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ABSTRACT. After having shown the interest of the De Broglie-Barut non-

spreading wave for the treatment of the Rutherford scattering, which is elas-

tic, the object of this communication is to show that the Barut wave and the 

associated mathematics allow as easily the treatment of the problem of ine-

lastic scattering by an atom which was resolved in 1926 by Born in a fa-

mous paper which lead him to be awarded by the Nobel price. As a byprod-

uct the general differential cross-section of any non-relativistic inelastic 

process is calculated and showed to be a slight generalization of the expres-

sion given by Dirac in his well-known treatise. This communication then 

constitutes a new chapter of the extension of Barut’s program aiming at es-

tablishing a new Quantum Theory of single events. 

 
RESUME. Après avoir montré dans une précédente communication 

l’intérêt de l’onde non-dispersive de De Broglie-Barut pour le traitement de 

la diffusion de Rutherford, laquelle est élastique, l’objet de cette communi-

cation est de montrer que cette ondelette et la mathématique associée per-

mettent tout aussi aisément de traiter le problème de la diffusion inélastique 

par un atome résolu en 1926 par Born dans un célèbre papier qui lui a valu 

d’obtenir un prix Nobel. Comme sous-produit, la section efficace différen-

tielle la plus générale pour un processus inélastique dans l’approximation 

non-relativiste est calculée et montrée être une généralisation légère de 

l’expression donnée par Dirac dans son fameux traité. Cette communication 

constitue donc un nouveau chapitre de la reprise et de l’extension du pro-

gramme de Barut visant à établir une nouvelle Théorie Quantique de la par-

ticule individuelle. 
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1 INTRODUCTION 

Does Quantum Mechanics really describe single events or is it just a 

purely statistical theory? This question went through the years until nowa-

days without receiving any response than the confrontation of two points of 

view, synthetized as the Einstein-Bohr debate. With time, this question and 

its ramifications have been dismissed as pertaining to the philosophical do-

main, and from now on the majority of professional physicists consider that 

it doesn’t come up anymore. Indeed, the formalisms of this important branch 

of Physics allow to calculate anything one’s need and the comparison of the 

statistical laws obtained, in general probabilities and cross-sections, with the 

experimental results is quantitatively from good to excellent. However these 

successes are obtained by mean of some technical drawbacks like the adia-

batic switching of the potential energy and the “[(…)]² problem” when 

squaring the scattering amplitude to obtain a cross-section. These drawbacks 

are not details and are connected with the use of plane waves that fill all 

space to represent in/out particles. 

Following A. O. Barut [1], the point of view here developed is that the 

question is always a current affair and that Quantum Mechanics with De 

Broglie-Barut non-spreading waves in lieu of plane waves could really de-

scribe single events. The conventional Quantum Mechanics is manipulating 

infinite norm waves forming a purely statistical theory. And this was pre-

cisely the intention to impose it to be able to describe single events which 

leaded to the main interpretative problems: 

- the collapses of the wave function induced by the observation as a 

necessity to explain a single event (for example the arrival of an 

electron on a luminescent screen); this is the classical interpretation 

of London & Bauer (1939) that was later acknowledged by Wigner; 

- the necessity of the Bohr complementarity principle for explaining 

without contradiction the connection between the spatio-temporal 

description and the state of a system, or more technically the con-

nection between the conjugate spatio-temporal and momentum-

energy variables: the one disappear when the other is observed. 

However, a Quantum Mechanics of single events has to emerge in order 

to explain the experimental facts, notably the interference or the diffraction 

at very low incoming flux, without resorting to the mentioned interpretative 

considerations which are indeed out of Science since non-testable. 

By the way, it is interesting to know that, in a small note to the French 

Academy of Science dated 1925 [2], De Broglie found a progressive wave 

analogous to the Barut one’s but for the scalar Maxwell wave equation. 



Quantum Mechanics of Collision Processes with de Broglie-Barut Wavelets 107 

Strangely, this finding seems to have been forgotten with time and to the 

author knowledge the resurgence of the concept date to A.O. Barut in the 

beginning of the nineties (see [1] and the references therein). This is the 

reason why we can call the wave of this paper the De Broglie-Barut non-

spreading wave. 

The object of this communication is to show that the joint use of De 

Broglie-Barut non-spreading wave and the integral form of Schrödinger 

equation based upon propagators allows to give sense to single events with-

out sacrificing the statistical content emerging from the use of Born postu-

late. In particular in this communication, we demonstrate in the non-

relativistic case of spinless massive particles that: 

- a De Broglie-Barut non-spreading wave colliding an atom is after 

interaction a linear superposition of De Broglie-Barut non-

spreading waves of all accessible states of the atom as stated by 

Born [3]; 

- the cross-section of this inelastic process calculated by Dirac [5] is 

recovered along with an explicit summation over all accessible 

states. 

2 SOLUTIONS OF THE SCHRÖDINGER EQUATION 

2.1 The Barut wave as a new solution of the free Schrödinger equation 

At the beginning of the nineties Asim Barut drew attention to the fact 

that the free Schrödinger equation possesses a non-dispersive solution [1]. In 

[6], it is demonstrated how to obtain such a wave and some of its main prop-

erties are given: 

- propagation without deformation in free space; 

- integral representation; 

- normalisation; 

The non-relativistic De Broglie-Barut non-spreading wave is obtained 

as the following product: 
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is the particle velocity) and E is the total energy. The phase exponential term 
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is the famous De Broglie wave. In the original De Broglie work it is a rela-

tivistic phase with 
222 )()( mccpE 


but in this article we will use 

the semi-relativistic version 
m

p
mcE

2

2
2



 . The De Broglie-Barut non-

spreading wave is the product of a localized progressive wave, i.e. a corpus-

cular trait, and a de Broglie phase wave, i.e. an undulatory or wave-like trait. 

The progressive nature of the amplitude F-term is fundamental for obtaining 

the propagation without deformation property in free space. 

The De Broglie-Barut non-spreading wave is of a quite different nature from 

the super-luminal X-shaped non-spreading solutions of the Schrödinger 

equation [7] in that the progressive term ( tvr


 ) is located in the amplitude 

F-term and not in the phase exponential. The De Broglie-Barut non-

spreading wave phase is, as in conventional Quantum Mechanics, the De 

Broglie one’s where the only super-luminal ‘object’ is the phase velocity 

( Epv



) whose product with the particle velocity (group velocity) equals 

the square of the light velocity (
2. cvv  ). 

In [6], the diffraction by a circular aperture and the elastic scattering by a 

Coulomb potential (Rutherford scattering) are worked out in detail to show 

the power of De Broglie-Barut non-spreading wave in giving clear calcula-

tions without ambiguities and consistent with the modern experiments where 

single “quantum dots” (one particle at a time) accumulates to form a statisti-

cal diffraction pattern. 

The point of view developed here about the De Broglie-Barut non-spreading 

wave concept is: 

- spatiotemporal because it develops in space-time (but without fill-

ing all of it uniformly), 

- causal because effects are time-ordered from causes, 

- non-deterministic because it doesn’t make hidden variables inter-

vene (this point was however not shared by A. O. Barut). 

2.2 The free propagator of the free Schrödinger equation 

As is well known the integral form of the free non-relativistic Schrö-

dinger equation 
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This defines a propagator: 
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which can be written as: 
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showing that it is a generalized -like function: 
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  , 

1)','( 3)0(  rdttrrK


. 

This )0(K  is a propagator without being a Green kernel of the Schrödinger 

equation since it is a solution of the free Schrödinger equation: 
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Using equation (5), it is easy to demonstrate the self-reproducing property 

for which, as Barut said, “time adjust itself” during the spatial integration: 
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The propagation without deformation of a De Broglie-Barut non-spreading 

wave is demonstrated in [6] and is expressed by the equation: 
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This is so because the De Broglie-Barut non-spreading wave and the free 

propagator are both solutions of the free Schrödinger equation (2). 

2.3 Interpretation of the Barut wave 

The De Broglie-Barut non-spreading wave is the product of a progressive 

Debye wave of velocity v  as in )( tvrF


  and a de Broglie wave with a 

phase velocity pEv 
 as in 

)..( tErp
i
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  . De Broglie showed that the group 
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velocity of the phase wave is vdpdEvg   that is the velocity of the mo-

bile, here represented by the Debye wave. Since in the relativistic case 
2cvv 
 and cv   this means that the phase velocity is supraliminal as is 

well known. The progressive Debye wave is localized in space around the 

moving point defined by tvrtrX


),(  with a characteristic length of the 

order of the Compton wavelength ( mchc  ) for the particle of mass m 

as it follows from the integral representation established in [6]: 
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where 20 c  is the said characteristic length. 

The wave-particle is thus filling all space non-uniformly enabling it to inter-

act with surrounding structures like atoms or screens. 

 

 

2.4 Normalisation of the Barut wave 

The normalisation property  1),( 32
rdtrF


 makes 
2

),( trF


 a per 

volume density that allows to avoid all the difficulties connected with infi-

nite norm wave functions:  

- Born [4] recognizing the problem for plane waves (
xkiec  ) 

considered the mean of the normalization condition: 
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 , and con-

cluded that c=1 in order to have “normalized” eigenfunctions.  

 

- Dirac [5], also recognizing the problem, offered a lengthy discus-

sion of it and finally considered the wave function normalized to a 

cell and the space being made of an infinite number of cells. This 

is the modern “box” approach where the wave functions are de-
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fined by: 
rkie

V




2/3

1
  and the normalization condition applied 

to the cell of volume V: 1
1

)( 3

3

32

 
VV

rd
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rdr


  

In both cases there was a deviation from the textbooks defini-

tion 1)( 32


spaceall

rdr


 . In fact, this normalization condition comes 

from the solution of static (periodic) problems and is perfectly suited to 

interpret the formalism in a probabilistic way as discovered by Born. 

But when applied to collision (aperiodic) problems the difficulty ap-

peared and is still present nowadays, for example in the treatment of 

Quantum Electrodynamics questions. 

This normalization disease generates a side effect connected with the 

adiabatic hypothesis employed in collision problems: the necessity to 

switch on and off the interaction potential energy in order to manipulate 

asymptotically free plane waves with definite energy-momentum. As 

has been shown in [6] and will be emphasized in the present paper, this 

second technical difficulty does not exist when using De Broglie-Barut 

non-spreading wave in lieu of plane ones. 

Thus the De Broglie-Barut non-spreading wave cures two connected 

difficulties rooted to the application of Quantum Mechanics to collision 

problems. 
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3 INELASTIC SCATTERING BY AN ATOM 

In his famous papers written in 1926 [3], Born noticed that the emerging 

Quantum Mechanics so far was convincingly explaining stationary problems 

(periodic systems was the term at that time) but has also to explain collision 

one’s (aperiodic systems was the term at that time). He embarked himself on 

heavy calculations treating the collision problem by the use of asymptotic 

expansions of the stationary Helmholtz equation representing the time-

independent Schrödinger equation. He then concluded about the interpreta-

tion one have to have about the question of indeterminism. In this section I 

would like to redo Born calculation’s with De Broglie-Barut non-spreading 

waves and the propagator formalism instead of asymptotic (plane and spher-

ical) stationary waves obeying Helmholtz equation. 

3.1 Statement of the problem 

The problem to be solved is 

  APPAAPPPAA
AP rrUrHrH
t

i 
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   (8) 
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 is the Hamiltonian of the atom (coordinate Ar
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.is the Hamiltonian of the particle of mass M incident on 
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 is the time-independent potential energy between 

the atom and the incident particle, and ),,( trr PAAP


  is the wave function of 

the atom and the particle. 

The initial condition on 
AP  is the free time evolution factored states written 
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the initial De Broglie-Barut non-spreading wave for which 
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 is the total semi-relativistic energy. 
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So the atom and the particle are described by a time dependent Schrödinger 

equation instead of a static one as in Born papers [4]. The atom is supposed 

to be infinitely heavy so that no recoil will be considered. 

3.2 Calculation of the total wave function at first order 

Doing a unitary transformation on equation (8) in order to remove the 

Hamiltonian of the atom ),,(),,(
)(

trretrr PAAP

trH
i

PAAP

AA  

   we are left 

with ( )( AA rH


 and )( PP rH


 commute): 
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The equation (9a) is a Schrödinger equation of motion of a particle in the 

time-dependent potential energy ),,(ˆ trrU PAAP


. Then, according to §IV.A in 

[6], the integral form of (9a) is: 
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Then, developing the exponential in ),;,;( 0
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The wave function can also be developed as: 

...),,(),,(),,( )1()0(  trrtrrtrr PAAPPAAPPAAP


 

 

Then we get the infinite system of integral equations: 
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… 

The equation (12a) is an identity which means that at zero order there is no 

interaction between the incident particle and the atom. The second one (12b)  

gives the effect on the total wave function of the interaction of the incident 

particle and the atom at the first order of perturbation. 

Injecting equation (11b) into equation (12b) and using the transport property 
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 according to the discussion at 

the beginning of the section where the atom is initially (far away in the past) 

supposed to be in the (n) state. 

Now, following Born [4] and due to the completeness of the discrete 
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(discrete) atomic states are supposed to form a complete and orthogonal set. 
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Then, analogously to Born ansatz (13) for atomic states, the continuous De 

Broglie-Barut non-spreading wave functions are developed as: 
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 is the De Broglie-Barut non-

spreading wave of momentum p


and energy E . It is to be noted that there 

is a residual time dependence in the super-matrix );,( imn pp
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where the free transport property of the De Broglie-Barut non-spreading 

wave (7b) is used to perform the spatial integral.  

Now, the super-matrix );,( imn pp


  has to be worked out. To this end both 

sides of the equation (14) are multiplied by ),()*(  xq
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 and integrated on x
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Recalling that De Broglie-Barut non-spreading waves are localized and 

progressive, there must be a point in space, let’s call it 
cx
 , at which the non-

spreading wave transfers energy-momentum to the atom. If it were not the 

case then we should be prepared to think about a kind of trans-location: a 

particle disappear at a point and reappear at another one. The conservation of 

energy-momentum would then not be strictly conserved at a collision.  

Then the Debye waves are located at their common intersection 
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  and: 
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Injecting this expression into ),,()1( trr PAAP


  it comes: 



116 L. Bindel 






t

t

M

p

M

p
WW

i

P

p

Pimn

m

A

m

PAAP

i
mn

edtrppUpdr
i

trr

0

22

)
22

(
)(3)()1( ),()]([)(),,(








 




F

        (15) 

We shall deduce from this the asymptotic wave function and the differential 

cross-section of the inelastic process, both at order one of perturbation ex-

pansion. 

3.3 The asymptotic wave function 

Taking the limit of (15) at both sides of the time axis and noting 
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The last step consists in the integration on the modulus p of 
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 223 ddpppd ) by using two well-known properties of the Dirac distri-

bution: 
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since p, as a modulus, cannot be negative. The conservation of energy im-

poses Wm to be such that 0)(22  mni WWMp
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The asymptotic atom-particle wave function is then: 
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The meaning of this result is the following: a collision between a particle 

represented by a De Broglie-Barut non-spreading wave and an atom in a 

stationary state leads to a final state which is a linear superposition of all the 

stationary states of the atom weighted by a De Broglie-Barut non-spreading 

wave with a momentum satisfying the energy conservation law, the propor-

tionality coefficient being proportional to the Fourier transform of the matrix 

element of the potential energy between the initial and the final atomic state. 

 

This result is obtained much more easily than in Born original paper [4]. The 

famous author made use of asymptotic analysis of the Helmholtz form of the 

time independent Schrödinger equation and discussed at length the problem 
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of manipulating non-normalized wave function. Here the use of localized 

and normalized De Broglie-Barut non-spreading wave functions simplify the 

calculation and allows to avoid the technical difficulties associated with the 

use of plane or spherical waves that fill all space. 

 

Our result compares well with that of Born which he wrote as [3]: 
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In Born’s expression, xyz represents the colliding particle coordinates and qk 

the atom internal coordinates. The sine term represents the colliding particle 

time-independent final wave function. The knm term is the wave number 

associated with the nm transition and is essentially our Pnm/ħ. The nm 

term represent what he called the yield function and interpreted in a footnote 

as being connected (after squaring) to the probability for the incident particle 

to be thrown in the direction , ,  with the phase change  after the colli-

sion. 

Due to the use of non-normalized plane waves in Born calculation the nor-

malization constant (
nmPMi2 ) is not recovered. 

3.4 The differential cross-section 

Multiplying equation (15) by its adjoint, integrating on 
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, and using 

the normalization property of: 

 atomic states:  
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is the common point of in and out trajectories, we are left with: 
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This quantity is the scattering probability. Dividing it by (t-t0) we get the 

probability per unit time. Dividing it again by
i

2
v)(


CrF i.e. the flux of 

incoming particles and taking the limits  tt ,0
, this defines the 

total cross-section  of the process under consideration: 
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According to [6] section 4.4, 
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The last step consists in the integration of the modulus p of 


.pp  

( 
 223 ddpppd ) by using the same argument as in section 3.3:  
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The conservation of energy imposes Wm to be such that 

0)(22  mni WWMp
 . This defines m*. 

Writing 

ii p

M

v


1 the differential cross-section of the inelastic process under 

consideration is then given by the expression: 

 

2
222,

)]([4
*

inmmn

mm i

nmpn
pPU

p

P
hM

d

d
i








F
        (17) 

 

To the sum over final atomic states, here restrained to a finite set because of 

energy conservation, this equation is exactly the same as the one calculated 

by Dirac in [5] (section 49 Eq. (15) page 193). The equation (17) is a gener-

alization of Dirac result in that the summation over all energetically accessi-

ble states is here explicitly obtained by our method. 

4 CONCLUSIONS 

In this communication we showed how the use of the De Broglie-Barut non-

spreading wave and the propagator approach considerably simplify the cal-

culation of some early results of Quantum Mechanics. Indeed, in the case of 

inelastic scattering, there is no need to work out the sophisticated asymptotic 

analysis of the Helmholtz form of the time-independent Schrödinger equa-

tion. Instead, a pure quantum calculation with time-dependent normalized 
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state wave functions is done and makes the energy conservation appears at 

the end when taking the time(s) limit(s).  

Our calculation shows that a De Broglie-Barut non-spreading wave is trans-

formed into a sum of De Broglie-Barut non-spreading waves during an ine-

lastic collision process weighted by the Fourier transform of the potential 

energy operator taken between the initial and final atomic state. In the clas-

sical description of such process (following the Born and Dirac asymptotic 

approach), the asymptotic scattered wave is imposed to be a spherical out-

going one with an angular dependence found to be (after squaring) propor-

tional to the scattering probability amplitude. This is precisely this spherical 

(but anisotropic) outgoing wave after collision that lead to the necessity of 

its collapse when one wish to interpret the arrival of a single dot on a screen 

located behind the collision region for very low incoming flux experiments. 

On another side, the De Broglie-Barut non-spreading wave is a localized 

object, so that once a particular outcome has been probabilistically selected, 

a single dot is to be observed on a detection screen located behind the colli-

sion region (see Eq. (16)). Then, the De Broglie-Barut non-spreading wave 

might be a candidate for explaining why at low intensity the measurements 

always reveal the corpuscular trait of elementary particles (i.e. a dot on a 

screen) and at the same time the undulatory trait of elementary particles (i.e. 

the distribution of dots on the screen). This, in a strict unitary way in accord-

ance with Quantum Mechanics principles. 

The De Broglie-Barut non-spreading wave offers a clear representation of a 

mobile (or wave-particle) and its interaction with surrounding structure like 

atoms. This non-spreading wave possess all the required qualities to pretend 

to be the representation of quantum objects. This is due to the fact that the 

wave-particle duality is engraved in the De Broglie-Barut non-spreading 

wave and not in the “apparatus” used to measure the result of an experiment. 

Indeed, being the product of two waves, a Debye one which represent the 

particle side and a De Broglie one which represents the wave side, the De 

Broglie-Barut non-spreading wave is a quantum object that is altogether 

suited for being the representation of a single quantum “particle”. 
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