization are given in Sec. 5 as a
particular cases, followed by conclusions of the article in Sec. 6.

We use the convention that Latin letters run as 1, 2, 3 and Greek
letters run as 1, 2, 3, 4.

2 The rotation matrix

The rotation matrix R depends on three independent parameters and
any antisymmetric matrix A (Aab = −Aba) possesses tree independent
parameters. Therefore, we can express the matrix R via the matrix A.
Arbitrary antisymmetric matrix A obeys the minimal matrix equation
as follows:

A3 =
1
2
Tr

(
A2

)
A, (1)

where Tr(A2) is a trace of the matrix A2. We may look for the expression
of R in the following form

R = c0I + c1A+ c2A
2, (2)

where I is an identity matrix, and c0, c1, and c2 are arbitrary coefficients.
As AT = −A, one arrives at the transposed matrix

RT = c0I − c1A+ c2A
2. (3)

Then from the orthogonality condition RRT = 1 and Eqs. (1)-(3), we
come to

c0 = 1, c21 = 2c2 +
1
2
c22Tr

(
A2

)
. (4)
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It is convenient to use the expression for the antisymmetric matrix A as
follows:

Aab = εacbac, (5)

where εacb is the Levi−Civita symbol, and the ac are three parameters.
The matrix A (Eq. (5)) possesses the attractive property: defining the
vector ci = Aijbj , where b is an arbitrary vector, we obtain the cross
product c = a × b. We will show later that ac is connected with a
rotation vector. The vector ac can be found from the matrix elements
of the matrix A:

ac =
1
2
εacbAab. (6)

Thus, there is one to one correspondence between the antisymmetric
matrix A and the vector a = (a1, a2, a3). From Eq. (5), one obtains
TrA2 = −2a2, and from Eq. (4) the rotation matrix (2) becomes

R = I +
√
c2 (2− c2a2)A+ c2A

2. (7)

¿From Eq. (5), we find (A2)ij = aiaj − a2δij . Let us introduce a new
vector b =

√
c2/2a. Then we obtain the rotation matrix (7) in the form

(see also [7], [8])

Rij =
(
1− 2b2

)
δij + 2

√
1− b2εikjbk + 2bibj . (8)

Eq. (8) is the general expression for the rotation matrix via three pa-
rameters b = (b1, b2, b3). Thus, the coefficient c2 is absorbed and we
get to only three independent parameters. From Eq. (8), one has the
restriction |b| ≤ 1. The 3× 3-matrix (8) is given by

R =

 1− 2b22 − 2b23 −2
√

1− b2b3 + 2b1b2 2
√

1− b2b2 + 2b1b3
2
√

1− b2b3 + 2b1b2 1− 2b21 − 2b23 −2
√

1− b2b1 + 2b2b3
−2

√
1− b2b2 + 2b1b3 2

√
1− b2b1 + 2b2b3 1− 2b21 − 2b22

 ,

(9)
with the trace TrR = 3 − 4b2. At b = 0 the matrix (9) becomes the
unit matrix R = 1 showing the absence of rotation. One can verify
that indeed the matrix (9) obeys the orthogonality condition RRT =
I. Calculating the determinant of the matrix (9), we obtain detR=1,
i.e. the matrix (8) (or (9)) describes the proper rotations and therefore
corresponds to the special orthogonal group SO(3). If the orthogonal
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matrix R, which describes the proper rotation, is given, we can find the
rotation vector b. Indeed, we find from Eq. (9) the relations as follows:

1 + TrR = 4
(
1− b2

)
,

(
R−RT

)
ij

= 4
√

1− b2εikjbk. (10)

¿From Eq. (10), one obtains:

bk =

(
R−RT

)
ij
εikj

4
√

1 + TrR
. (11)

Eq. (11) allows us to find the unique rotation vector b for a given
rotation matrix R. The only exception is the case |b| = 1. It follows
then from Eq. (10) that R = RT and 1 + TrR = 0. In this case we can
not use Eq. (11), but from Eq. (8), one finds

Rij = 2bibj − δij . (12)

To obtain the connection of the angle of rotation with the vector b, we
consider rotating the vectors c1, which is parallel to b (c1‖b), and c2,
which is perpendicular to b (c2 ⊥ b), using the matrix (12). As a result,
we obtain

Rij (c1)j = (c1)i , Rij (c2)j = − (c2)i . (13)

It is seen, therefore, that the rotation matrix (12) with the unit
rotation vector |b| = 1 corresponds to the rotation with the 180◦ angle.
It follows from Eq. (8) that for any vector d parallel to b (d‖b), we have
R(b)d = d. Therefore the matrix R rotates vectors about the vector
b, i.e. the b defines the axis of the rotation. To clear up the meaning
of the b vector length, let us consider the rotation by an angle α of the
unit vector ĉ, which is perpendicular to the vector b (ĉ ⊥ b). Then the
cosine of the angle is given by the dot product and with the help of Eq.
(8) we get:

cosα = ĉ · ĉ′ = ĉiRij ĉj = 1− 2b2. (14)

¿From Eq. (14) we obtain the expression for the length of the vector b:

|b| = sin
α

2
. (15)

It obeys the necessary condition |b| ≤ 1. By introducing the unit vector
b̂ (b = b̂ sinα/2), Eq. (8) takes a simple form (see also [7], [8]):

Rij = cosαδij + sinαεikj b̂k + 2 sin2 α

2
b̂ib̂j . (16)
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It is not difficult to obtain the resultant matrix R from Eq. (16) for two
successive rotations R1 and R2, R = R2R1. The rotation matrix in the
form of Eq. (16) can be useful for various applications.

3 The connection of the rotation vector with Euler
angles, quaternions and Cayley−Klein parameters

3.1 Euler angles

Any rotation can be represented as three successive rotations: a rotation
by an angle ϕ around the axis Oz (Rϕ), then a rotation by an angle θ
around the Ox axis (Rθ), and a rotation by an angle ψ around the axis
Oz’ (Rψ) [19]. The rotation matrix RE = RψRθRϕ in terms of three
Euler angles ϕ, ψ, and θ reads

RE =

0@cosϕ cosψ − cos θ sinϕ sinψ− cosϕ sinψ − cos θ sinϕ cosψ sinϕ sin θ
sinϕ cosψ + cos θ cosϕ sinψ− sinϕ sinψ + cos θ cosϕ cosψ− cosϕ sin θ

sinψ sin θ cosψ sin θ cos θ

1A .

(17)

The range of the angles ϕ and ψ is (0, 2π), and the range of the angle θ is
(0, π). If θ = 0 the corresponding rotation is around Oz by the angle ϕ+
ψ. The inverse transformation R−1 is defined by the angles π−ψ, θ and
π−ϕ. From Eq. (17), we obtain 1+TrRE = (1 + cos θ) (1 + cos(ϕ+ ψ)).
One can find the rotation vector b expressed via Euler angles ϕ, ψ, and
θ from Eq. (11). We notice that the matrix R − RT is antisymmetric,
and therefore, components of the rotation vector, found from Eq. (11),
are given by

b1 =

(
R−RT

)
32

4
√

1 + TrR
, b2 =

(
R−RT

)
13

4
√

1 + TrR
, b3 =

(
R−RT

)
21

4
√

1 + TrR
. (18)

After some calculations, from Eqs. (17), (18), we obtain the components
of the rotation vector expressed via Euler angles:

b1 = sin
θ

2
cos

(
ϕ− ψ

2

)
, b2 = sin

θ

2
sin

(
ϕ− ψ

2

)
,

(19)

b3 = cos
θ

2
sin

(
ϕ+ ψ

2

)
.

The angle of rotation about the vector b may be obtained from Eq.
(15). Evaluating the length of the vector b from Eq. (19) and taking
into account Eq. (15), we find

cos
α

2
= cos

θ

2
cos

(
ϕ+ ψ

2

)
. (20)
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Thus, knowing three Euler angles ϕ, ψ, and θ, one can calculate from
the Eqs. (19) and (20) the direction of rotation axis, b, and the angle
of rotation. At the same time if we know a rotation vector b, the three
Euler angles can be obtained from Eq. (19):

θ = 2 arcsin
√
b21 + b22, ϕ = arcsin

b2√
b21 + b22

+ arcsin
b3√

1− b21 − b22
,

(21)
ψ = − arcsin

b2√
b21 + b22

+ arcsin
b3√

1− b21 − b22
.

Thus, there is one to one correspondence between the rotation vector b
and three Euler angles.

3.2 Quaternions

Quaternions can be considered as a generalization (doubling) of the com-
plex numbers [20]. There are many applications of quaternions including
a spacecraft altitude estimation [21], [22], [23], investigation of the sym-
metry of the fields, and formulation of the relativistic wave equations
[16], [24], [25]. The quaternion algebra is defined by four basis elements
eµ = (ek, e4) with the multiplication properties [12]:

e24 = 1, e21 = e22 = e23 = −1, e1e2 = −e2e1 = e3,
(22)

e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2, e4em = eme4 = em,

where m = 1, 2, 3, and e4 = 1 is the unit element. The quaternion
algebra, Eq. (22), can be constructed with the help of the Pauli matrices:

σ0 =
(

10
01

)
, σ1 =

(
01
10

)
, σ2 =

(
0−i
i 0

)
, σ3 =

(
1 0
0−1

)
. (23)

The Pauli matrices (23) obey the relations as follows:

σmσn = iεmnkσk + δmn, σµσν + σνσµ = −2δµν ,
(24)

σµ = (σk, σ4) , σµ = (−σk, σ4) ,

where σ4 = iσ0. By setting e4 = σ0, ek = iσk and with the help of Eq.
(24) we obtain the properties presented in Eq. (22). Let us consider the
quaternion

q = bµeµ = bmem + b4e4, (25)
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with the rotation vector b = b̂ sin(α/2), and the scalar term b4 =
cos(α/2) (see also [4], [5], [6]). Four parameters bµ can be called the
Euler-Rodrigues parameters. Thus, the vector b can be used as the
matrix representation, Eqs. (8) and (9), as well as the quaternion, Eq.
(25). But the quaternion representation of rotation, Eq. (25), requires
introduction of the fourth component b4. The operation of quaternion
conjugation is defined as

q = b4e4 − bmem ≡ q4 − q. (26)

One can verify that the equalities q1 + q2 = q1 + q2, q1q2 = q2q1 hold for
two arbitrary quaternions q1 and q2. The quaternion modulus | q | is de-
fined by the relation | q |=

√
qq =

√
q2µ. The quaternion algebra includes

the division, e.g. q1/q2 = q1q2/ | q2 |2. For our rotational quaternion,
Eq. (25), the modulus is equal to unity, | q |= 1. Thus, unit quater-
nion represents the three-dimensional sphere S3 (b2µ = 1) embedded in
4-dimensional Euclidean space E4. The finite rotation transformations
are given by [12]:

x′ = qxq, (27)

where x = xmem is the quaternion of the spatial coordinates or some
three component vector, q is the quaternion of the rotation group with
the constraint qq = 1, and is given by Eq. (25). We note that q and
(−q) represent the same rotation, i.e. there is a sign ambiguity. One may
verify that the squared vector of coordinates, x2

m, is invariant under the
transformations, Eq. (27). Indeed, x′2m = x′x′ = qxqqxq = xx = x2

m, as
qq = qq = 1. Thus, the 3-parameter transformations (Eq. (27)) and the
rotational quaternion (Eq. (25)) belong to the special orthogonal group
SO(3). The rotational transformations in the form of Eq. (27) have
some advantages compared to the form x′m = Rmnxn because Rmn are
3 × 3-matrices but quaternions can be realized by 2 × 2 Pauli matrices
with complex elements. Therefore, it is easy to combine two individual
rotations by the quaternion representation. It should be noted that the
quaternion multiplication has inverse ordering (q1q2) compared to the
matrix product (R2R1). We also note that quaternions q and (−q) rep-
resent the same rotation. The quaternion representation of the rotation
is very convenient because the quaternion varies continuously over S3

when rotation angles change, and there are no jumps, which take place
with some three-dimensional parameterizations.
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3.3 Cayley−Klein parameters

With the help of Pauli matrices, Eq. (23), and the replacement e4 = σ0,
ek = iσk, the quaternion, Eq. (25), can be represented as a matrix

Q = b4σ0 + ibmσm =
(
b4 + ib3 b2 + ib1
−b2 + ib1b4 − ib3

)
. (28)

Thus, the matrix Q has a close relationship with quaternions. One can
verify that detQ = 1 and QQ+ = Q+Q = 1 (Q+ is Hermitian conjugated
matrix) as b2µ = 1, and the matrix Q is the unitary matrix. The matrix
Q in Eq. (28) can be parameterized by Cayley−Klein parameters as
follows (see, for example [10], [19]):

Q =
(

α β
−β∗α∗

)
, (29)

where α∗, β∗ are complex conjugated parameters, with the restriction
|α|2 + |β|2 = 1, so that QQ+ = Q+Q = 1, and there are three inde-
pendent degrees of freedom characterizing the rotation. Comparing Eq.
(28) and Eq. (29), we obtain Cayley−Klein parameters expressed via
the components of the rotation vector

α = b4 + ib3, β = b2 + ib1. (30)

Parameter b4 can be expressed through the Euler angles as follows:

b4 = cos
α

2
= cos

θ

2
cos

(
ϕ+ ψ

2

)
. (31)

One can also represent Cayley−Klein parameters via the Euler angles
by using Eqs. (19), (31)

α = cos
θ

2
exp

(
ψ + ϕ

2

)
, β = i sin

θ

2
exp

(
ψ − ϕ

2

)
. (32)

If we introduce the matrix

X = xmσm =
(

x3 x1 − ix2

x1 + ix2 −x3

)
, (33)

then finite rotation transformations read

X ′ = QXQ+. (34)
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We note that Hermitian conjugate matrix Q+ corresponds to the con-
jugate quaternion (Eq. (26)). For two successive rotations with 2×2
matrices Q1 and Q2, the resultant matrix is Q1Q2 (and correspond-
ing quaternion q1q2), i.e. the order is opposite compared with the 3×3
rotation matrices R1 and R2 for which the resultant matrix is R2R1.
Expressing the components of the rotation vector via Cayley−Klein pa-
rameters from Eq. (30)

b1 =
i (β∗ − β)

2
, b2 =

(β + β∗)
2

, b3 =
i (α∗ − α)

2
, b4 =

(α+ α∗)
2

,

(35)
one obtains using Eq. (9) the rotation 3×3 matrix

R =

 1
2

(
α2 + α∗2 − β2 − β∗2

)
i
2

(
α2 − α∗2 − β2 + β∗2

)
βα∗ + αβ∗

i
2

(
α∗2 − α2 − β2 + β∗2

)
1
2

(
α2 + α∗2 + β2 + β∗2

)
i (βα∗ − αβ∗)

−βα− α∗β∗ i (α∗β∗ − αβ) αα∗ − ββ∗

 .

(36)
Thus, for any unitary matrix Q (QQ+ = 1) (29) with the determinant
1 (detQ = 1) there is a definite rotation matrix (Eq. (36)). It should
be noted that if one makes the replacement α → −α, β → −β, the
rotation matrix (36) will be unchanged. This is connected with the fact
that the Cayley−Klein matrix (29) corresponds to the special unitary
group SU(2), and there is a homomorphism from SU(2) to the rotation
group SO(3). Therefore, for a definite rotation matrix R there are two
matrices Q and (−Q) describing the same rotation. The group SU(2) is
also isomorphic to the group of quaternions of norm 1.

4 The composition of two rotations

With the help of the multiplication laws, Eq. (22), one obtains the
product of two arbitrary quaternions, q, q′:

qq′ = (q4q′4 − qmq
′
m) e4 + (q′4qm + q4q

′
m + εmnkqnq

′
k) em. (37)

We represent the arbitrary quaternion as q = q4 + q (so q4e4 → q4,
qmem → q), where q4 and q are the scalar and vector parts of the quater-
nion, respectively. Using these notations, Eq. (37) can be represented
as follows:

qq′ = q4q
′
4 − (q · q′) + q′4q + q4q′ + q× q′. (38)

Thus, the dot (q · q′) = qmq
′
m and cross q × q′ products are parts of

the quaternion multiplication. It is easy to verify that the combined law
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of three quaternions obey the associativity law: (q1q2) q3 = q1 (q2q3) as
should be for the rotation group. Replacing q and q from Eqs. (25), (26)
into Eq. (27), and taking into consideration the multiplication law, Eq.
(37), we obtain

x′ = (cosα)x + sinα
(
b̂× x

)
+ 2 sin2 α

2

(
b̂ · x

)
b̂. (39)

The same expression can be obtained from Eq. (16) and the transfor-
mation x′i = Rijxj . Thus, two approaches based on the rotation matrix,
Eq. (16), and quaternion, Eq. (25), with the transformation law, Eq.
(27), are identical.

Let us consider two consecutive rotations with the quaternions q and
q′ which are parameterized by Eq. 25. Then from the multiplication
law, Eq. (37), we find the resultant rotation vector

b′′ ≡
(
b,b′) =

√
1− b2b′ +

√
1− b′2b + b× b′. (40)

Squaring Eq. (40), one obtains the expression allowing us to find the
resultant rotation angle

cos
α′′

2
= cos

α

2
cos

α′

2
− sin

α

2
sin

α′

2
cosβ, (41)

where β is an angle between vectors b and b′. If β = 0, i.e. vectors b and
b′ are parallel, we obtain from Eq. (41) the trivial result α′′ = α + α′.
One can notice that according to Eq. (40), in general,

(
b,b′) 6= (

b′,b
)

because the rotation group is non-commutative (non-Abelian) group.
It follows from Eq. (40) that

(
b,b′)2 =

(
b′,b

)2, i.e. the rotation
angle does not depend on the order of two successive rotations, but the
direction of the rotation axis depends on the order. It should be noted
that Eq. (40) gives the relation (b,−b) = 0. As a result, the inverse
rotation corresponds to the parameter −b, R(−b) = R−1(b).

5 The Rodrigues and Gibbs parameterizations

Let us connect the modified Gibbs parametrization of the rotation matrix
(8) with the Rodrigues parameters, which are defined by [4]

r = b̂α, (42)

where α is an angle of the rotation in radians and b̂ is a unit vector
along the rotation axis. The Rodrigues parameters (Eq. (42)) possess a
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discontinuity at the angle of π radians. Thus, the vector r with the length
|r| = π results in the same rotation as the vector (−r). In the rotation
vector space, rotations can be represented as points inside and on the
surface of a sphere with the radius of π. The points at opposite ends of
a diameter correspond to the same rotation and when the angle varies
smoothly the rotation vector r can jump to another end of a diameter.
The difference of r compared with b introduced in this article is the
length (normalization) of vectors: r = (α/ sin(α/2))b. Replacing the
rotation vector b with the Rodrigues parameters r and placing them into
Eq. (40), one can obtain the composition law of two successive rotations.
It should be noted that the composition laws with Euler angles and the
Rodrigues parameters are cumbersome. Another parametrization of the
rotation vector was suggested by Gibbs [2], [3]

g = b̂ tan
α

2
. (43)

Taking into account Eqs. (15), (43), we obtain the connection between
two vectors

g =
b√

1− b2
, b =

g√
1 + g2

. (44)

¿From Eqs. (8), (44), one finds the rotation matrix in terms of the Gibbs
parameter

Rij =

(
1− g2

)
δij + 2gigj + 2εikjgk

1 + g2
. (45)

The known composition law of Gibbs’s parameters follows from Eqs.
(40), (43), (44), (45):

g′′ ≡ (g,g′) =
g + g′ + g× g′

1− g · g′
. (46)

If successive rotation angles α and α′ are small, α � 1, α′ � 1, we
obtain, from Eqs. (40), (46), the approximate relations b′′ ≈ b+b′, g′′ ≈
g + g′, i.e. the vector addition approximately holds. The disadvantage
of Gibbs’s parametrization follows from Eq. (43): at α = π the length
of the parameter g becomes infinity. Therefore, the direction of the
vector g is not defined at α = π. At the same time the length of the
parameter b is finite, 0 ≤ b ≤ 1. It follows from Eq. (46) that if for
two successive rotations g · g′ = 1, the resultant rotation corresponds
to the angle α′′ = π because |g′′| = ∞. We note that if one multiplies



Modified Gibbs’s representation of rotation matrix 247

the rotation matrices (8) or (45) by (−1), then the corresponding matrix
gives improper rotations including the reflection of coordinates. Thus, we
have obtained the known composition law of Gibbs’s parameter (46) from
Eq. (40). Therefore, we suggest the simplest form of the composition
law, Eq. (40), of two successive rotations with vector b = n̂ sin(α/2).

6 Conclusion

We have derived from the first principles the general expression for the
rotation matrix (Eq. (8)) with non-normalized rotation vector b. This
form of the rotation matrix is very convenient for practical calculations.
For example, the resultant matrix for two consequent rotations (the com-
position of two rotations) takes a simple form shown in Eq. (40). Ac-
cording to the Euler theorem the direction of the vector b defines the
axis of the rotation and the length of the rotation vector is given by
|b| = sin(α/2) with α being the rotation angle. Eqs. (19)-(21) de-
fine the connection of the rotation vector components with Euler angles
ϕ, ψ, and θ. The quaternion q, which defines the rotation law in Eq.
(27), is connected with the rotation vector b by a simple equation (25).
Cayley−Klein parameters α and β entering the matrix Q, Eq. (29), are
expressed via the b by Eq. (30) and through Euler angles by Eq. (32).
The rotation matrix R also is conveyed via Cayley−Klein parameters,
Eq. (36). The Rodrigues and Gibbs representations are considered as
a particular cases, and are given by Eqs. (42), (43). The composition
law of two successive rotations is simpler for vector b compared to the
Gibbs vector g or Rodrigues vector r.

The Rodrigues parameters r with the length |r| = π have the same
rotation as the rotation with the vector (−r). Therefore, the Rodrigues
parameters at the angle of π possess a discontinuity. If the angle varies
smoothly the rotation vector r jumps at the angle of π and this is the
defect of Rodrigues’s parametrization. In addition, the composition law
for the Rodrigues parameters is complicated. The Gibbs parametrization
suffers the similar limitation. At the angle α = π the length of the
parameter g becomes infinity. As a result, the direction of the vector
g at α = π is not defined and this is the disadvantage of the Gibbs
parametrization. At the same time the length of the parameter b, (see
Eq. (15)), is finite.

This is the benefit of the parametrization considered.
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