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ABSTRACT. We study the Pauli equation for the electron in the con-
text of a localised field solution to the Schrödinger equation. This yields
a non-probabilistic theory of electron spin. Our results are relevant, in
particular, to Toyoki Koga’s work on the Schrödinger equation.

We also explain the statement that the direction of the spin magnetic
moment of the electron is given by the Hopf map; this seems to have
been assumed or ignored in the literature.
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1 Introduction

After Schrödinger discovered the equation named after him, it was found
that this equation did not completely describe the electron. It is nec-
essary to ascribe to the electron an intrinsic angular momentum and
magnetic moment. This phenomenon is called electron spin since it ap-
pears that the electron is spinning.

The experimental results of Stern and Gerlach can be understood if
it is assumed that when “measured” in any direction, the component of
the spin angular momentum vector s is found to be ±~/2. Following
the Copenhagen interpretation of Quantum Mechanics, this is assumed
to mean that the component in any direction is ±~/2, and that it is
only meaningful to speak about one component at a time. However, it
is assumed permissible to add the squares of the components in three
orthogonal directions, despite the obvious contradiction.
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We interpret spin measurement differently. This is explained after
our discussion of the Pauli equation.

Also, it must be assumed that the electron’s magnetic moment vector
µ satisfies

µ = − e

m
s (1)

where e is the electron charge and m is its mass.
A non-relativistic theory of the electron, including its magnetic mo-

ment, was developed in 1927 by Pauli [1] (see [2] for a modern outline
and references to textbooks) who showed how to extend the Schrödinger
theory. Here we introduce a theory analogous to Pauli’s, but based on
the assumption that the electron is a localised field.

Toyoki Koga ([3], [4], Chapter IV of [5]) developed such an approach
to the Schrödinger equation. According to Koga, the electron is a lo-
calised field described by the ψ function, and is neither a wave nor a
particle; it is spherically symmetric in the absence of external forces [3]
but its shape gets distorted by external fields [4].

This is a theory without observers, measurements, probabilities and
expectation values. Koga showed that his solution of the Schrödinger
equation for a free electron yielded a de Broglie wave by averaging over
an ensemble. He was of the view that all of quantum theory could be
obtained from his results by considering ensembles.

Koga studied the Schrödinger equation and the Dirac equation
(Chapter V of [5]) but not the Pauli equation. This may be because
he found it of no use in developing his general relativistic theory of the
electron, including its internal gravitational field (Chapter VI of [5]).
The latter was motivated by his solution to the Dirac equation. But the
deterministic theory of the Pauli equation is a good illustration of his
ideas.

We also discuss the relation of the Hopf map [6] to the Pauli spin
theory. The paper [7] gives details of the Hopf map and some information
about how the Pauli matrices arise. It also mentions that the Hopf map
gives the spin direction of a spin 1/2 particle. Other introductions to
the Hopf map and its relation to quaternions are [8] and [9].

In the well-known book by Penrose [10] it is asserted, without naming
Hopf, that the Hopf map gives the direction of a 2-spinor.

We do not address the question of whether electron spin is real or
only apparent. It should be noted that Pauli’s paper [1] does not mention
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spin at all.

The double valued nature of the spin suggests that the electron’s
wavefunction (we use the traditional term for the electron field) should
contain two components:

ψ =
(
ψ1

ψ2

)
(2)

In other words, ψ = ψ(x, y, z, t) = ψ(x, t) is a map from R3 × R to C2.

Since the map ψ represents a localised field, we assume that |ψ1| → 0
and |ψ2| → 0 as |x| → ∞.

If ψ2 = 0 at all points of space we say that the electron is in a spin-up
state; the spin vector s is assumed to have the direction (0, 0, 1) ∈ S2. If
ψ1 = 0 everywhere, the state is spin-down with spin direction (0, 0,−1).

We assume that the ratio ψ2/ψ1 is independent of position. The
reason is that we expect it to always give the spin direction, just as it
does when it has the value 0 (up) or ∞ (down).

We assume that we are working in an inertial frame.

Following Koga, we write the Schrödinger equation for an electron as

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Uψ (3)

where ψ is a complex valued function on R3 ×R. Here m is the mass of
the electron and U is the potential energy.

2 A free electron

By a free electron we mean one with no external forces acting on it. We
take U = 0 for a free electron. For convenience, we assume that we are
studying an electron which is at rest in our frame. In order to study
electron spin, we postulate that ψ1 and ψ2 are related solutions to the
Schrödinger equation for a free electron:

ψj = aj exp(iS/~) (4)

where aj = |ψj | are complex valued functions of position and time.

We also assume that the ratio ψ2/ψ1 is constant (independent of
time as well as position) for a free electron. If this ratio gives the spin
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direction, then the assumption above is equivalent to the assertion that
in the absence of a torque, an electron does not precess.

Although this paper is motivated by Koga’s work on the Schrödinger
equation, it applies to any theory of the electron considered as a localised
field. It is therefore not necessary, for our purposes, to give details
about Koga’s solution. See [3] for Koga’s treatment of the Schrödinger
equation. When an electron is in an external electric field, Koga studies
what happens in [4]. These matters are also explained in Chapter IV of
his book [5] where he changes his terminology for the wavefunction from
“wavelet” to “elementary field”.

We can write

ψ = ψ0

(
α
β

)
(5)

where ψ0 is a solution to the Schrödinger equation and α and β are
constants (for a free electron) with |α|2 + |β|2 = 1. This expression is
unique up to multiplication by a complex number of absolute value 1.
We can make it unique by (for example) assuming that α is real and
positive.

If we identify R4 with C2 as in [7], we have
(
α
β

)
∈ S3, the unit

sphere in R4. This brings up the question: what is the direction of ψ, if
any? In other words, what is the spin axis? There is a possible answer
to this. In 1931, Hopf [6] defined a map which we denote

f : S3 → S2 (6)

as an example of a continuous map between spheres that is not null-
homotopic.

We define the Hopf map f here and justify its use later. The following
definition and several equivalent ones are given in [7]; this one is the most
convenient for us.

A general point P ∈ S3 can be described as

P = eiξ

(
cos(θ/2)

eiφ sin(θ/2)

)
(7)

where 0 ≤ θ ≤ π. Here θ is unique and φ can also be made unique by
putting suitable bounds on it; ξ is arbitrary. Let

f(P ) = (sin θ cosφ, sin θ sinφ, cos θ) ∈ S2. (8)
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We see that

(i) f is continuous, independent of ξ and depends only on the ratio of
the components of P , eiφ tan(θ/2),

(ii) every point of S2 is f(P ) for some P ∈ S3,

(iii) f
(

1
0

)
= (0, 0, 1) (the north pole of S2),

(iv) f
(

0
1

)
= (0, 0,−1) (the south pole of S2), and

(v) f(P ) uniquely determines P (except for the value of ξ).

As a consequence of (i), we can extend the domain of f to all the
points of C2 except the origin. There is also an S2-valued map f(ψ)

where ψ =
(
ψ1

ψ2

)
. It should be noted that f(ψ) depends on t alone;

for a free electron, f(ψ) is constant. Thus, f is a candidate for the
direction map. But is f compatible with the Pauli spin theory? In other
words, for a free electron, do f(ψ) and the spin angular momentum
vector s have the same direction in R3?

By properties (iii) and (iv), f(ψ) gives the spin direction of a spin-up
or spin-down electron.

3 An electron in an electromagnetic field

We accept the Pauli equation as given in the literature. One difference in
our approach is that we always consider angular momentum as a vector
in R3.

In the Schrödinger (or Pauli) equation, the potential energy U is a
sum of terms due to various forces acting on the electron. The vector
potential of the electromagnetic field also modifies the kinetic energy
term. These are all scalar operators; they simply multiply ψ. None
of them take into account the fact that the electron has an intrinsic
magnetic moment.
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Suppose an electron is placed in a magnetic field B. Then it expe-
riences a torque µ × B where µ is its magnetic moment. The potential
energy term due to the magnetic field is

V = −B · µ (9)

which leads to

V =
e

m
(B1s1 +B2s2 +B3s3) (10)

where B1, B2, B3 are the components of B.
Since ψ has two components, the three real components s1, s2, s3 of

the spin angular momentum s must be represented in the Pauli equation
by 2×2 matrices, say S1, S2, S3. These satisfy well known commutativity
relations and consequently we can make the choice

Sj =
~
2
σj (11)

where σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

These are the so called Pauli spin matrices.
Thus, in the Pauli equation, corresponding to V is the operator

~e
2m

(B1σ1 +B2σ2 +B3σ3). (12)

For us, the spin vector s is a real vector in R3, not a triple of matrices
as stated in most textbooks. A spin measurement, such as passing an
electron through a Stern-Gerlach apparatus, is actually a rotation of
the spin axis due to the torque exerted by the magnetic field. This
agrees with the view of Doran and Lasenby in their book [11] that spin
measurement is really spin polarisation.

4 Pauli and Hopf

Let B = |B|n where n is a unit vector with components n1, n2, n3.
This means that Bj = |B|nj for j = 1, 2, 3 and n ∈ S2 is the direction
of B.

Now there is a unique θ such that 0 ≤ θ ≤ π and cos θ = n3. Then,
since n1

2 + n2
2 + n3

2 = 1, there is φ such that sin θ cosφ = n1 and
sin θ sinφ = n2. Note that for P ∈ S3 the Hopf map satisfies

f(P ) = n = (sin θ cosφ, sin θ sinφ, cos θ) (13)
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if and only if P is of the form

P = eiξ

(
cos(θ/2)

eiφ sin(θ/2)

)
(14)

for some ξ.
Similarly, we findQ ∈ S3 such that f(Q) = −n. Since−n is obtained

from n by replacing θ with π − θ and φ with φ+ π, we get

Q = eiξ

(
sin(θ/2)

−eiφcos(θ/2)

)
. (15)

Without loss of generality, we will take ξ = 0 or any other convenient
value. With the usual inner product, {P,Q} forms an orthonormal basis
for C2. The two complex vectors P and Q are eigenvectors of the matrix
n1σ1 + n2σ2 + n3σ3 corresponding to the eigenvalues 1, −1. See the
paper [7] for details.

We are now concerned with the question of the relation, if any, be-
tween n and the directions of ψ and s.

First consider a special case. Suppose B is parallel to the +z-axis,

i.e., n1 = n2 = 0, n3 = 1. We can take P =
(

1
0

)
and Q =

(
0
1

)
.

In this case, using ψ = ψ1P + ψ2Q, σ3P = P and σ3Q = −Q, we see
that the Pauli equation degenerates into a pair of independent scalar
equations, one for each ψj . If ψ2 = 0, we have a spin-up electron; by
definition, its spin axis has the same direction, (0, 0, 1), as B.

In the general case, there are complex-valued maps ψP and ψQ,
uniquely determined by ψ, such that ψ = ψPP + ψQQ. Again, the
Pauli equation degenerates into a pair of independent scalar equations,
one for ψP and the other for ψQ. If ψQ = 0 then f(ψ) = f(P ) = n while
if ψP = 0 then f(ψ) = f(Q) = −n.

Conversely, if f(ψ) = n then ψQ = 0; if f(ψ) = −n then ψP = 0.
Suppose we rotate axes in R3, making n the north pole of S2 (and

−n the south pole), and change bases in C2 from
{(

1
0

)
,

(
0
1

)}
to

{P,Q}. The vectors s and B are unchanged, but now B is parallel to

the new +z-axis. With the new basis of C2, P is represented by
(

1
0

)
and Q by

(
0
1

)
. Similarly, n is now represented by (0, 0, 1). Although
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the Hopf map changes, its values at P and Q remain the same: n and
−n. Thus, as in the special case, the direction of ψPP is n, which is
the direction of B. As in the special case, ψPP stands for a spin-up
electron. So its direction coincides with those of n and s. Considering
the limit as B → 0, we see that for a free electron ψ and s have the
same direction.
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