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Aurélien Drezet

Univ. Grenoble Alpes, CNRS, Institut Néel
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RÉSUMÉ.
La théorie de l’onde pilote proposée par de Broglie et plus tard par
Bohm contient non seulement une dynamique ontologique mais aussi
se base sur un postulat statistique connu sous le nom d’ équilibre quan-
tique. Dans ce travail, qui suit notre récent article [1], nous développons
une description basée sur les forces de Langevin pour décrire la relaxa-
tion qui conduit à l’équilibre quantique. Basés sur une application du
modèle de Caldera-Legget pour un bain thermique nous montrons com-
ment un mouvement Brownien conduit naturellement à une relaxation
quantique.

ABSTRACT. The pilot wave interpretation proposed by de Broglie and
later by Bohm contains not only a dynamical ontology but also relies on
a statistical assumption known as quantum equilibrium. In this work
which follows our recent article [1] we develop a Langevin force de-
scription of the relaxation process which leads to quantum equilibrium.
Based on a application of the Caldera-Leggett model for a thermal bath
we show how a Brownian motion leads naturally to quantum relaxation.

P.A.C.S.: 03.65.Ta, 05.30.-d, 05.40.-a

1 Introduction

In a recent article published in this journal [1] we discussed the issue
of how to justify the so called ‘Born’s rule’ for quantum probability in the
context of the ‘hidden-variable’ theory proposed by de Broglie 1 in 1925-
1927 [2, 3] later rediscovered by Rosen in 1942 [6] and Bohm in 1952 [7]

1De Broglie’s pilot wave was a consequence of the double solution theory he pro-
posed [2, 3]. While this topic is of fundamental importance (much more than the
subject of the present article) we will not discuss it here. For more on this subject
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and known as the pilot wave interpretation (PWI) or recently ‘Bohmian
mechanics’. After reviewing several important proposals for solving this
issue we advocated a stochastic approach based on a Fokker-Planck or
diffusion equation reminiscent of studies about the classical Brownian
motion.

More specifically, based on the seminal work by Bohm and Vigier
in 1954 [8] and Vigier in 1956 [9] we derived a diffusion-like equation
for the density of probability ρ(x, t) for finding a quantum particle at
spatial location x and time t when the system is coupled to a thermo-
stat. We showed that on the long term ρ(x, t) necessarily converges to
the usual quantum prediction ρψ(x, t) = |ψ(x, t)|2 where ψ(x, t) is the
Schrodinger wave function associated with the particle. We also connec-
ted our work to Boltzmann’s derivation of the second law of thermody-
namics and derived a quantum version of the H-theorem dHt/dt ≤ 0
(different of the ‘Gibbs-Tolman’ coarse-graining proposed by Valentini
in 1991 [10, 11]) and which demonstrates the irreversible tendency to
reach quantum equilibrium ρψ within the condition of application of
our model. We emphasize that our approach like the one of Valentini
is not necessarily orthogonal to the typicality interpretation advocated
by Dürr, Goldstein and Zanghi [12]. In all these approaches we exploit
some results obtained by Boltzmann in thermo-statistics and in kinetic
theory. Indeed, some notions of typicality must be included as well in
the discussion of the H-theorem and our aim with diffusion was mainly
to show that the dynamics is robust enough for going beyond a simple
statement of typicality (associated with a simple ‘branch’-counting pro-
cess : see [1] for a discussion). At the end of the article we emphasized
the key role of entanglement and decoherence with the environment. We
believe that these features associated with deterministic chaos can be
used to enlarge the conditions of typicality developed in [12].

In this context and very recently, during an interesting conference
on Quantum Foundations at Troyes-France we were asked [13] how to
define a numerical estimation of the diffusion constant D appearing in
our model. Indeed, in our approach [1] the nature of the interaction
process between the particle and the thermostat was not discussed in
details. This is however a fundamental issue and here we provide an ele-
mentary theory for defining the diffusion constant D. For this purpose
we will introduce a PWI version of the Langevin equation for quantum

see for example the special issues ‘Quantum Rogue Waves as Emerging Quantum
Events’ in Ann. Fond. L. de Broglie 42 and specially the reviews [4, 5]).
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Brownian motion. In our model based on the standard Caldeira-Leggett
approach [14] for coupling a particle to a bath of harmonic oscillators we
will be able to define a PWI version of the generalized Langevin equation
including a quantum potential à la de Broglie-Bohm. Our approach is
only based on the deterministic PWI framework and can be understood
as an attempt to include some elements of decoherence and Langevin-
Noise theory in the ontology of de Broglie-Bohm. Since this ontology is
fundamentally nonlocal and holistic this issue is not trivial as we will
show in this manuscript. Importantly, since we stick with determinism
our approach differs from the stochastic models developed for example
by Nelson or for stochastic quantum electrodynamics (SQED). More pre-
cisely, in the discussion we will have to consider the role of the so called
Schrodinger-Langevin equation proposed by Kostin in 1972 [23, 24]. This
will be the occasion to go back to some earlier proposals by Bohm and
Hiley [15], Furth, Fenyes, Nelson or Luis de la Peña [16, 17, 18, 19, 20, 21],
and de Broglie himself [22] based on a ‘subquantum dynamics’ [8] or an
‘hidden thermodynamics’. We emphasize that these earlier proposals es-
sentially relied on a yet unknown level of reality - far below the existing
quantum level- and associated with some ‘subplanckian’ stochastic fluc-
tuations in a hypothetical ‘Dirac Aether’ advocated by Vigier and Bohm
or Nelson. In these approaches the irregular motions of such a complex
background fluid would generate a Brownian motion for the quantum
particle. Our model has a much less ambitious goal and actually relies
strictly on the firm basis of current and accepted quantum mechanics,
i.e., on the Schrodinger equation and on the quantum theory of open
systems applied to the PWI. This has a huge consequence because the
relaxation mechanism provided by our theory has only a meaning when
the quantum system considered is interacting with a thermostat associa-
ted with a bath of oscillators (all of these quantum objects obeying to a
single complex Schrodinger equation in agreement with the philosophy
of the PWI). Therefore, in our approach, at the difference of the ear-
lier proposals quoted before which involved a subquantum level, there is
no anymore relaxation for free particles such as electrons or atoms af-
ter being emitted from a (thermal) source. However, since the Liouville
theorem preserves the quantum equilibrium once it is (approximately)
reached the Born rule ρψ(x, t) = |ψ(x, t)|2 will be always experimentally
verified with a high accuracy for any quantum object well prepared and
separated from a source in which quantum relaxation already occurred
due to thermal interaction. Since this relaxation will be very fast the
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probability to find a disagreement with the standard quantum predic-
tion will thus be always vanishingly small. Of course PWI opens new
gates since the Born rule is not imposed as a statement (unlike in the
conservative Copenhagen approach). Therefore, deviations to quantum
equilibrium are always possible at least in the early ages of the Uni-
verse [25] where equilibrium is not yet reached or where the particle
wavelength is larger than the instantaneous Hubble radius. This could
induces violation of the no-signaling theorem prohibiting effective faster
than light communications [10]. It would be of paramount importance
to search seriously some residual relics or signatures of this non-locality
and quantum non-equilibrium in the cosmological background. These
important issues and many related ones will however not be considered
here.

2 The quantum Brownian motion seen from the perspective
of the pilot wave interpretation

We start with a rapid description of the classical version of the
Caldeira-Legget model [14] for a particle S of mass m in a external
potential V (x) and coupled to a bath T of harmonic oscillators. The
Hamiltonian for this system is given by

H =
p2

2m
+ V (x) +

∑
n

p2
n

2mn
+
mnω

2
n

2
(xn −

cnx

mnω2
n

)2 (1)

where p is the canonical momentum conjugated to the coordinate x for
the subsystem S while xn and pn are canonical variables for the various
oscillators of mass mn and pulsation ωn of the reservoir T (labeled by
n). In the model there is a coupling constant cn between the particles
of S and T. The structure of this model is well documented in the lite-
rature : it was proposed by Ford, Kac an Mazur in 1965 [26] but it was
popularized after the work by Caldeira and Leggett [14] (for a complete
discussion see for example [27]). Based on the Hamilton equations and
Eq. 1 we derive easily the set of coupled Newton’s equations describing
the complete dynamics :

mẍ = −∇V (x) +
∑
n

cn(xn −
cnx

mnω2
n

) (2)

mn(ẍn + ω2
nxn) = cnx (3)
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Before solving this system it is useful to go directly to the PWI to see
how the equations will be modified. In the the PWI the fundamental
equation is the Schrodinger equation i~∂ψt = Ĥψt for the the full sys-
tem where Ĥ is now an Hermitian Hamilton operator. The Standard
procedure for defining a quantum version of the Caldeira-Leggett model
is thus to go to the Heisenberg representation and to solve like in classi-
cal physics the set of Eqs. 2, and 3. However, in the PWI the most useful
representation is the Madelung-de Broglie one which relies on the non-
linear polar expression ψt = ate

iSt/~ where a and S are respectively the
amplitude and phase of the wave function. Since we work in the confi-
guration space we have at = a(x(t), {xn(t)}, t), St = S(x(t), {xn(t)}, t).
With the guidance law mnẋn(t) = ∇nSt = pn and mẋ(t) = ∇St = p we
obtain the well-known Hamilton Jacobi equation

−∂tS(x, {xn}, t) = H(x, p, {xn, pn}) +Q(x, {xn}, t) (4)

where H(x, p, {xn, pn}) is the classical Hamiltonian given in Eq. 1 and
Q(x, {xn}, t) is the in general highly non-local quantum potential intro-
duced by de Broglie and which reads here

Q(x, {xn}, t) =
−~2

2m
∇2a(x, {xn}, t)
a(x, {xn}, t)

+
∑
n

−~2

2mn

∇2
na(x, {xn}, t)
a(x, {xn}, t)

(5)

Now, from the Hamilton Jacobi Equation we can easily rederive the New-
ton equations like in Eq. 2 and 3 but this time with the new Hamiltonian
H(x, p, {xn, pn}) +Q(x, {xn}, t). This leads directly to

mẍ = −∇(V (x) +Q(x, {xn}, t)) +
∑
n

cn(xn −
cnx

mnω2
n

) (6)

mn(ẍn + ω2
nxn) = cnx−∇nQ(x, {xn}, t) (7)

which differ from the previous set by the inclusion of the (nonlocal)
quantum forces −∇Q(x, {xn}, t) and −∇nQ(x, {xn}, t).

At that stage we mention briefly, as it was already pointed out by
Takabayasi in 1953 [28], that the PWI written in the Newton form must
be supplied with the guidance condition mnẋn(t) = ∇nSt = pn and
mẋ(t) = ∇St = p which imposes to the velocity to be the gradient of
a phase. Schrodinger’s equation also imposing the single-valuedness of
the wave function at any point in the configuration space, the phase
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S may have some discontinuities since around any closed loop of this
space the quantization condition

∮
∇Sdx = 2πn (with n an integer and

n 6= 0 is associated with vortex lines) holds. This condition stirred some
controversies about the equivalence between the first order and second
order dynamics [29, 30, 31]. Here we will not enter into this debate and
assume that Eqs. 6 and 7 also satisfy the single-valuedness constraints
(for this purpose it is enough to consider that p and pn are obeying the
guidance law, i.e., defined as a phase gradient at a given time t0 which
could be the origin).

Now we go back to the integration of the dynamical equations. From
Eq. 7 we directly get the formal solution

xn(t) = x(0)
n (t) +

∫ t

t0

dt′
sin (ωn(t− t′))

mnωn
[cnx(t′)−∇nQ(x(t′), {xn(t′)}, t′)]

(8)

where x(0)
n (t) = xn(t0) cos (ωn(t− t0)) + ẋn(t0)

ωn
sin (ωn(t− t0)) is the ge-

neral free solution defined with the boundary conditions at time t0. We
emphasize that x(0)

n (t) is a classical-like solution of mn(ẍn + ω2
nxn) = 0,

i.e., when there is no interaction and no quantum potential. Therefore,
the physical meaning of x(0)

n (t) is not automatic in the PWI where quan-
tum forces ∇nQ in general never vanish and depends of the quantum
states ψ chosen. This issue will become important later. From now, in-
serting Eq. 8 into Eq. 6 leads to the generalized Langevin equation for
x(t) :

mẍ(t) = −∇(V (x(t)) +Q(x(t), {xn(t)}, t))

−mγ(t− t0)x(t0)−m

∫ t

t0

dt′γ(t− t′)ẋ(t′) + F (t) + ∆ (9)

in which the memory friction reads

γ(τ) =
1
m

∑
n

c2n
mnω2

n

cos (ωnτ) (10)

and the fluctuating force is

F (t) =
∑
n

cnx
(0)
n (t). (11)

Importantly, Eqs. 10 and 11 are identical in the quantum and classical
case, i.e. if we neglect the quantum forces. The specific terms arising
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from the PWI are the nonlocal gradient −∇Q(x(t), {xn(t)}, t) and the
nonlocal force ∆ which reads

∆ = −
∫ t

t0

dt′
∑
n

cn
mnωn

sin (ωn(t− t′))∇nQ(x(t′), {xn(t′)}, t′) (12)

In Eq. 12 the nonlocality is even double since it appears in the quantum
potential (we thus speak of nonlocality à la Bell) and in the time inte-
gral (this second kind of nonlocality in time is associated with memory
effects or hereditary dynamics and has a more classical origin going back
at least to V. Volterra and L. Boltzmann).

The present model is quite general but its level of complexity is such
that in order to get a practical solution we must add some hypotheses
to simplify the description. For this purpose we go back to our previous
paper [1] and point out that at some stage in the derivation of the dif-
fusion equation we admitted a factorization ansatz ρS+T (x, {xn}, t) '
ρS(x, t)ρT ({xn}, t) and |ψS+T (x, {xn}, t)|2 ' |ψS(x, t)|2|ψT ({xn}, t)|2
near the equilibrium. This axiom is reminiscent of the old ‘molecular
chaos’ introduced by Boltzmann and it also appears under the name
of Born-Markov approximation in the context of quantum-like master
equations [32]. This is often used in the literature together with system-
reduced density matrix calculations such as it is done within the Redfield
or Lindblad approaches. Actually, we see that here this hypothesis im-
plies the amplitude relation aS+T (x, {xn}, t) ' aS(x, t)aT ({xn}, t) but
that the phase is not impacted by the reasoning so that we still keep the
entanglement complexity in S(x, {xn}, t). Moreover, from the amplitude
factorization we deduce Q(x, {xn}, t) = QS(x, t) +QT ({xn}, t) with

QS(x, {xn}, t) =
−~2

2m
∇2aS(x, t)
aS(x, t)

QT ({xn}, t) =
∑
n

−~2

2mn

∇2
naT ({xn}, t)
aT ({xn}, t)

. (13)

Therefore Eq. 9 now reads

mẍ(t) = −∇(V (x(t)) +QS(x(t), t))

−mγ(t− t0)x(t0)−m

∫ t

t0

dt′γ(t− t′)ẋ(t′) + F (t) + ∆ (14)
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with

∆ = −
∫ t

t0

dt′
∑
n

cn
mnωn

sin (ωn(t− t′))∇nQT ({xn(t′)}, t′). (15)

The advantage of this new dynamics is that the motion of S and T can
be in principle solved. However, the model is still too complex for the
present purpose. Ideally, we would like to remove or neglect the effect of
the quantum potential QT ({xn(t′)}, t′). This would be apparently justi-
fied if the temperature of the bath is high so that the motions xn(t) are
supposed to be quasi-classical. However the meaning of quasi-classical
states of the environment is ambiguous in the PWI. For example the
usual semi-classical WKB states of the harmonic oscillator have some
pathological features. Indeed, it is well known that in such stationary
WKB states the guidance velocity ∇nS

(0)
n /mn of the non interacting

harmonic oscillators vanishes and the associated quantum potential Q(0)
T

survives [15]. Therefore, these states are from the point of view of the
PWI highly non classical since there is no kinetic energy and the role of
the quantum potential becomes dominant (we point out that Einstein
and Rosen dismissed the PWI because of this difficulty). Here, instead
of the WKB states we should better consider the coherent (or Gaussian)
states which naturally emerge as the only privileged states through de-
coherence (i.e., continuous monitoring) resulting from interactions with
‘the rest of the universe’ [33, 34]. Importantly, the coherent states are
characterized by classical trajectories, i.e., up to an additional restoring
force term (see the discussion in Appendix) due to a residual quantum
potential contribution.

In order to use these states in our problem we return to Eq. 8 and
we write instead :

xn(t) = x(αn)
n (t) +

∫ t

t0

dt′
sin (ωn(t− t′))

mnωn
[cnx(t′)

−∇nQ′(x(t′), {xn(t′)}, t′)] (16)

where x
(αn)
n (t) is the bohmian trajectory of the nth oscillator if this

system is characterized by the coherent state ψ(αn)
n (xn, t) corresponding

to the complex number αn(t) (see Appendix) and the boundary condition
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x
(αn)
n (t0) = xn(t0). We have :

x(αn)
n (t) =

√
2~

mnωn
|αn(t0)| cos (ωn(t− t0)− σn) + un

= x(0)
n (t)−

∫ t

t0

dt′
sin (ωn(t− t′))

mnωn
∇nQ

(αn)
n (x(αn)

n (t′), t′) (17)

where un and σn are constants defined in the Appendix (see Eq. 44).
The quantum potential Q(αn)

n is defined in Eq. 46 and for consistency the
new quantum potential Q′ in Eq. 16 is defined as Q′(x(t), {xn(t)}, t) =
Q(x(t), {xn(t)}, t) −

∑
nQ

(αn)
n (x(αn)

n (t), t). With Eq. 16 we can replace
Eq. 9 by

mẍ(t) = −∇(V (x(t)) +Q(x(t), {xn(t)}, t))

−mγ(t− t0)x(t0)−m

∫ t

t0

dt′γ(t− t′)ẋ(t′) + F ′(t) + ∆′ (18)

in which the memory friction is left unchanged and where the new fluc-
tuating force is

F ′(t) =
∑
n

cnx
(αn)
n (t), (19)

while the nonlocal force becomes

∆′ = −
∫ t

t0

dt′
∑
n

cn
mnωn

sin (ωn(t− t′))∇nQ
′(x(t′), {xn(t′)}, t′).(20)

This new description is rather formal until we go back to Eq. 13. Here,
as explained in the Appendix, we should consider for the thermostat a
mixture of coherent states αn (more precisely a mixture of product states
⊗n|αn〉). In the PWI, where there is only one wave function for the whole
universe, this actually means that due to interaction with the rest of the
universe the density matrix of the bath T is well approximated by such a
mixture. Therefore, if mathematically we isolate one of this product state
⊗n|αn〉 and apply the Born-Markov approximation starting from time t0
where S and T are decoupled it is reasonable to write QT ({xn(t)}, t) '∑
n
−~2

2mn

∇2
na

(αn)
n (xn(t),t)

a
(αn)
n (xn(t),t)

'
∑
nQ

(αn)
n (x(αn)

n (t), t). This assumes that the
trajectories of the bath are weakly affected by the interaction with S and
that the amplitudes a(αn)

n (and thus the quantum potential of the bath)
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are not modified.
Within this approximation the nonlocal force ∆′ vanishes and we

have finally

mẍ(t) ' −∇(V (x(t)) +QS(x(t), t))

−mγ(t− t0)x(t0)−m

∫ t

t0

dt′γ(t− t′)ẋ(t′) + F ′(t). (21)

Under this form we have the generalized Langevin equation with retar-
dation and colored noise force F ′(t) in presence of the external potential
V (x) and of the effective quantum potential QS(x, t). Like in classical
physics we would like to write the fluctuation-dissipation theorem of the
second kind assuming a thermal classical bath :

〈F ′(t)〉th. = 0,CF (τ) = 〈F ′(tb)F ′(ta)〉th. = mkBTγ(tb − ta). (22)

The meaning of the averaging 〈[...]〉th. over thermal bath degrees of free-
dom is standard in classical physics but should be clarified a little in the
context of quantum mechanics and PWI where the primary reality is the
universal wave function associated with a pure quantum state (while a
thermal state is a mixture). This issue is discussed in the Appendix. In
the PWI model we can thus easily demonstrate 〈F ′(t)〉th. = 0 implying
that like in classical physics the net random force vanishes. The two
times force correlator C(PWI)

F (τ) = 〈F ′(tb)F ′(ta)〉(PWI)
th. is more difficult

to define and to calculate. The details are given in the Appendix and
the superscript PWI here indicates that the meaning of the force pro-
duct is taken in the PWI sense not in the usual operator sense. We find
explicitly

C
(PWI)
F (τ) = A+ kBTmγ(τ). (23)

The additional contribution A =
∑
n

c2n
mnω2

n

~ωn

2 is specific of the quantum
model considered and is a signature of a zero point field (zpf) fluctuation
in the PWI. We have the general constraintA� kBTmγ(0) which can be
deduced from the condition ~ωn � kBT . We emphasize that A contrarily
to γ(τ) is not decaying with time (i.e., limτ→+∞[γ(τ)] = 0). Therefore A
is associated with a form on nonlocality and correlation in time specific
of the PWI. To precise the meaning of A we can use the continuous limit
and write γ(τ) =

∫ ωc

0
dωg(ω) cos (ωτ) and A = m

∫ ωc

0
dωg(ω)~ω

2 where
ω−1
c defines a memory time scale and ~ωc � kBT . We here limit our
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study to non-retarded dissipation regime with infinitely short memory
time 2 g(ω) ' 2

πΓ, γ(τ) ' 2Γδ(τ) associated with a white noise. It leads
to the Markovian-Langevin equation

mẍ(t) ' −∇(V (x(t)) +QS(x(t), t))−mΓẋ(t) + F ′(t). (24)

This model is very close to the classical case and the main differences
come from the presence of a quantum potential contribution QS(x, t)
and the inclusion of the constant A. In this model we can fairly write
A ' Γm~ω2

c

2π which shows how A typically depends on ωc and Γ. The pre-
sence of A leads therefore to unusual features and the influence would
become important a low temperature (a regime not considered here for
questions of space). A is connected to the fundamental fluctuation in

force 〈F ′2〉(Quantum) = ∆F ′2 =
∑
c2n∆x

2
n where ∆xn =

√
( ~
2mnωn

) is
the fundamental uncertainty associated with the Gaussian wave packet
of the nth bath oscillator. It is thus intrinsically quantum and from the
procedure defined here it is the minimal fluctuation available so that fur-
ther approximations would only make this fluctuation worst and induce
even more nonlocality.

Now, for illustration we can locally take in Eq. 24 V (x) = constant
and aS(x) will be also spatially uniform meaning that the average mo-
tion is a plane wave in a constant potential. Such a situation will be
a good approximation in rarefied medium like molecular gases or for
free electrons in solids in the Drude approximation. Then the force
−∇(V (x(t))+QS(x(t), t)) approximately vanishes and we obtain a form
of Brownian motion such that in the limit Γ(t− t0) � 1, Γτ � 1 :

〈(ẋ(t))2〉th '
kBT

m
+

A

m2Γ2
=
kBT

m
(1 +

~ωc
kBT

ωc
2πΓ

)

〈|x(t+ τ)− x(t)|2〉th '
2kBT
mΓ

τ +
A

m2Γ2
τ2. (25)

The first line is in agreement with the equipartition theorem if we in-
troduce an effective temperature Teff = T (1 + ~ωc

kBT
ωc

2πΓ ). This effective
temperature is in general different of T . Indeed while we are in the limit
~ωc

kBT
� 1 we have also often (but not always see below) ωc

2πΓ � 1 so that
the two ratios generally compete. The second line in Eq. 25 allows us to

2We consider the simple Ohmic model where γ(τ) = ωcΓe−ωc|τ | for which in the
limit ωc → +∞ we have γ(τ) = 2Γδ(τ). This limit allows us to recover Eq. 24.
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define the diffusion ‘constant’ as

D =
〈|x(t+ τ)− x(t)|2〉th

2τ
=
kBT

mΓ
+

A

2m2Γ2
τ

=
kBT

mΓ
(1 +

~ωc
kBT

ωc
2πΓ

Γτ
2

) =
kBT

mΓ
(1 +

~ωc
kBT

ωcτ

4π
). (26)

We have clearly two regimes : a pure diffusive, i.e. Einsteinian, one

√
(〈|x(t+ τ)− x(t)|2〉th) '

√
2kBT
mΓ

√
τ

if ~ωc �
√

(kBT~/τ) �
√

(kBT~Γ) (i.e., T ' Teff ) and a linear sprea-
ding regime

√
(〈|x(t+ τ)− x(t)|2〉th) '

√
(

~
2πmΓ

)ωcτ

if ~ωc �
√

(kBT~/τ). The interesting regime for us is clearly the dif-
fusive one and we would like to illustrate this with an example. As a
numerical illustration we can use a free electron gaz in a metal where
the temperature T is replaced by 2/3TF where TF is the Fermi tempe-
rature which is typically 104 K (i.e. 2 order of magnitudes more than
the room temperature T ). For example for gold we have ~Γ = 65.8 meV,
i.e., τr = Γ−1 ' 6.2 × 10−14 s, and EF = KBTF = (h/λF )2

2me
= 5.53 eV,

i.e., TF = 6.42 × 104 K and λF = 0.55 nm. Importantly in this model
the time τr defines the intrinsic collision time of electrons with the crys-
tal so that we are allowed to write ωc ' Γ (i.e. there is only one time
scale here). The condition for being in the diffusive regime reads now
~ωc �

√
(kBT~ωc), i.e., ~ωc � kBT in agreement with the physical

hypothesis ~ωn � KBT . We are thus in the diffusive regime and we can
write for the genuine diffusion constant

D =
2
3
kBTF
mΓ

=
2
3
EF
~Γ

~
2me

' 112
~

2me
= 112DQ. (27)

where we introduced the purely quantum diffusion constant

DQ =
~

2me
' 5.5× 10−5m2s−1 (28)
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defined by Fenyes and Nelson [17, 18] and advocated by Vigier and de
Broglie [22]. Also, in this regime we have λF

vF τr
= π ~Γ

EF
' 0.037 which

means than the typical Fermi wavelength λF is much smaller than the
electron mean free path vF τr and therefore the plane wave approximation
applied during the typical relaxation time τr is good enough (i.e., we are
in weak dissipation regime).

3 Final remarks, and Discussion

Few remarks are important before to reach our conclusion. First, ob-
serve that the mechanism we propose here is fundamentally driven by
thermal properties and diffusion mechanism. The results obtained when
the effect of quantum potentials can be neglected is thus very close
from the classical or semi-classical diffusion calculations. The success
of the procedure relies on the factorization ansatz ρS+T (x, {xn}, t) '
ρS(x, t)ρT ({xn}, t) and |ψS+T (x, {xn}, t)|2 ' |ψS(x, t)|2|ψT ({xn}, t)|2
which is reminiscent of the old molecular chaos axiom. If the bath is
in quantum equilibrium, i.e., if ρT ({xn}, t) = |ψT ({xn}, t)|2 and also
in thermal equilibrium the diffusion process à la Langevin will bring
the subsystem S to quantum (and thermal) equilibrium with a typical
damping parameter Γ and a diffusion constant D given by Eq. 26 (e.g.,
Eq. 27). This relaxation will be done in agreement with the Fokker-
Planck or diffusion equation discussed in [1] (where the same diffusion
constant D = 〈|x(t)−x(0)|2〉th

2t was deduced from a Kramers-Moyal expan-
sion). Of course, for realistic cases where the quantum potential QS+T

can not be neglected the explicit calculation of the diffusion Dt could be
much more involved and actually should be a complex function of time
and space. Still, the results obtained here give certainly good order of
magnitudes for the diffusion parameter D.

A second important issue concerns the value DQ = ~/2m. This quan-
tum diffusion constant was postulated by Fürth, Fényes and Nelson using
very different stochastic approaches. If we go back to the original work of
Fürth [16] (see also Bohm [35]) based on the formal analogy between the
Schrodinger and diffusion equation (see Feynman and Hibbs [36] for a
discussion in the context of the path integral formalism and specially re-
garding the use of a pseudo diffusion constant D′ = iDQ for probability
amplitudes) we find a very appealing argument for justifying the value
DQ. Starting with the Brownian motion law written on the crude form
δx2 ' 2Dt, where δx is the typical path fluctuating variation along x, we
get m δx

t δx ' 2mD. If we identify δx
t with a typical fluctuating velocity
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variation δvx we get a kind of Heisenberg relation where 2Dm plays the
role of ~. The identification 2Dm = ~ leads thus to DQ, i.e., to a pu-
rely quantum diffusion constant 3. The reasoning is of course extremely
rough since the ‘velocity’ δxt is not in general identical with the genuine
uncertainty δẋ = δvx on the velocity vx = ẋ. More precisely, Eq. 25,
i.e, the Langevin theory used in the limit Γt� 1 corresponding to time
larger than the relaxation time, implies δv2

x = 〈ẋ2〉 = DΓ(= KBT/m)
and δx2 = 〈x2〉 = 2Dt and we thus get

δxδvx =
√

(Γt/2)
δx2

t
=

√
(Γt/2)2D � 2D (29)

Comparing this inequality with the Heisenberg relation δxδvx & ~/m we
see that the identification D = DQ is still possible if we admit that we
are working with semi-classical states for which δxδvx � ~/m. However,
if we consider the value Eq. 27 with D � DQ and insert it in Eq. 29 we
see that this also implies δxδvx � ~/m so that the Fürth-Bohm intui-
tive result D = DQ [16, 35] is not strongly imposed or required by the
theory. Actually, we see that it is better to consider DQ as a standard
quantum limit (SQL) in the sense given by Braginsky to this notion in
the context of quantum measurement theory [37]. Indeed, we know from
this theory that the optimum in precision for measuring the position and

momentum of a free particle during a time t are given by ∆xSQL '
√

~t
2m

and ∆pSQL '
√

~m
2t = m

∆xSQL
t . Clearly, here we have a Brownian mo-

tion with D = DQ. The meaning of this SQL measurement procedure
becomes clear if we remember that decoherence models can interpret
the environment (i.e., our thermostat T) interacting with the particle of
mass m (i.e. our system S) as a form of complex measurement [33, 38].
The SQL value D = DQ therefore fixes such typical quantum bound for
the interaction with T.

It is important also to comment briefly on the difference between
our approach and the one followed by Nelson [18]. Nelson starts from
a time symmetric perspective and considers two stochastic evolutions :
forward and backward associated with respectively future and past dy-
namics with respect to a given time t. He proposes (for a single particle)
two Brownian equations dx±(t) = (u + v)dt + dw±(t) where dw±(t)
is a Wiener process such as the conditional expectation with respect

3De Broglie using a condition of stability on the particle guidance by the wave
obtained in [22] a quite similar result D = 4π

3
nDQ where n in an integer.
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to the present time t reads Et[dw±(t) ⊗ dw±(t)] = 2DIdt (in tenso-
rial notations and using the Itô formalism) with D a diffusion constant
which in this approach must be chosen as D = DQ. Here u(t) = ∇S/m

and v(t) = D∇ρ
ρ (where ρ is the density of probability in the confi-

guration space) are called respectively current and osmotic velocities
and in particular u(t) is identical to the one used in the deterministic
PWI. Nelson then derives two Fokker-Planck equations (for the forward
and Backward motions) and obtains, by addition, the conservation law
∂tρ = −∇(ρu). The dynamics of Nelson, which is time symmetric, re-
lies on some assumptions needed to recover the velocities u(t) and v(t)
and thus in order to go back to the Schrodinger equation for the wave
function ψ =

√
ρeiS (see for example [19, 20]). The main issue concerns

however the extension to the many-body problem and Nelson himself
recognized [18] (see also Cushing [21]) that his approach, when correctly
extended for N particles, leads to some form on nonlocality driven by
the stochastic bath. This nonlocality is actually even stronger than in
the PWI since the noise term carries its own nonlocality (added thus to
the usual quantum potential). In the present work we followed the de-
terministic approach of PWI in order to reduce the number of unwanted
assumptions (i.e. following a kind of Occam principle) and the nonloca-
lity of the bath is associated with usual quantum entanglement with the
environment. This has huge consequences since it means that within the
PWI relaxation does not occur all the time (unlike in Nelson’s view) but
is actually limited to the regime of interacting systems. For example, in-
teracting atoms or electrons will naturally present such a relaxation but
free particles will not (even though entanglement with the bath could be
of course preserved after the interaction). We point out that an alterna-
tive approach to Nelson’s was later advocated by Bohm and Hiley [15] in
which they attempted (following the initial goal of Vigier and Bohm) to
derive a stochastic process (different from Nelson’s) by adding a Osmotic
velocity term v(t) to the PWI with a diffusion constant not necessarily
fixed to D = DQ. This approach also leads to a relaxation mechanism
where the quantum equilibrium ρ = |ψ|2 appears as an attractor (while
in Nelson’s approach the equilibrium is an axiom). Interestingly, the two
models predict a similar trend to reach equilibrium4. We emphasize that

4In [1] we derived the H-theorem starting with H =
R
dxρ ln (f) and with

the density of probability ρ = f |ψ|2. We also used two Fokker-Planck equations
∂tρ = −∇(ρv) + D∇2ρ and ∂t|ψ|2 = −∇(|ψ|2v) + D∇2(|ψ|2) to obtain the in-
equality d

dt
H = −

R
dxD|ψ|2(∇f)2/f ≤ 0 which is the H-theorem for our pro-
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both the Bohm and Hiley and Nelson models suffer from the same ar-
bitrariness and difficulties of interpretation concerning the nonlocality
driven by the thermal bath and for these reasons these models are not
considered here (while this issue was problematic for Nelson [18], Bohm
and Hiley strongly advocated this nonlocality as a key feature of this
stochastic approach : without it it would not be possible to justify the
EPR paradox and to obtain a violation of Bell inequalities).

Finally, a last remark should be done concerning the method used in
this work. Indeed, while our work relied on the usual Hamiltonian me-
thod of coupling a small system S to a thermostat T, (i.e., in full agree-
ment with the standard canonical quantization for open systems [32]),
this is certainly not the only possible approach. The issue goes back at
least to the seminal work by Wigner and Weisskopf [39] for introdu-
cing a complex energy or Hamiltonian in optics [40]. In the same vein
a rigorous formalism for non-Hermitian Hamiltonians was used by Dek-
ker [41] for deriving the Fokker-Planck decoherence/diffusion equation
associated with Brownian motion [14]. A modified Schrodinger equa-
tion including dissipation was proposed by Kostin [23] and is known as
the Schrodinger-Langevin equation. In the context of the PWI this ap-
proach leads to a pure state description of the particle trajectory since
we can define a wave function for the dissipative system without using
degrees of freedom for the thermal bath. However, in the Kostin ap-
proach, in analogy with Langevin’s work we can introduce fluctuational
forces associated with a white noise and the approach is thus merely phe-
nomenological (alternative approaches have been proposed by Sanz and
coworkers based on the remarkable Caldirola-Kanai formalism for dissi-
pative systems [43]). In the PWI one can get an intuitive picture of the
Kostin equation starting from the modified Hamilton-Jacobi-Langevin
equation 5

−∂tS(x, t) =
(∇S(x, t))2

2m
+ V (x) +Q(x, t)− xF (t) + ΓS(x, t) (30)

blem [1]. In Bohm and Hiley work [15] we have instead with our notations ∂t|ψ|2 =
−∇(|ψ|2v) and ∂tρ = −∇(ρv) + D∇(ρ∇ ln f) which lead again to the formula
d
dt
H = −

R
dxD|ψ|2(∇f)2/f ≤ 0 (a similar result for the Bohm-Hiley model has

been obtained independently by M. Hatifi and coworkers [42]). Therefore, both me-
thods lead to the same rapid convergence to quantum equilibrium f = 1.

5Actually we should replaceΓS(x, t) by Γ(S(x, t)− 〈S(t)〉) if we want to preserve

the energy definition 〈Ĥ〉 = 〈[ p̂2

2m
+ V (x̂)− x̂F (t)]〉.
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where Q(x, t) = −~2∆a(x,t)
2ma(x,t) is a quantum potential and F (t) is a fluc-

tuating force. By taking the gradient and using the guidance postulate
mxẋ = ∇S we immediately get the Langevin equation

mẍ(t) = −∇(V (x(t)) +Q(x(t), t))−mΓẋ(t) + F (t) (31)

which is very similar to Eq. 24. By adding the probability conser-
vation ∂ta

2 = −∇(a2∇S/m) and introducing the Kostin wave func-
tion ΨK(x, t) = a(x, t)eiS(x,t)/~ we immediately deduce the nonlinear
Schrodinger-Langevin equation 6

i~∂tΨK(x, t) = −∇
2

2m
ΨK(x, t) + [V (x) +Q(x, t)]ΨK(x, t)

−xF (t)ΨK(x, t) +
~
2i

Γln[ΨK(x, t)/ΨK(x, t)]ΨK(x, t). (32)

While this approach (reviewed in a recent book [45]) is interesting there
are few reasons why we don’t consider it here : First, the theory breaks
time symmetry due to the presence of the dissipative term in Eq. 30, also
it is as we explained non linear due to the presence of the unusual log
term in Eq. 32. Most importantly, however the model is stochastic due to
the presence of the random force F acting as a white noise. This means
that the action S as well becomes a stochastic quantity since for every
determination of F we have a new solution for S or ΨK (in agreement
with the original philosophy of Langevin’s model). However, the exact
nature of this stochastic space is not clear and the approach is actually
more an alternative model like Nelson’s stochastic approach was. The
connection with the PWI is not clear in particular because it relies also
on the exact conservation of the probability flow ∂ta

2 = −∇(a2∇S/m)
despite the fact that S is fluctuating. In the approach defended here,
decoherence and entanglement with the Bath are key and therefore the
nature of the stochastic evolution space is clear. In our approach the
probability conservation occurs only for the full system S+T and if we
average on the degrees of freedom of the bath we get as explained in [1]
a Fokker-Planck or diffusion equation like ∂ta2 ' −∇(a2v) +D∇2a2 or
∂tρ ' −∇(ρv)+D∇2ρ (where ρ(x, t) is a reduced probability) which in-
volves the constant D of the Brownian motion driven by the interaction

6From footnote 3 and [23] we emphasize that adding a term −Γ〈S(t)〉) in Eq. 30
means adding a term −ΓΨK(x, t)(

R
dx′|ΨK(x′, t)|2 ~

2i
Γln[ΨK(x′, t)/ΨK(x′, t)]) in

Eq. 32.
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with the bath T. Our approach is intended for explaining the conver-
gence to quantum equilibrium ρ ' a2 and in [1] we showed how diffusion
linked to quantum correlation and entanglement with a thermal bath can
lead to this fundamental statistical requirement of the PWI (while the
Kostin model, like Nelson’s approach, assumes already this postulate).
The Langevin equation studies done in the present work not only com-
plete the previous article [1] but also shows how realistic quantum model
of the interaction between particles could lead to a realistic picture of
relaxation in the PWI. We think that this opens new possibilities for des-
cribing non-equilibrium situations in extreme experimental conditions or
at the beginning of our Universe.
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A Appendix

A.1 About thermal equilibrium in the PWI

The non relativistic PWI interpretation is a theory for particles in the
configuration space associated with coordinates q and not a statistical
theory in the phase space with canonical coordinates q and momenta
p. This has huge consequences since the basic probability densities are
defined as ρ(q, t) and not η(q, p, t). Actually, Takabayasi [28, 3, 30] was
the first to point out that in the PWI we can define densities in the phase
space restricted by the Hamilton-Jacobi constraints p = ∇S(q, t). We
have thus in the case of quantum equilibrium ηψ(q, p, t) = |ψ(q, t)|2δ(p−
∇S(q, t)) which corresponds to a pure state. However, in order to define
a statistical thermal equilibrium for a thermostat we have to introduce a
mixture of let say energy states which leads to a reduced density matrix

ρ̂ = e
− Hth

kBT /Z where Hth is the bath Hamiltonian and Z the canonical
partition function. This actually means a mixture of wave functions [44,
15] and a phase space density

ηth.(q, p, t) =
∑
E

|ψE(q, t)|2δ(p−∇SE(q, t))
e
− E

kBT

Z
(33)
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This density is not always convenient to use in the PWI for instance

when we consider energy average like 〈E〉th =
∑
E E

e
− E

kBT

Z which in the
PWI reads

〈E〉th =
∫
dqdp

∑
E

|ψE(q, t)|2δ(p−∇SE(q, t))E
e
− E

kBT

Z
. (34)

However, since we have E = (∇SE(q,t))2

2m + V (q) + QE(q) = −∂tSE =

Hψ(x, p, t), where the quantum potential QE(q) = −~2∆|ψE(q)|
2m|ψE(q)| is spe-

cific of each energy states considered, we can not define a wave-
function independent Hamiltonian for the mixture such as 〈E〉th =∫
dqdpH(q, p)ηth.(q, p). Therefore, in the PWI the configuration space

supersedes the phase space. Still, the concept of mixture in the configu-
ration space is worth and we can safely use

〈E〉th =
∑
E

∫
dqψE(q, t)∗ĤψE(q, t)

e
− E

kBT

Z

=
∑
E

∫
dq|ψE(q, t)|2[ (∇SE(q))2

2m
+ V (q) +QE(q)]

e
− E

kBT

Z
. (35)

Moreover, the main issue in equilibrium thermodynamics is to ob-
tain this mixture from a pure quantum states. Within the standard
density matrix formalism this is done by taking a huge system and
by taking a trace or average over the many degrees of freedom asso-
ciated with ‘the rest of the universe’. Physically this means complex
interactions and decoherence so as to justify the reduced density ma-

trix ρ̂T = e
− Ĥth

kBT /Z from a universal pure state ρ̂U = |ΨU 〉〈ΨU |. This
fits quite well with the PWI if we write for any observable ÂT acting
on the thermostat 〈ÂT 〉 =

∫ ∫
dxrdxTΨU (xr, xT , t)∗ÂTΨU (xr, xT , t) '∑

E

∫
dxTψE(xT , t)∗ÂTψE(xT , t) e

− E
kBT

Z . where the label r refers to the
rest of the universe degrees of freedom and ΨU (xr, xT , t) is the universal
wave function for the entangled state involving both the thermostat T
and the rest of universe r. Moreover, in the PWI the fundamental quan-
tities are the particle trajectories which must be defined from the global
wave function ΨU (xr, xT , t). The reduced density matrix formalism al-
lows us to define effective paths for the system T after tracing over the
degrees of freedom associated with the rest of the universe. For this we
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define the reduced density matrix as ρ̂T = Trr[ρ̂U ] and we have

〈xT |ÂT ρ̂T |x′T 〉 =
∫
dxrΨU (xr, x′T , t)

∗ÂTΨU (xr, xT , t)

'
∑
E

ψE(x′T , t)
∗ÂTψE(xT , t)

e
− E

kBT

Z
(36)

For the probability current operator ĴT (xT ) = |xT 〉〈xT |P̂T +P̂T |xT 〉〈xT |
2m we

can thus define the effective velocity as veff.,T (xT , t) = 〈xT |ĴT (xT )ρ̂T |xT 〉
〈xT |ρ̂T |xT 〉 ,

i.e.,

veff.,T (xT , t) '
∑
E |ψE(xT )|2∇TSE(xT )

m
e
− E

kBT

Z∑
E |ψE(xT )|2 e

− E
kBT

Z

(37)

This mean Bohmian velocity was advocated in the recent recent years by
Appleby [34] and Sanz [24] in the context of decoherence. Alternatively
we can take an ensemble point of view and decide to not define this
mean velocity. Then by keeping each term of the sum with energy E

we attribute a velocity ∇TSE(xT )
m to each individual ‘pure’ state in the

mixture. This is the strategy used in this work for the thermostat.

A.2 Coherent state of the harmonic oscillator and the PWI

The usual method for coupling an harmonic oscillator to a thermal
bath of oscillators is to suppose that a given time, let say t = 0, the sys-
tem S+T is factorisable with a full density matrix ρ̂ = |S〉〈S|⊗ρ̂th. where
|S〉 describes the pure state of the system S while the thermostat T is
characterized by the mixture ρ̂th. = ⊗nρ̂(n)

th. . For each degrees of freedom

of the bath T labeled by n we have ρ̂
(n)
th. =

∑
m
e
−m~ωn

kBT

Zn
|m(n)〉〈m(n)|

where |m(n)〉 is a Fock state for the Hilbert space associated with
the nth harmonic oscillator of the bath (the partition function reads

Zn = (1− e
− ~ωn

kBT )−1 ' kBT
~ωn

� 1 in the high temperature limit).
However, as explained in the main text the usual Fock states of the

harmonic oscillator are not very convenient for the PWI because these
are highly non-classical even in the WKB limit corresponding to high
quantum number m� 1. While this doesn’t prevent us to use the Lan-
gevin equation, here we found it much easier to work with a different
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representation of the density matrix ρ̂
(n)
th. namely the one based on the

P-representation of Glauber with coherent states |α〉. There are several
reasons motivating this choice. First, coherent states are robust objects
which can be easily obtained during a decoherence process involving
subsequent baths and interactions [33]. Therefore, they are the most
preferred and natural basis vectors for our reservoir. Second, while for
standard quantum mechanics all the representations of a density matrix
are equivalent this is however not the case in the PWI where an ontologi-
cal level is introduced in the discussion [34]. As we will see the coherent
states have nice properties which are well suitable for a classical limit
description. From now we will remove the label n and consider a generic
harmonic oscillator in thermal equilibrium. Using the P-representation
of Glauber it is straightforward to write

ρ̂th. =
∫
d2α

π
ρth.(|α|)|α〉〈α| (38)

where ρth.(|α|)| = e−|α|
2/〈m〉th./〈m〉th. with 〈m〉th. = (e

~ω
kBT − 1)−1 '

kBT
~ω � 1 defines the P-representation of the thermal state in the high

temperature limit. If we introduce the polar form α = |α|eiσ we have
alternatively

ρ̂th. =
∫ +∞

0

∮
d(|α|2)dσ

2π
ρth.(|α|)|(|α|eiσ)〉〈(|α|eiσ)|

'
∫ +∞

0

~ωd(|α|2)e
− ~ω|α|2

kBT

kBT

∮
dσ

2π
|(|α|eiσ)〉〈(|α|eiσ)| (39)

With this representation we can conveniently write any average value
〈Â〉th. = Tr[ρ̂th.Â] associated with the operator Â acting on the thermal
state as

〈Â〉th. '
∫ +∞

0

~ωd(|α|2)e
− ~ω|α|2

kBT

kBT

∮
dσ

2π
〈Â〉α (40)

with 〈Â〉α = 〈α|Â|α〉 = 〈(|α|eiσ)|Â|(|α|eiσ)〉 the average value on the
pure coherent state.

For the PWI we need to consider more explicitly the x-representation
of the coherent state. Also, the time evolution was not considered and
the previous description corresponds to the density matrix at a origin
time t0. The unitary evolution leads to |α(t)〉 = U(t, t0)|α(t0)〉 where
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we have α(t) = α(t0)e−iω(t−t0), σ = Arg[α(t0)]. The density matrix at
time t is obtained from Eq. 38 (which represents the state at time t0)
by U(t, t0)ρ̂th.(t0)U−1(t, t0). The average value at time t 〈Â〉th.(t) is still
given by the integral Eq. 40 but with now 〈Â(t)〉α = 〈α(t)|Â(t0)|α(t)〉
(Â(t0) is the Heisneberg representation of the operator at time t0, i.e.,
the Schrodinger representation of this operator).

Now, in the x representation the coherent state of the non interacting
harmonic oscillator is characterized by a wave function

〈x|α(t)〉 = ψ(α)(x, t) = (
mω

π~
)

1
4 e−

mω
2~ (x−

√
2~

mω Re[α(t)])2eiS
(α)/~ (41)

where the phase is

S(α)/~ =

√
2mω

~
Im[α(t)]x− ω

2
(t− t0) +

|α(t0)|2

2
sin (2ω(t− t0)− 2σ]).

(42)

Within the PWI the guidance velocity for such a state is :

ẋ(α)(t) =
∇S(α)

m
=

√
2~ω
m

Im[α(t)] = −
√

2~ω
m

|α(t0)| sin (ω(t− t0)− σ)

(43)

which by integration leads to

x(α)(t) =

√
2~
mω

|α(t0)| cos (ω(t− t0)− σ) + u. (44)

where u is an integration constant which can take any real value. We
emphasize that we have mẋ(α)(t) = 〈p̂〉α(t) and x(α)(t)− u = 〈x̂〉α(t) =√

2~
mωRe[α(t)]. Therefore, since 〈x̂〉α(t) is also the trajectory of the wave

packet center of mass, u0 is thus interpreted as a relative coordinate
between the Bohmian particle located at x(α)(t) and the center of mass
at time t. Importantly Eq. 44 inserted in Eq. 40 with Â = x̂ leads to
〈x̂〉th. = 0 after averaging on the variable σ. From the definition of the
random force F ′(t) =

∑
n cnx

(αn)
n (t) in Eq. 19 we thus deduce 〈F̂ ′〉th. = 0

as it should be for such a random force.
Moreover, with this PWI dynamic we immediately get for the particle
energy E(α)(t)

E(α)(t) = −∂tS(α) = ~ω|α(t0)|2 +
~ω
2

+ω
√

2m~ωu|α(t0)| cos (ω(t− t0)− σ) (45)
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which is not a constant of motion (note that by averaging we have
〈Ĥ〉α =

∫
dx|ψ(α)|2E(α)(t) = ~ω|α(t0)|2 + ~ω

2 which is the standard
constant of motion value for a coherent state). Furthermore, the quan-
tum potential : Q(α)(x, t) = −~2∆|ψ(α)|

2m|ψ(α)| is

Q(α)(x, t) =
~ω
2
− mω2(x− 〈x̂〉α(t))2

2
(46)

which in agreement with Eqs. 43,44 leads to the Newton-like equation
of motion

mẍ(α)(t) = −∇[V (x(α)(t)) +Q(α)(x(α)(t), t))]
= −mω2〈x̂〉α(t) = −mω2(x(α)(t)− u). (47)

We see that the quantum potential provides an additional restoring force
modifying the center of application of the Hook law (note that we have
indeed E(α)(t) = mω2(x(α)(t))2

2 + m(ẋ(α)(t))2

2 +Q(α)).
The effect of this dynamic is clear when used for calculating mean

values in Eq. 40. Starting with the energy and the value for 〈Ĥ〉α we get

〈Ĥ〉th. '
∫ +∞

0

~ωd(|α(t0)|2)
e
− ~ω|α(t0)|2

kBT

kBT
[~ω|α(t0)|2 +

~ω
2

]

= KBT +
~ω
2
' KBT (48)

which must be compared to the classical result without the zero point
field energy term 7. We note that we used directly the value of 〈Ĥ〉α. Ho-
wever, if we instead used the expression for E(α)(t) and inverted the in-
tegration

∫
dx and

∮
dσ in Eq. 40 and 〈Ĥ〉α =

∫
dx|ψ(α)|2E(α)(t) we still

naturally obtain the same value Eq.48 since the
∮
dσ cos (ω(t− t0)− σ)

term specific of the PWI vanishes. This again stresses the equivalence
between standard quantum mechanics and the PWI.
Other mean values are particularly important in the present context.

7In classical mechanics we can calculate the phase volume δΓ(E) between two
ellipses of constant energy E and E + δE as

R
δE dpdq = δ(

H
pdq) = δE/ν where

2πν = ω. This allows us to define the canonical probability in the volume δΓ(E)

as : δP (E) = δE
ν
e
− E

kBT /Z = δE
KBT

e
− E

kBT where we used the partition function

Z =
R +∞
0

dE
ν
e
− E

kBT = KBT
ν

.
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First, from Eq. 43 we have

〈 (p̂)
2

2m
〉α(t) =

∫
dx(α)(t)|ψ(α)(x(α)(t), t)|2m(ẋ(α)(t))2

2
= ~ω|α(t0)|2(sin (ω(t− t0)− σ))2 (49)

which after averaging on the phase σ and the amplitude |α(t0)| leads
to the thermal mean value 〈 (p̂)2

2m 〉th. = KBT
2 in agreement with the

classical equipartition theorem. A similar calculation can be done for
〈mω2 (x̂)2

2 〉α(t) which leads to

〈mω2 (x̂)2

2
〉α(t) =

∫
dx(α)(t)|ψ(α)(x(α)(t), t)|2mω

2(x(α)(t))2

2

=
~ω
4

+ ~ω|α(t0)|2(cos (ω(t− t0)− σ))2 (50)

and again after averaging on the thermal state 〈mω2 (x̂)2

2 〉th. = ~ω
2 +KBT

2 .
Eq. 50 is important since it shows the presence of a zero point field (zpf)
term which much be included in the energetic balance. Indeed, from
〈Q〉α = ~ω/2− ~ω/4 we have 〈Ĥ〉α = 〈mω2 (x̂)2

2 〉α(t) + 〈mω2 (x̂)2

2 〉α(t) +
〈Q〉α = ~ω|α(t0)|2 + ~ω

2 in agreement with Eq. 45.
The presence of this zpf contribution is important when we calculate

the two-times force correlation C(PWI)
F (τ) taking into account the bath

with the various harmonic oscillators labeled by n. We get explicitly

C
(PWI)
F (τ) =

∑
n

c2n

∫ +∞

0

~ωnd(|αn(t0)|2)
kBT

e
− ~ωn|αn(t0)|2

kBT

∮
dσn
2π

I(PWI)
αn

(t, τ)

(51)

with I
(PWI)
αn (t, τ) =

∫
dx

(αn)
n (t)|ψ(αn)(x(αn)

n (t), t)|2x(αn)
n (t + τ)x(αn)

n (t).
Using the Liouville theorem which allows us to write

dx(αn)
n (t)|ψ(αn)(x(αn)

n (t), t)|2 = dx(αn)
n (t0)|ψ(αn)(x(αn)

n (t0), t0)|2

and inserting Eq. 44 in the definition of Iαn(t, τ) we get

I(PWI)
αn

(t, τ) =
∫ +∞

−∞
dun(

mnωn
π~

)
1
2 e−

mnωn
2~ u2

n [u2
n

+
2~

mnωn
]|αn(t0)|2 cos (ωn(t− t0)− σn) cos (ωn(t+ τ − t0)− σn)(52)
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and therefore∮
dσn
2π

I(PWI)
αn

(t, τ) =
~ωn

2mnω2
n

+
~ωn
mnω2

n

|αn(t0)|2 cos (ωnτ) (53)

which implies the force correlation

C
(PWI)
F (τ) =

∑
n

c2n
mnω2

n

~ωn
2

+ kBT
∑
n

c2n
mnω2

n

cos (ωnτ). (54)

We emphasize that the correlator C(PWI)
F (τ) used here relies on the de-

finition of I(PWI)
αn (t, τ) valid in the PWI where deterministic trajectories

can be calculated . In the standard formalism we instead use the defi-
nition I

(Standard)
αn (t, τ) = 〈x̂n(t + τ)x̂n(t)〉αn which in the Schrodinger

picture reads (omitting the n index)

I(Standard)
α (t, τ) = Tr[ρ̂(t0)x̂(t+ τ)x̂(t)]

=
∫
dx

∫
dx′xx′ψ∗,(α)(x′, t+ τ)K(x′, t+ τ ;x, t)ψ(α)(x, t) (55)

where we inserted the Kernel K(x′, t + τ ;x, t) for the Schrodinger
equation in the x representation. This formulation was specifically
used by Feynman and Hibbs and Feynman and Vernon [46] in the
path integral formalism in connections with coupled harmonic oscil-
lators. This distinction is central if one want to interpret properly
correlators in various interpretations of quantum mechanics [47] and
have a self consistent description of quantum measurements. More
precisely, a two-times measurements of position at t2 = t + τ and
t1 = t would lead following Wigner formula [48] to the correla-
tor :

∫
dx

∫
dx′xx′Tr[ρ̂(t0)|x, t1〉〈x, t1||x′, t2〉〈x′, t2||x, t1〉〈x, t1|] which ex-

plicitly reads in the Schrodinger picture :∫
dx

∫
dx′xx′|K(x′, t2;x, t1)|2|ψ(α)(x, t1)|2. (56)

This formula differs both from I
(PWI)
α (t, τ) and I(Standard)

α (t, τ). Moreo-
ver, Eq. 56 can be compared to I(PWI)

α (t, τ) if we write

I(PWI)
α (t, τ) =

∫
dx

∫
dx′xx′P (x′, t2|x, t1)|ψ(α)(x, t1)|2. (57)
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where P (x′, t2|x, t1) = δ(x′ −X(t2|x1, t1)) is the conditional probability
for the particle to be located at x′ at time t2 knowing that it was lo-
cated at x at time t1. Since the evolution is deterministic in the PWI
the probability is a delta function [1, 30] where X(t2|x − 1, t1) is the
‘Bohmian’ trajectory linking univocally points x and x′ at their respec-
tive times t1 and t2. P (x′, t2|x, t1) is in general clearly different from
|K(x′, t2;x, t1)|2 because as stated before the PWI deals with hidden
variables having an existence independently of measurements and we
didn’t speak about measurements in the present article. Naturally, if we
introduce a two-times measurement then Eq. 56 will ultimately become
the good formula to use and the PWI will agree with that providing
we introduce correctly the measurement protocol with a wave function
‘collapse’ at time t1.
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