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Louis de Broglie presented, at the Solvay Conference of 1927 in Brus-
sels [1], the so-called double solution program aimed at replacing the
wave-particle duality by a wave monistic approach in which the par-
ticle gets represented by a peaked (soliton-like) wave-packet which in
turn is guided by the pilot wave, solution of the linear Schrédinger
equation. This approach requires to add a non-linear coupling term
to the (otherwise linear) Schrodinger equation, in order to explain the
stability of the soliton/particle. Here we explore the properties and
limitations of a model aiming at realizing de Broglie’s double solution
program in terms of self-gravity.

1 Introduction

The irreducibly linear nature of Schrédinger equation is still an open
question today. As far as we know, no fundamental non-linearity has
been detected yet at the quantum level and the superposition principle
is usually accepted to be a universal priciple with the status of a law of
Nature. There even exist no-go theorems [2, 3] aimed at proving that
linearity is the price to pay to preserve Einsteinian causality, which is
another pillar of modern physics. At the other side, non-linear general-
isations of the (otherwise linear) Schrodinger equation pave the way to
realistic solutions of the measurement problem, in full accordance with
de Broglie’s double solution program [4, 5, 6]. The basic idea underlying
this approach is that non-linearity would be at the source of the so-called
collapse process, ultimately explaining the corpuscular properties exhib-
ited by quantum systems. Following this line of thought, self-gravity (in
its commonly accepted formulation [7, 8, 9, 10, 11, 12, 13, 14, 15] that we
shall from now on denote OSG for orthodox self-gravity) is particularly
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promising because it enables to predict that the micro-macro (quantum-
classical) transition occurs for objects having a mass above say 10 a.m.u.
[9]. For lighter objects (atoms, molecules, small aggregates) self-gravity
is however predicted to be so weak that no measurable violation of the
superposition principle is possible, in agreement with all experimental
data collected so far. For sufficiently massive objects (having a mass
above 10° a.m.u.), the non-linearity activated by self-gravity is in prin-
ciple sufficiently strong for localizing the wave function of the quantum
object in a region small compared to its physical size, in which case the
object behaves as a localized particle, which is one of the goals of de
Broglie’s double solution program [16, 6]. Of course, in this approach,
the double solution program is, contrary to de Broglie’s original formu-
lation, not realized for ALL objects: it would work only if the object is
massive enough. Another problem in O.S.G., regarding the realization of
de Broglie’s program, is that there is no double solution: either the wave
function is self-collapsed and then it is no longer a solution of the linear
Schrodinger equation, or it fulfills the linear equation which means that
self-gravity is so weak that it can consistently be neglected. de Broglie
actually faced a similar dilemna in 1927 which brought him to formulate
the guidance condition [5] according to which corpuscules/solitons follow
the de Broglie-Bohm guidance equation, but there is no indication that
this principle is valid in the framework of OSG!.

In order to explore possible realization of de Broglie’s double solution
program in the absence of the guidance condition, one of us developed
in the past another approach in which the wave function associated to
the quantum system is no longer the sum of a solution of the linear
Schrodinger equation (the so-called pilot wave) and of a soliton, as orig-
inally conceived by de Broglie, but it is a product of these two (this is
the so-called factorisability ansatz [17, 6]). One of the reasons for ex-
ploring this possibility is the recognition that the superposition principle
is no longer valid whenever non-linearities are present. The other reason
is the aforementioned difficulty (impossibility?) to derive the guidance

ID. Fargue has shown in the past [4] that in the case of free propagation, there
exist certain non-linear equations admitting solitonic solutions moving along straight
lines, respecting thereby the guidance condition derived from a plane wave type so-
lution of the free linear Schrédinger equation, but in our view this property is merely
a consequence of the Galilei invariance of the non-linear equation considered by D.
Fargue in his study [6]. As far as we know no confirmation of the validity of the guid-
ance equation has been obtained outside from this particular situation (free evolution
plus Galilei invariance)
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condition from the non-linear dynamics.

It has been shown in the past that a generalized guidance condition [6]
results from the factorisability ansatz, in which, in first approximation,
the velocity of the localized soliton is the sum of the de Broglie-Bohm
velocity and of an internal velocity. It has also been shown by then that
the approximation is good provided the soliton is peaked enough. In
order to verify the validity of this result, we shall consider here a par-
ticular regime of self-gravity, the so-called quadratic regime [9, 15, 7],
valid when the size of the object is large compared to the soliton. In
this regime, the evolution is endowed with a remarkable property: it is
gaussian; in other words, gaussian states remain gaussian throughout the
evolution [8]. There exists however no analytical solution for this (highly
non-linear) gaussian evolution (contrary to the free linear Schrédinger
equation) but, due to the fact that a gaussian state is characterized
by only four real parameters, it is possible to numerically integrate the
non-linear dynamics with high accuracy. These preliminary remarks al-
low us to clearly define the main scope of our paper which consists of
an accurate study of the evolution of a self-gravitating quantum sys-
tem in the quadratic regime, in order to better understand the physical
implications of the generalized guidance equation resulting from the fac-
torizability ansatz. Moreover, in order to escape to the aforementioned
case, already studied by D. Fargue [4] in the past (free case plus galilei
invariance), we considered the situation in which the system is trapped
inside an external harmonic potential (which has the merit to preserve
the gaussian character of the evolution).

Our main result is twofold. In a first time (section 2), we numeri-
cally confirmed the generalized guidance equation, inside its domain of
validity, that is to say whenever the soliton is peaked enough. In a sec-
ond time, we remarked that the internal velocity is in general not small,
which implies that the de Broglie guidance condition is violated. Actu-
ally, this violation is elucidated (section 3) in terms of a generalisation
of Ehrenfest’s theorem, valid in the presence of self-gravity, which estab-
lishes that peaked solutions of the non-linear Schrédinger equation obey
classical dynamics.

This finally brings us to invoke, as a last resort aimed at realizing de
Broglie’s program, the presence of some stochastic component of the dy-
namics, aimed at neutralizing the internal velocity. Actually, de Broglie
[18] , Bohm and Vigier [19] were also brought to a similar conclusion in
the past even though their motivation was different. Nelson [20] proposed
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an elegant way to add stochasticity to the de Broglie-Bohm dynamics,
relaxing thereby the guidance condition while preserving equivariance
and respecting the Born rule. In the last section we illustrate Nelson’s
ideas in the case of the one-dimensional harmonic oscillator. The pos-
sible connections with so-called walkers (bouncing oil droplets) [21] and
zitterbewegung [22] are sketched in the last section.

2 Factorization ansatz and self-gravity.

2.1 Self-gravity: basics

It is common in the literature to represent quantum effects due to self-
gravitation through the Schrédinger-Newton equation [9, 11]

oV (t,x AV(t,x

m% = —h2$ + /d3x’|x11(t,x')\2V(|x —x')¥(t,x), (1)
where V(d) = —GM?/d. This equation can be shown to result from the
mean field coupling proposed by Mgller [12] and Rosenfeld [14] in the
non-relativistic limit [9, 10]. It is valid in principle when the object is
an elementary particle. If the object possesses an internal structure, it
is necessary to integrate the self-gravitational potential over the internal
degrees of freedom of the object [7]. In the case of a rigid homogeneous
nanosphere one finds that, at short distance, instead of the Newton po-
tential V', the effective self-interaction can be expressed [7, 23] in terms
of d = |xcm — Xy ], with xor the center of mass of the nanosphere as
follows:

i GM2 (6 1(d\® 3 (d\’ 1 [(d\°
V) =—¢ ( 5+2(R> 16 (R) 160 (R> (d < 2R),
(2)
where R is the radius of the nanosphere. This expression is valid when
d is smaller than twice the radius of the sphere. For larger distances,
that is to say whenever d is larger than twice the size of the object, the
integration of the internal contributions can be realized easily, making

use of Gauss’s theorem. Then, we recover the usual Coulomb-like shape,
also valid in the case of a non-composite object (1):

G2

vel(d) = =

(d > 2R). (3)
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The resulting integro-differential evolution law of the CMWF now reads

oV(t,xcm) 2 AV(t,Xcm)
ot =h 2M W

+ / @ nr |0 (1, Xin) PV (et — Xong VU (2, x00),

ih

where V& (|xcar — x4,,]) is fully defined through equations (2,3). In
the limit where the wave function of the center of mass (CMWF) is
peaked over a region small in comparison to R, we find that the effective

potential is quadratic: Vef(d) = eM (—g + 3 (%)2) This is a very

R

general result, not only valid for spherical objects, as has been shown
in Ref.[15]: whenever the extent of the CMWF is small enough, the
effective self-gravitational potential is quadratic (see also Refs.[24, 25]).
Assuming in first approximation that the nuclei contribution to the mass
distribution is spherical (the result has been shown to be very similar in
the case of a gaussian distribution [15, 24]) and making use of equation
(2), one finds that, in the limit where the extent of the CMWF gets
smaller than the size of a nucleus, the contribution of nuclei to self-
gravity dominates other contributions [15, 7] so that

Vell(d) ~ %’”2 (% (g)2> = 1M -G - (47/3)pnucieus - d*, up to an
additive constant, with m the mass of a nucleus, r their size, N their
number (N = M/m), and (47/3)pnucieus = 13- Taking a nucleus size
r of 1072 (107%) angstroem G - (47/3) ppucieus is of the order of 1 (10)
hertz?.

Our scope is to study the influence of such a potential, when the
object is trapped in a harmonic potential (then the full potential is the
sum of an external harmonic potential and of self-gravity).

For instance, in the case of a membrane vibrating along the x direc-
tion (or in the case of a linear trap directed along X), the full potential
obeys

VU (t,x) = 1/2(kx? + koo (y* + 2%)) (5)
+M - G- (47/3) prucieus * /dgx'|\11(t,x’)|2(|x —x'|)*)¥(t,x)
where ko, is supposedly huge, due to the fact that the deformation of

the membrane in the (y, z) plane is too small to be noticeable, while & is
the spring constant of the membrane along the X direction. Schrodinger
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equation then separates in Cartesian coordinates and from now on we
shall study its reduction along the X direction. The effective reduced
Schrédinger-Newton now reads

L O0U(t,x)  , RE 0% ketha?
B TV A B ©
M- G- (47/3)

o ; Prucleus /d$/|\ll(t,$)|2 Az — x/)Q)\I/(t,-T)

hQ 32 kezt.xQ kself(x _ xO)Q + kselfo_g
(o T 5t 5 )V(t,x)

where k¢! represents the spring along the X direction; we also intro-
duced the parameters k*¢*f, 2y and o2 defined through

5 M-G- (47T/3)pnucleus fdx\\Il(t .’IJ)|2.’IJ
Eoelf = /d (t, ) S Sl s
2 .’17| (,J])| y Lo fd$|\ll(t,l')|2 )
o [P
v [ dz|U(t,x)|?

We are not the first to study this dynamical system. In the framework
of OSG a similar study was already performed in the past [15, 24], moti-
vated by the ambition to experimentally observe manifestations of self-
gravity through their influence on the dynamical properties of a meso-
scopic object trapped in a harmonic potential. In those studies however,
the self-gravitational interaction always appeared to be very small and
was treated as a perturbation. Actually, self-gravity is so weak that up
to now it was impossible to experimentally observe its potential mani-
festations. In our approach however, we do not impose that the norm of
the wave function is equal to unity, as is the case in OSG. The reason
therefore is that we consider that the wave function is attached to a soli-
tonic self-collapsed solution of the non-linear dynamics which behaves as
a corpuscle [6], and ought not to be confused with the pilot wave, solu-
tion of the linear Schrédinger equation for which normalisation to unity
([ dz|¥(t,z)|* = 1) is traditionally required, in agreement with Born’s
probabilistic interpretation. This constraint is generally overlooked in
the framework of usual (linear) quantum mechanics because the normal-
ization of a solution of a linear equation does not affect the properties
of the solution, such a solution being always defined up to an arbitrary
multiplicative factor. On the contrary this is no longer so as far as we
consider non-linear equations. In our approach, we consider that the nor-
malisation factor of the solitonic wave representing the corpuscle is huge
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compared to unity, and it is rather the external potential that is treated
as a perturbation. This is why we explore the solutions of the non-linear
dynamics in a regime which has been unexplored before, regime in which
the effective coupling constant characterizing self-gravity is quite larger
than the spring constant attached to the external (trapping) potential.
In the practice, we considered a situation for which the ratio between

the non-linear and linear spring constants % is equal to 103.
2.2 Factorisation ansatz, double solution and self-gravity.
In this section we shall impose the factorisation ansatz according to

which the wave function ¥(¢,z) solution of equation (6) can be written
as the product of a pilot wave W (¢, ) and of a peaked soliton WV (¢, x):

U(t,x) = Ol(t,z) wNL(t, 2), (7)

where WX (¢, z) is solution of the linear Schrédinger equation:

L 2 2 ext. .2
Z,ha\I! (t,z) , h* 0 Jrk x

ot = (*m@ 5 YU (t, ) (8)

We further impose that (¢, z), UX(¢,z) (and thus UVL (¢, z)) are gaus-
sian: W(t, z) = e~ AT +Be+C Yl(t g) = ¢~ A 2" +B e+C" GNL(y 4) =
e~ AN 2+ B 2O where the factors A, AL, ANL, B, BL, BNL ¢, CE,
CNL are complex, time-dependent, numbers. The real part of C, CF and
CNE is constrained by the normalisation of the wave function (which re-
mains constant throughout time), and their imaginary part can be seen
as a global, purely time-dependent, phase, irrelavant from the physi-
cal point of view. Having this in mind, one sees that the full wave
function W (¢, ), the pilot wave W% (¢,x) and the soliton V(¢ z) can
be consistently parameterized by 4 real parameters; the full wave func-
tion for instance is entirely defined (up to an irrelevant global phase)
by the 4 real parameters ai,as,b1,be: a3 = Re(A),as = Im(A),b; =
Re(B),by = Im(B). A similar parameterization holds for the pilot wave
and the soliton. If now we impose the constraints (6,7,8), the dynamics
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reads (making use of the fact that x¢ = 2%):

2
h(il = 4*(11 - a9
m

h2 kemt. _|_]€self
hay = —2—(a% —a2) + ———
az m(al az) 9

2

. h
hby = 2*(0,1[)2 + CLle)
m

. h2 Lselfy
hby = ~2—(arby — agbs) + !

; 9)

2(11
ajl\’L =a; — afvaéVL = a3 — a%?
b11VL = bl - b1La béVL = bz - sz (10)
. h2
h L _ 4 L _L
ay ma’l ag
. h2 kext.
h L _ 9 L2 LN\2 v
ay m((al) (a3)") + 5
T h? LiL LiL
hby = —ZE(% by +ay’by)
T h? LiL LiL
by = *ZE(al by — az'by) (11)

2.3 Generalized guidance equation.

In a previous paper [6], one of us (T.D.) showed the following property
(from now on denoted the generalized guidance condition):

-whenever ¢y remains peaked throughout time in a sufficiently

dxo(t) obeys, in

small region, the velocity of its barycentre vgrir¢ = e

good approximation, the generalized guidance equation

<UNL| TN >

< \I/NL|\IJNL >
= V4B_B + Vint., (12)

h
Vdrift = EV‘PL(XO(t)J) +

which contains the well-known Madelung-de Broglie-Bohm [26, 27, 28]
contribution (vqp_p = %V@L(Xg (t),t), where ¢, represents the phase
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of the pilot wave UL (Lzopy (t,2) = mlm.((\lﬂ‘(t z)) vt z))
(with ¢ (t,z) the phase of the pilot wave) evaluated at the barycen-
tre xo(t) of ¥X plus a new contribution, an “internal” velocity reflect-
ing the contributions of the internal structure of the soliton (vi,:. =
<‘I’NL|%V\‘I’NL>)

<UNL|¥NL>

In order to test the range of validity of the generalized guidance
condition through a concrete example, we numerically solved the dy-
namical equations (9,10,11). By doing so, we were able to obtain plots
of the parameters g, po, o2 and 012) in function of time. These four
parameters respectively represent the average values of the position and
the velocity and their variances; in the case of a gaussian wave packet
U(t,z) = e~ A2"+B2+C they are in one to one correspondence with the

four complex parameters aq, as, b1, by introduced in the previous section:

xo = b1/2a1,po = (baay — a2b1)/a17‘73 = 1/6‘1’0;2) = 4h2|A|2/a1 (13)

Similar relations hold in the case of the gaussian wave packets W%
and WML, In order to check that the generalized guidance condition is
well satisfied, we had to evaluate, in function of time,

1) vgripe the time derivative of the position of the barycentre of the
solitonic wave packet z)'F = [ d32/|¢pNE(t,2")|22’/ [ dPa!|pN L (L, 2)|* =
BN /20l

ii) the de Broglie-Bohm velocity

)

h

mEr P ™ ) e ey

vapB = (

1
= L Caaat bl

iii) the internal velocity

Po NL _NL NLyNL\ ;, NL
Ving = — = (by “ay © —ay "by 7)/ay’ " .

d NL
As can be seen from figure 1, vgpript = x;t and vgpp + Vin:. are

not distinguishable with naked eyes, which establishes the validity of
the generalized guidance condition, at least for the choice of parameters
made in this case. Actually, we may also retrieve the generalized guid-
ance condition by an analytic argument, remarking that, combining (ii)
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Figure 1: Plot of vapB, Vint., VaBB + Vint. and vgrifs = %(a@é\m) in func-
tion of time; space and time were rescaled and are of the order of unity.

. bV L
and (iii) above we obtain vgpp + vint = 7 - (b5 +b5 L — Az - (af +ad'"))
1

=L . (by —2-2)'F - ay). Now, the average velocity of the “full” wave

m
packet W is nothing else than L - (by — % cag) & L (by—2- )T ad'F)
because in the regime considered by us zg = 21’721 ~ z{'*, due to the fact
that the weight (size) of the pilot wave is quite smaller (larger) than the
weight (size) of the soliton (al <<< al¥%). Then the velocity of the full

packet also coincides with the drift velocity of the soliton.

This being said, it is worth noting that the drift velocity looks clas-
sical, as is obvious from a phase space representation of the average tra-

. NL dzf)VL . . . 3
jectory (zg ™, —f—) which looks perfectly circular provided we rescale

one of the variables appropriately as can be seen from figure 2.

This property was already noted before in ref.[15], whom authors
remarked that when the dynamics obeys equations (9,10,11), the first
moments of the distribution of positions and velocities are not affected
at all by the non-linear coupling. One can prove this result rigorously
on the basis of the dynamics (9,10,11), but this property is not a coinci-
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<
YNL
-

: . NL dxi'Fy . . . .
Figure 2: Plot of (2", =§—) in appropriate units, illustrating the va-

lidity of a generalised Ehrenfest’s theorem.

dence; as was noted in [24, 6], one can explain the emergence of classical
trajectories in terms of a generalized Ehrenfest theorem as we shall dis-
cuss in the next section. The second moments o2 and o, are nevertheless
modified by the evolution. As is very explicitly shown in figure 3, in our
case, self-gravity results into a breathing of the wave packet [29, 8].

Actually there exists a stable radius for the gaussian packets for which
self-gravity and diffusion exactly compensate each other. In full anal-

ogy with coherent oscillator states the size of these generalized coherent

. h . .
states is of the order of e s was confirmed by our simulations

(this is so at least when we impose that the ratio k% /k°** is equal to
103, in which case the small fluctuations of the shape of the generalized
coherent states induced by the external harmonic potential are negligi-
ble). This can be seen from figure 3 which shows that when o2 ~ \/ﬁ
the shape of the wave packet remains stable, whereas if it is disturbed,
the size of the wave packet oscillates (breathes) around this equilibrium

value.
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Figure 3: Time evolution of the second moments o7 and a% with self-

gravity for a “static” state (black) such that o2 ~ \/k:hlifm

arbitrary state (red). For more details go to Appendix: Numerical sim-
ulations.

and for an

3 Generalised Ehrenfest theorem.

Equations (1) and (5) are invariant under Galilean transformations,
which expresses that self-gravity does not result into self-acceleration,
in accordance with Noether’s theorem. This implies that even if a har-
monic oscillator is self-gravitating, the average position of its center of
mass rigorously obeys Newton equation and indeed we find that

> <x> k
T:*M<I> (14)

+M -G - (47/3) prucieus - /d3x/d3x'|\ll(t,x)\2|\ll(t, x)2-2(z — '),

where [dx [da’|¥(t,x)[*|¥(t,x')|? - 2(x — 2’) = 0 by symmetry. < z >
will thus oscillate at the classical frequency w,/2m.

This constraint imposes severe limitations to our original program
which was to realize de Broglie’s double solution program, and thus to
derive de Broglie-Bohm dynamics as a consequence of the factorization
ansatz. This goal is reached only whenever de Broglie-Bohm trajectories
coincide with classical trajectories which is not at all the result that we
were looking for [6]. In other words, we aimed at derive de Broglie-Bohm
dynamics and instead we found classical dynamics, a rather disappoint-
ing result. It is worth noting at this level that OSG exhibits the same
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features: in the classical limit (for macroscopic objects counting at ;east
of the order of 10?% nucleons), in situations where self-gravitational col-
lapse results in an extremely peaked localization of the CMWF of the
object, we may neglect quantum fluctuations around the barycentre of
the CMWF so that in virtue of the generalized Ehrenfest’s theorem dy-
namics is FAPP classical. From this point of view, in both approaches
(ours and OSG), we predict that localized objects obey classical dynam-
ics in good approximation wich is however satisfactory if we wish to deal
with the classical limit. However the classical limit is only one side of
the measurement problem. Another side of the measurement problem
is related to the probabilistic nature of the quantum predictions. This
brings us to the last section.

4 Nelson dynamics

4.1 Stochastic trajectories and Born rule.

In OSG it is taken for granted from the beginning that the Born rule
is obeyed that is to say that the modulus squared of the wave function
assigned to a quantum system represents the stochastic distribution of
its possible positions. The double solution program is more ambitious:
in de Broglie’s view, the dynamics (or guidance condition) must be com-
plemented with the condition of equivariance: in order to mimic the
Born rule at all times, it is sufficient, whenever the guidance condition
is fulfilled, to impose that at a certain time the distribution of positions
obeys the Born rule.

The problem to solve is now the following: how can we justify that at
a certain time the distribution of positions obeys the Born rule. There
are different ways to tackle this problem (see [30] for a review). Some
arguments are based on the fact that the Born rule would represent an
equilibrium condition for the dynamics which is asymptotically reached
after suficiently long times. This approach is very close in mind to the
approach followed by Boltzmann when he attempted to derive his famous
H-theorem (see [31] for a review). In the latter approach, the probabilis-
tic nature of the quantum predictions ought to be imputed, ultimately, to
the sensitivity of the dynamics to initial conditions. As in classical chaos
theory [31], sensitivity to the initial conditions provides the tool neces-
sary for deriving a stochastic dynamics from a deterministic one. We
shall no longer make reference to the aforementioned approach, among
others because in all cases it is taken for granted that the guidance con-
dition is satisfied to begin with, which is not true in our approach. There
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exists another approach however which could rescue ours, and bring a
solution to our main problem which is that we derive classical dynamics
instead of de Broglie-Bohm dynamics from the factorization ansatz and
self-gravity. A possible solution consists in replacing, in “our” guidance
equation, the internal velocity by an appropriate combination of deter-
ministic and stochastic velocity. This alternative was already discussed
in a previous paper [6], and its possible connections with the so-called
zitterbewegung were underlined by then. Here we shall briefly present
a model, due to Nelson, in which the velocity field is the sum of the
de Broglie-Bohm field with a stochastic velocity field and with a third
field, the osmotic velocity field, aimed at guaranteeing that equivariance
is satisfied.

4.2 Nelson model

Nelson [20] conceived a model in which the drift velocity b(x,t) is sup-
plemented by a stochastic velocity?:

dx = b(x, t)dt + dw(t), (15)

where E;[dw;(t),dw;(t)] = 2vé;;dt (4,5 = 1,2,3), v > 0 being the diffu-
sion coefficient and F; representing the expectation value at time t. In
our simulations we choose each dw; to obey an independent gaussian dis-
tribution centered around zero; the variance of the distribution is fixed by
the requirement that E;[dw;(t),dw;(t)] = 2vdt (these constraints char-
acterize a white noise process d la Wiener). The conservation equation
then takes the form:

op

5 = —div(bp) +v A p (16)

Nelson rewrites the conservation in the form

op . p
5 = —div((b — V7)p)’ (17)

and imposes that b = 1/% + vasB Where vgp represents the de

Q
Broglie-Bohm velocity

2 Actually, our formulation of the stochastic dynamics slightly differs from Nelson’s
original proposal. It can be traced back to Bohm and Hiley [32]; see Ref. [33] for a
detailed presentation and a comparison of both approaches.
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VdBB = (W[Tn.(\lﬂ(t,x))*v\IlL(ux))) and pg(t,x) = |V (t, x)[2.

Nelson attributed to the parameter v the value ii/2m. In the litera-
ture V% p is called the osmotic current and v¥£2 the osmotic velocity.
It is easy to check that, resulting from the presence of the osmotic ve-
locity, the quantum distribution pg(t,x) = |[UE(t,x)|? is an equilibrium
distribution in the sense that it is equivariant: if at a certain time t,
p(t,x) = po(t,x) = |¥E(t,x)|?, the equality will be respected for all
times in the future.

As was noted by Bohm [32], Nelson’s model presents another advan-
tage: it also explicitly provides a mechanism directly responsible for the
irreversible onset of quantum equilibrium. Our numerical simulations
confirm that indeed p(t, x) irreversibly converges to pg(t,x) throughout
time, a property that we studied in depth in another paper [34].

4.3 1-D harmonic oscillator and Nelson’s dynamics

In order to illustrate the stochastic process previously introduced (see
[34] and references therein for a detailed treatment), we simulated Nel-
son’s dynamics in the case of a 1-dimensional harmonic oscillator.

Consider a wave function at time ¢t = 0 in the coherent state:

wcuO)::<5)4e§@%f (18)

™

where # = " and 7; the mean position in which the wave function is
initially centered.

This state evolves in time according to the Schrodinger equation

ov r? 92 m
h— = |— o 4+ —w?2?| U 19
T [2m8x2+2wx} (19)
which possesses particular solutions in the form of coherent states:
1
B\ B (p_z\22iPLe
] 7t I 5 (x—T4)*+1 L +ip(t) 20
wo=(2)" (20)

where ¢ is a phase containing the energy, T; and p; are the mean position
and the mean momentum at time t:

Ty =Tpcos(wt) and P = —mwo sin (wt) (21)
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Imposing that the wave function is such a coherent state, we numer-
ically solved (15) for a bunch of initial conditions.

L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

t (unit ofw"l)

Figure 4: Numerical solutions of the Ito stochastic differential equa-
tion (15) for three different initial conditions. We took Zo = 1 and
expressed the results in natural units.

Figure 5: The evolution of the non-equilibrium distribution is illustrated
with histograms of the resulting positions at three different times. The
curve in red corresponds to |¥|2. We started from a uniform distribution
of initial conditions.

As we can see on figure (4), the trajectories are affected by the
stochastic evolution but keep oscillating at the same period because
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Figure 6: Phase space diagram of the expectation position and momen-
tum in appropriate units. The asymptotic behavior, characteristic of the
coherent state (20) is represented by the red dotted curve (equivalent to
the classical trajectory plotted in figure 2).

of the deterministic part of the Ito process. Due to the properties of
the Fokker-Planck equation (16) the current averaged over many real-
izations of the Ito process converges in time to the de Broglie-Bohm
current. Following [34], one can illustrate step-by-step the relaxation
process caracterising the evolution towards the Born distribution asso-
ciated to the quantum state equilibrium state (20) (see figure 5). At
equilibrium it means that the brownian motion is balanced by the os-
motic velocity and the de Broglie-Bohm velocity is recovered on average
(as well as the Born distribution of positions-in agreement with equivari-
ance). This can also be seen on a phase-space diagram by plotting the
averaged momentum in function of the averaged position (see figure 6).
Note that when the equilibrium is attained, averaged trajectories obey
classical dynamics resulting from the (usual) Ehrenfest theorem.
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5 Conclusions and open questions

5.1 Open question: possible connection with bouncing oil droplets

As was stressed in previous papers, [16, 6], recently, de Broglie’s point of
view has been revived, be it indirectly, by experimental observations in
hydrodynamics, which show that so-called walkers exhibit many of the
features of the de Broglie-Bohm dynamics [35, 36, 37, 21].

Walkers consist of oil droplets bouncing at the surface of a vibrating
bath of oil, excited in a Faraday resonance regime; the walkers are pre-
vented from coalescing into the bath because the vibration creates an
air film at the interface between the surface of the bath and the droplet.
As was noted in [16], ... Walkers exhibit rich and intriguing properties....
For instance, when the walker passes through one slit of a two-slit device,
it undergoes the influence of its “pilot-wave” passing through the other
slit, in such a way that, after averaging over many trajectories, the in-
terference pattern typical of a double-slit experiment is restored despite
the fact that each walker passes through only one slit. The average tra-
jectories of the drops exhibit several other quantum features such as orbit
quantization [38], quantum tunneling, single-slit diffraction, the Zeeman
effect and so on. Amnother surprising features is a pseudo-gravitational
interaction that has also been observed between two droplets [39].
These observations suggest that a ‘fluidic’, hydrodynamical formulation
of wave mechanics is possible, in which the droplet would play the role
of de Broglie’s soliton, while the properties of the environmental bath are
assigned to the pilot wave of de Broglie....

In view of these observations, de Broglie’s original ideas have regained
a certain prominence recently, since these walkers/bouncers were realized
in the laboratory with artificial macroscopic systems. These unexpected
developments not only show that de Broglie’s ideas encompass a large
class of systems, but they might in the future also allow us to build a
bridge between quantum and classical mechanics, where ingredients such
as nonlinearity, solitary waves and wave monism play a prominent role
(see [16] for a review, and [40, 41] for an alternative approach).

Originally, the ansatz (7) has been introduced by us [17] in order to
describe the phenomenology of walkers. In the case of droplets, our basic
motivation for imposing the factorization ansatz is that walkers prepared
at different positions and represented by UV always see the same bath
(environment) represented by WX. In the same paper [17], we extended
this idea to arbitrary quantum systems, for instance to elementary par-
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ticles and/or atoms molecules and so on. If, following the guidelines
of de Broglie’s double solution program, we retain the lessons of the
present paper and apply them in order to simulate the phenomenology
of droplets, we are led to conclude that noise could play the role of a
monitoring parameter in the quantum-classical transition. It is worth
noting that in the case of bouncing oil droplets a stochastic disturbance
of velocities is often present, due to the periodical forcing imposed to the
bath which unavoidably generates noise. This could explain why dB-B
trajectories are never observed directly at the level of droplets and why
interferences result from the averaging of a large number of trajectories.
The ergodic nature of Nelson trajectories as well as the convergence of
the distribution of positions to the Born distribution has been studied
elsewhere [34]. In the same paper, we proposed experimental tests aimed
at validating the relevance of Nelson’s formalism in order to mimic the
dynamics of droplets.

In the present paper we moreover suggest that quantum dynamics a
la Nelson (section 4) emerges when noise is strong, while in the noiseless
limit the mechanics is classical (section 3). This idea is illustrated in
figures (7,8,9) where we show trajectories obtained in the case of the
double slit experiment, ranging from a quantum behaviour (with noisy
dB-B trajectories & la Nelson, fig. 9, see [42] for a similar work) to a
purely classical, noiseless behaviour (with straight line [43, 44, 45, 46]) ,
fig.7) passing through an in-between region where superpositions are still
present (fig.8). In order to compute the trajectories, we imposed that the
velocity along Y is constant while the velocity along X is characterized by
a real parameter € chosen in the interval [0, 1], and obeys the constraint
Vx = (1 — €) VNeison + € Velassical, (see appendix and equation (25) for
a more rigorous treatment). Figures (7,8,9) respectively correspond to
the choices (¢ = 1, = 1/2,¢ = 0). This model could maybe explain
qualitatively why interference effects are observed [39] in certain double
slit experiments performed with droplets and absent in others [47, 48]
(see [49] for a review).

5.2 Conclusions

In this paper, we have studied the predictions of a model in which self-
gravity is treated in the quadratic regime, valid when the size of the
quantum system is larger than the size (mean square root deviation in
position) of its center of mass wave function. Compared to more con-
ventional approaches to self-gravity (OSG), we also imposed two unusual



82

M. Hatifi, C. Lopez-Fortin, T. Durt

Figure 7: Numerical simulations of the double-slit experiment: classical
trajectories (right), and distribution of arrivals on a screen (left). The
curve (blue) corresponds to the quantum probability |¥|%.

Figure 8: Numerical simulations of the double-slit experiment: hybrid
(intermediate between quantum and classical) trajectories (right), and
distribution of arrivals on a screen (left). The curve (blue) corresponds
to the quantum probability |¥|2.

conditions:

i) the Ly norm of the center of mass wave function is huge (which
ipso facto blows the effective coupling strength between the object and

self-gravity);

ii) according to the factorization ansatz (7), the wave function factor-
izes into the product of a pilot wave ¥¥ solution of the linear Schrédinger
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Figure 9: Numerical simulations of the double-slit experiment: ¢ la Nel-
son trajectories (right), and distribution of arrivals on a screen (left).
The curve (blue) corresponds to the quantum probability |¥|?.

equation and of a (peaked) solitonic wave packet that represents the lo-
calized corpuscle, in accordance with de Broglie’s double solution pro-
gram.

We have numerically integrated the highly non-linear dynamics asso-
ciated to the evolution of a self-gravitating gaussian wave packet trapped
in an external harmonic potential. By doing so we have confirmed that
the generalized guidance equation is well-satisfied, but also that the tra-
jectories of the soliton are classical. Contrary to our primary hope which
was to retrieve de Broglie-Bohm dynamics we noted that the internal
velocity may not be neglected and even more, that it conspires, in agree-
ment with the generalized Ehrenfest theorem presented in section 3, to
restore classical dynamics.

If we wish to fulfill de Broglie’s double solution program, a possibility
consists of replacing the internal velocity by a stochastic velocity field,
while preserving equivariance. This program has already been achieved
in the past by Nelson (see section 4) whose dynamics provides useful
guidelines if we wish to combine non-linearity and stochasticity in order
to mimic the predictions of standard (linear) quantum mechanics. If, for
instance, we wish to incorporate zitter bewegung [22] in a model of self-
gravity [6], we learn from Nelson’s model that we shall most probably
have to derive and to justify the presence in the drift velocity of an
osmotic velocity a la Nelson.

As has been noted by Gisin [50], the combination of non-linearity
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and stochasticity is also an essential tool in order to respect causality
(expressed through the no signalling condition [51, 16, 52]). This combi-
nation is present in Nelson’s model but also in spontaneous localisation
models a la GRW [53], and even in all “shut up and compute” simulations
of the Monte-Carlo type where an effective collapse is implemented. Our
analysis suggests that, probably, all approaches inspired by the double
solution program of de Broglie [1, 5, 54] will have to include stochasticity
as an essential ingredient in order to tackle the hard task of mimicking
quantum mechanics with realistic models.

It is worth noting that in the past Bohm and Vigier [19] as well
as de Broglie [18] arrived to a similar conclusion; de Broglie attributed
the origin of the stochastic quantum “zero-point field fluctuations” to a
quantum thermostat or subquantum field, the study of which constitutes
still today one of the main open questions in the framework of realistic
hidden variables theories.
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Appendix: Numerical simulations

Firstly, the coupled equations (9) and (11) are rewritten in dimensionless
form by introducing a characteristic time 7 = |/ and a characterstic

length L = 4/ %T Then we made the substitution A — o/L?, B — 3/L,

z — 2’ L and t — ¢’ 7. These equations reach the following dimensionless
form:

dl = 4&1 Q9

ag = 72(0[12 70&22) + #
Br = 2(a1 B2 + afr)
B1

By = —2(c1B1 — a2a) + Kﬂ’ (22)
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. ﬁ2
al = 4—al ok
m

of = -2((ab)? - (a})) + 3

2
BE = 2(af B + ok pl)
B = —2(afBf — a5 B5) (23)

which are easily solved with the well known Runge-Kutta 4th order
method (RK4)[55]. Moreover, the problem is then parametrized by a
unique dimensionless parameter K = % which expresses the strength
of the self-gravitation compared to the spring constant of the harmonic
oscillator

o In the case of the figures 1 to 3 we plot the static case corresponding to
a1(0) = YK 45(0) = 0, by (0) = 10, bo(0) = 0.9 and K = 1000. These
values are imposed by the static conditions @;(0) = a2(0) = 0 in (22).
For the pilot wave we chose al(0) = 1, a%(0) = 0, b¥(0) = 0, b2 (0) = 0.9.

In order to be sure of the validity of the simulations we performed two
realizations of the RK4 algorithm with different choices of the so-called
tolerance parameter v [34]. The accuracy of the computation depends
on that parameter 7. We then compare the distance between the two
trajectories; if it is less than some value, the result of the previous it-
eration of the RK algorithm is trusted. Otherwise, we perform another
iteration with a smaller v and we compare it to the last realization of the
RK4. This procedure is repeated until the value of the distance between
the two realizations of the RK algorithm is a minimal value of ~.

This method is very useful but is limited to a deterministic evolution
and does not apply to a stochastic evolution. However, in the case of
Nelson dynamics (section 4.2) we used the Euler-Maruyama method for
stochastic processes to approximate the solution of the Ito equation (15).
Following the same procedure as in Euler’s method, the evolution time
T is divided into N small discrete time steps At. For each time steps a
random variable normally distributed AW; = v/At N (0,1) is generated.
The scheme of the integration has the following form:

Tit1 = T; + b(l’i, ) At)At + \/27VAW1 (24)

The question is then: how to choose the time step At in order to trust
the result of the numerical simulations ? One way to answer this ques-
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tion is to consider an invariant of the dynamics. As previously said, it is
known that the equilibrium condition P = |¥|? remains invariant under
Nelson’s dynamics. Consequently, we can test the validity of the sim-
ulation by starting directly from the equilibrium condition for different
value of At. The resulting numerical simulation is trusted if the ensem-
ble remains distributed according to |¥|2.

eIn the case of the figure 4 we plot three realizations of (15) with ar-
bitrary initial conditions, for a coherent state (20). For the figures 5
and 6 the simulation is performed for 5000 uniformly distributed initial
conditions. For the figures 4 to 6 we chose v = 0.5, § = 1 and At = 0.001.

e Finally, in figures (7,8,9) we mix Nelson’s dynamics (15) and classi-
cal dynamics according to the following rule:

dr = (1 — E) [b(ﬂ?, t)dt + dw(t>] +e€ ‘/classicaldt7 (25)

where ¢ is a constant parameter quantifying the degree of classicality
[56, 57] and Vijassicar is the classical velocity associated to straight-line
trajectories. The numerical simulation is then performed for this evolu-
tion and in the context of the double-slit experiment. To do so, we used
the following wave function expressed in the coordinates (z, t):

exp( (z—zatBrt)” — ik (- 2 + hkt)>

202(1+35)

¢(xvt) = -
o (1 + ;%)

(x—‘—ms—%t)Q . hk
exp (_202(1+;‘2) + ik (w + T — %t)
+ . (26)

0(1+%)

where +x, and o are the position and the width of each slit. We as-
sumed that the wave is described by a plane wave in the y-direction so
that the total wavefunction can be put in the product form ¥(x,y,t) =
P(z,t)p(y,t). In order to avoid any numerical complexity it is also as-
sumed that ¢(y,t) is unaffected by the effect of the double-slit. We invite
the reader interested in the details to consult the textbook of Peter R.
Holland [28]. The initial positions for each slit are normally distributed
around +z,.
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In order to compute classical trajectories, we associated for each po-
sition a normally distributed random velocity. We established the his-
tograms of the distribution of positions on the arrival after a time 0.3 (in
dimensionless units).The average value as well as the standard deviation
of the distribution of classical velocities have been chosen in such a way
that the spread of the resulting classical probability has approximately
the same order of magnitude as the quantum (Nelson) one. We chose
rs =1, 0 =0.15, At = 0.001 and v = 0.5.
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