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Effective gravity and effective quantum equations in

a system inspired by walking droplets experiments

Christian Borghesi

Lycée Français de Vienne, Liechtensteinstraße 37a, 1090 Wien, Austria

In this paper we suggest a macroscopic toy system in which a potential-
like energy is generated by a non-uniform pulsation of the medium (i.e.
pulsation of transverse standing oscillations that the elastic medium of
the system tends to support at each point). This system is inspired by
walking droplets experiments with submerged barriers. We first show
that a Poincaré-Lorentz covariant formalization of the system causes
inconsistency and contradiction. The contradiction is solved by using
a general covariant formulation and by assuming a relation between
the metric associated with the elastic medium and the pulsation of
the medium. (Calculations are performed in a Newtonian-like metric,
constant in time). We find (i) an effective Schrödinger equation with
external potential, (ii) an effective de Broglie-Bohm guidance formula
and (iii) an energy of the ‘particle’ which has a direct counterpart in
general relativity as well as in quantum mechanics. We analyze the
wave and the ‘particle’ in an effective free fall and with a harmonic
potential. This potential-like energy is an effective gravitational po-
tential, rooted in the pulsation of the medium at each point. The
latter, also conceivable as a natural clock, makes easy to understand
why proper time varies from place to place.

P.A.C.S.: 46.40.-f ; 45.50.Dd ; 03.65.-w ; 04.20.-q

Introduction

Walking droplets experiments, in which droplets bounce and ‘walk’ on
a vibrating liquid substrate (initiated in [1], see [2] for a review) have
shown for the first time that classical and macroscopic systems exhibit
quantum-like phenomena. The fact that droplets are guided by the wave
that they have generated is reminiscent of the pilot wave suggested by
de Broglie [3, 4] (see [5, 2, 6] for a discussion in this context) and, more
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generally, of the double solution program [7, 8] (see [9, 10] for current and
well-thought overviews). Nevertheless, it seems tricky to mathematically
formalize walking droplet problems in order to obtain equations close
to those found in corresponding quantum systems. To deal with more
convenient systems, from a mathematical point of view, we have recently
suggested a classical and macroscopic system [11] – also inspired by an
experiment with a sliding bead on a vibrating string [12] – and, with
more success, the model system [13] that we describe below.

This macroscopic toy system consists of (i) an elastic medium, which
carries transverse waves governed by a Klein-Gordon-like equation, and
(ii) one high elastic medium density, considered as a point of mass m0,
called concretion 1. This system is invariant by Lorentz-Poincaré trans-
formations specific to the elastic medium (where the velocity of surface
waves plays the role of the speed of light in special relativity). This
approach was very encouraging. For instance it has been found: (i) a
strictly analogous free Schrödinger equation; (ii) a covariant guidance
formula (which leads to the effective de Broglie-Bohm guidance formula
in the low-velocity approximation); and (iii) the energy and momentum
of the ‘particle’ concretion have a direct counterpart in special relativity
as well as in quantum mechanics. However these results only concern the
special case without external potential. It is then natural to wonder how
an external potential in this system could be generated and, afterward,
whether previous results hold in presence of an external potential. The
aim of this study is to answer these questions.

The paper is organized as follows. In Section 1 we present the macro-
scopic toy system studied in this paper, which is a direct continuation of
the one in [13] apart from non-uniform pulsation of the medium (PM).
An effective Schrödinger equation with external potential is obtained –
provided that some conditions and approximations are fulfilled – with
an external potential. Nevertheless this formulation results in a con-
tradiction in the system, in particular for the behavior of the ‘particle’
concretion. To overcome this contradiction, we develop a general co-
variant formulation of a system in Section 2. (Almost all calculations
are actually performed under the limit of an effective Newtonian met-
ric.) This formulation allows us to solve the contradiction encountered
in Section 1 for a system with non-uniform PM. Finally, we study the

1The latter idea came from a comment of Poincaré according to whom matter
could be considered as aether’s hole – “[...] si bien que l’on pourrait dire : il n’y a
pas de matière, il n’y a que des trous dans l’éther” [14] and commented in [15].
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free-fall example and an effective harmonic potential.

1 Modifying pulsations of the medium

1.1 Inhomogeneous medium in walking droplets experiments

By using a container with different fluid depths in walking droplets
experiments, authors have studied tunnel-like effects [16, 17] (see also
[18, 19] for theoretical investigations) and non-specular reflection of walk-
ing droplets [20]. A barrier with a different thickness in the vibrating cell
changes properties of the system at the location of the barrier, in partic-
ular the threshold for Faraday instability. This allows them to generate
a kind of potential barrier acting both on walkers and on surface waves.
This way to experimentally generate a potential barrier has inspired us
in this paper. We suggest that an inhomogeneous property of the elas-
tic medium in our macroscopic toy system could generate an effective
potential; and this property is the PM at each point, i.e. pulsation of
transverse standing oscillations that the elastic medium tends to support
at each point.

Note that Fig. 1 in [16] shows that the submerged barrier in the
cell increases the Faraday threshold acceleration. This means, when
the forcing vibration amplitude is uniform and fixed, that the Faraday
pulsation (if it exists) at the location of the barrier (with fluid depth h1)
should be higher than in the container outside the barrier (with fluid
depth h0, such that h0 > h1). In other words, for a container with a
uniform fluid depth h1, and for the same forcing vibration amplitude, the
forcing pulsation (then the Faraday pulsation, ΩF1) of the cell in order
to obtain sustained Faraday waves should be higher than the one with
h0 (ΩF0). This qualitatively corresponds in our system to an increasing
potential-like energy at the location of the submerged barrier (where
ΩF1 > ΩF0).

Let us now briefly present our macroscopic toy system with uni-
form PM and explain how it is inspired by walking droplets experiments
(see [13] for a more detailed presentation).

1.2 Brief recall of the system with homogeneous PM

The main goal of the devised systems in [11, 13] is to deal (i) with main
characteristics of walking droplets experiments and (ii) with a convenient
formalism to identify quantum analogies (and differences). The vibrat-
ing liquid carrying transverse waves (i.e. the interface height h(r, t))
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becomes in our system an elastic medium carrying the transverse wave
ϕ(r, t) (which is also real-valued). This allows us to deal with traveling
transverse waves à la d’Alembert instead of (dispersive) traveling capil-
lary waves. In these experiments, quantum-like behaviors are associated
with a specific property of the system: (since the system is near the
Faraday instability threshold) each transverse perturbation at the sur-
face of the bath tends to generate a harmonic oscillation at the Faraday
pulsation (ΩF) at the location of the perturbation. (This is related to the
memory of the system [21].) This property is mimicked in our system in
the following way: due to a quadratic/harmonic potential, any element
of the elastic medium tends to support transverse harmonic oscillations
at pulsation Ωm (i.e. the frequency of these oscillations should be Ωm

2π ).
Regarding the (stable) walking droplet free to walk upon the liquid bath,
this becomes in our system a (stable) ‘particle’, called concretion, free
to slide on the elastic medium 2. With some similarities with a droplet,
the concretion is considered as a high mass-density of the elastic medium
itself and has the same properties as the homogeneous elastic medium
per unit mass. (In [11], the ‘particle’ was an exogenous bead oscillator,
but analogies with quantum mechanics were less satisfying than those
obtained with the endogenous concretion [13].) From this point of view,
our classical system is wave monistic.

In this toy system, all results are deduced from a Lagrangian for-
malism which is invariant by Lorentz-Poincaré transformations (e.g. [22]
§25) specific to the elastic medium (where the velocity of surface waves
plays the same role as the speed of light in special relativity). A wave
equation is then deduced: a Klein-Gordon-like equation, in which the
concretion can be a source of waves. The system is governed by equa-
tions similar to those in quantum mechanics when the concretion is not
a source of waves, i.e. there is no longer back-reaction of the concretion
on the wave. This special case was called symbiosis between the wave
and the ‘particle’ concretion. This state, related to an intimate harmony
between the wave and the concretion, presents some analogies with walk-
ing droplets experiments: stable orbits of walkers (which present some
analogies with quantum states), resulting from self-organized phenom-
ena between walkers and the wave at the surface of the bath, are such
that walkers do not excite (or very slightly) the main eigenmode of the

2In [12] the authors perform and analyze a sliding bead on a vibrating string
experiment. This has inspired us and has also been investigated by means of a
Lagrangian formulation [11].
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global wave [23]. This fact is even more significant as a walker generates
a wave at each bounce.

As shown in previous works, the Lagrangian density of the system
reads

L =
1
2
T

(
1 +

ρ0(r, t)
µ0

) [
∂µϕ∂

µϕ − Ω2
m

c2m
ϕ2

]
, (1)

where T denotes a ‘tension’ of the elastic medium, µ0 its mass per ele-
ment of volume, cm the propagation speed of the wave (such that T =
µ0 c

2
m), Ωm the reference pulsation of the medium and ρ0 the very high

elastic medium density corresponding to the concretion of mass m0 at
position ξ at time t in a reference frame R (i.e. ρ0(r0, t0) = m0 δ(r0−ξ0)
in its proper reference frame R0, e.g. [24] §28, in which δ denotes the
Dirac delta function). Here, ∂µϕ∂µϕ means ( 1

cm

∂ϕ
∂t )

2 − (∇ϕ)2.

Let us now briefly comment this macroscopic toy system. The con-
cretion is assumed to be a stable particle (like walkers in usual walkers’
dynamics) and can be seen as a simplification of more complicated phe-
nomena (for instance peaked solitons, due to a non-linear self-focusing
potential of gravitational nature, developed in very interesting stud-
ies [25, 26] inspired by walking droplets experiments and de Broglie’s
double solution program). In contrast to de Broglie’s double solution
program (in which particles consist of a peaked concentration of en-
ergy), the ‘particle’ concretion is depicted by a very high elastic medium
density rather than a very high amplitude of the wave. Moreover, the
transverse wave ϕ – continuous at the location of the concretion – also
plays the role of a “pilot wave”. Finally, this system can be interpreted
as a simplification (with the modification of the particle’s description) of
de Broglie’s double solution program in a classical system. It is clear by
the way from the Lagrangian formalism presented in this section that the
concretion is treated as a particle; in this perspective, the model is more
reminiscent of Bohm’s dynamics than of de Broglie’s double solution.
However it could be interpreted as a limiting case of a wave monistic
model, still to write.

According to the nature of the concretion (i.e. a point-like high
density elastic medium), we seek in the following an external potential
which acts in the same way on the elastic medium and on the concretion
(but naturally ρ0/µ0 times more). This facilitates to retrieve a potential-
like energy able to act on the concretion, from a wave equation valid at
any point.
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1.3 Framework

Up to now PM was uniform and constant in time – and equal to Ωm.
We assume in this section that PM is no longer uniform. But for the
sake of simplicity we assume that these pulsations are constant in time.
The PM at position r then reads:

Ω′
m(r) = Ωm + ωm(r) . (2)

This means that the elastic medium at position r tends to support a
transverse standing oscillation at pulsation Ω′

m(r).
We assume through this paper that ωm(r) (i) can be positive or

negative, (ii) has a magnitude much lower than Ωm (i.e. |ωm| � Ωm) and
(iii) is very smooth comparatively to characteristics related to Ωm (i.e.
ωm(r) has a characteristic length evolution much greater than cm/Ωm).

Non-uniform PM, Ω′
m(r) instead of Ωm, constitutes the only differ-

ence from the macroscopic toy system suggested in [13]. (See Fig. 1.3
for a schematic representation of the system studied in this paper.) The
Lagrangian density of the system then becomes

L =
1
2
T

(
1 +

ρ0(r, t)
µ0

) [
∂µϕ∂

µϕ − Ω′2
m(r)
c2m

ϕ2

]
. (3)

It is important to note that the pulsation of the medium, Ω′
m(r), acts

on the homogeneous elastic medium as well as on the concretion (but
ρ0/µ0 times more).

1.4 Wave equation and symbiosis equation

The wave equation results from the Euler-Lagrange equation for a scalar
field (which stems from the principle of least action, when the wave field
ϕ is subjected to a small change δϕ while the 4-position of the ‘particle’
concretion is not subjected to a small change), i.e. ∂µ

∂L
∂(∂µϕ) = ∂L

∂ϕ .
According to the Lagrangian density (1) of the system, this leads to
∂µ [(1 + ρ0/µ0)∂µϕ] = −(1 + ρ0/µ0)

Ω′2
m
c2m

ϕ; i.e.

�mϕ +
Ω′2

m(r)
c2m

ϕ = − ρ0

µ0

(
�mϕ +

Ω′2
m(r)
c2m

ϕ

)
− 1
µ0

[∂µ(ρ0) ∂µϕ] , (4)

where �m denotes the d’Alembert operator specific to the elastic medium
(i.e. �m = 1

c2m

∂2

∂t2 −∆, where ∆ denotes the Laplace operator).
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Figure 1: (Color online)
Schematization of the theoreti-
cal system, here in a 1D elas-
tic medium and in the proper
reference frame of the concre-
tion. (Transverse oscillations
are directed along the eszett
axis, (Oß).) PM, Ω′

m(x), is
written for various positions.
Transverse harmonic potentials
of the medium are depicted by
springs, whose stiffness per ele-
ment of length is indicated and
use Ω′2

m(x). The point-like high
elastic medium density, i.e. the
concretion (in blue), has the
same properties per unit mass as
the homogeneous (in mass) elas-
tic medium.

The concretion is no longer the source of the wave (a state called
symbiosis between the wave and the concretion) when the two following
conditions are fulfilled: (i) the wave ϕ obeys a Klein-Gordon-like equa-
tion with non-uniform pulsations Ω′

m(r) (i.e. �mϕ + Ω′2
m(r)
c2m

ϕ = 0) and
(ii) the following equation,

∂µ(ρ0) ∂µϕ = 0 , (5)

called the symbiosis equation, is satisfied. (This equation reads
1
c2m

∂ρ0
∂t

∂ϕ
∂t −∇ρ0 ·∇ϕ = 0.) We will discuss this equation below.

1.5 Effective Schrödinger equation with an external potential

The derivation of the Schrödinger equation from the Klein-Gordon equa-
tion in the low-velocity approximation is mentioned by de Broglie (see
e.g. [7] §II.7) and is well-known in the literature (see e.g. [27] §III.5). In
our classical context it is convenient to introduce the modulating wave,
ψ, which modulates the ‘natural’ (standing) wave of the medium without
any ‘particle’. Using complex notation and the reference PM, Ωm, the
(complex-valued) modulating wave ψ is defined from the (real-valued)
transverse wave, ϕ, as

ϕ(r, t) = Re
[
A ψ(r, t) e−i Ωm t

]
, (6)
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where Re[· · · ] denotes the real part and A an amplitude of the transverse
oscillation. (Then, the modulating wave ψ is dimensionless.)

When the wave is in symbiosis with the concretion, the wave equa-
tion (4) in low-velocity and small ωm approximation leads to

i
∂ψ

∂t
= − c2m

2 Ωm
∆ψ + ωm ψ . (7)

(Calculations are straightforward and very similar in our context to the
ones detailed in the appendix of [13] apart from inhomogeneous pul-
sations.) Note that what we call throughout this paper low-velocity
and small-potential approximation is a first-order approximation with
respect to v2/c2m and ωm/Ωm.

Now, we use the coefficient

~exp =
m0 c

2
m

Ωm
, (8)

which is specific to the studied system. (~exp has been introduced in [11]
as a proportionality coefficient between wave characteristics and parti-
cle characteristics, but appears naturally in the energy of the concre-
tion [13].) Thus, Eq. (7) becomes:

i ~exp
∂ψ

∂t
= −

~2
exp

2m0
∆ψ + V ψ . (9)

This equation has the same form as the Schrödinger equation with an
external potential, V , acting on the concretion and defined as:

V (r) = ~exp ωm(r) . (10)

We see below, in Section 2.5, that this expression results naturally from
a general covariant formalization of the system. At this point, expres-
sion (10) shows that the potential-like energy acting on the concretion
depends naturally on the two following points: (i) the mass m0 of the
concretion and (ii) a property of the elastic medium at position r, namely
the additional pulsation ωm(r).

1.6 From the symbiosis equation to a contradiction of the system

The symbiosis equation (5) as well as the mass continuity equation
(related to the concretion) have the same expressions as in a system
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with uniform PM, Ω′
m(r) = Ωm. Thus, the symbiosis equation as-

sociated with the conservation of the mass of the concretion leads to
results similar to those of [13] (cf. Eq. (6) therein). (This equation
leads to d

dt
1√

1−v2/c2m
= 0 as well as to a covariant guidance formula,

v
c2m

∂ϕ
∂t (ξ, t) + ∇ϕ(ξ, t) = 0, where v = dξ

dt is the velocity of the concre-
tion.) This implies that the velocity of the concretion remains constant
in time. This is incoherent and wrong for the system suggested in this
paper. Indeed, the velocity of the concretion under the action of an
external potential-like V should normally be able to change in time, in-
stead of remaining constant in time. (We note also that the energy of
the concretion, evaluated in the same way as in [13] would again have
been wrong.)

The toy system suggested in this section then exhibits an inconsis-
tency. Something else in this system or in this formalization must be
missing or wrong.

2 General covariant formulation for a system with inhomoge-
neous pulsation of the medium

The previous contradiction is resolved by using a general covariant for-
mulation, instead of the Lorentz-Poincaré covariant formulation (with
respect to cm) of the previous Section. This allows us to deal with
an heterogeneous system, while maintaining a covariant formulation. In
general relativity (e.g. [24]) a gravitational field and the motion of a par-
ticle in a gravitational field can be described by the metric tensor (and
the Newtonian metric is simplest metric used to describe the motion of a
particle in the low-velocity and small gravitational field approximation).
Based on these facts, we assume that the effective potential generated
by non-uniform PM (as seen in the previous Section) and its action on
the motion of a concretion (as it should be) can be described by a met-
ric tensor associated with the elastic medium. Furthermore, this metric
tensor of the elastic medium should be related to non-uniform PM (and
this metric could be a Newtonian-like one in the low-velocity and small
potential approximation). In short, we apply recipes from general rel-
ativity in order to deal with the concretion in an elastic medium with
inhomogeneous PM.

Hence, firstly we study our system in curvilinear coordinates. Sec-
ondly we make an assumption which links PM to the metric tensor of the
elastic medium. This allows us to write a guidance formula, a momen-
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tum and an energy of the concretion without contradiction. Finally we
study the concretion in an effective free fall and in an effective harmonic
potential.

2.1 Framework

Let a reference frame R in which spatio-temporal coordinates are writ-
ten as (r, t) or xµ. Throughout this paper x0 = cm t and xi (i = 1, 2, 3)
denotes the spatial location r of a point in the elastic medium at rest.
Moreover we use the metric signature (+,−,−,−). As in general relativ-
ity, a general covariant formulation uses the metric associated with R,
written as gmµν in this paper ; but this metric is one more time related
to the considered elastic medium (as for instance the Poincaré-Lorentz
transformation which is expressed with respect to cm, the propagation
speed of the wave in the elastic medium).

The general covariant formulation (see e.g. [24]) of the Lagrangian
density (1), in a reference frame R with an elastic-medium metric tensor
gmµν , is written as

√
−gm L, where

L =
1
2
T

(
1 +

ρ0(r, t)
µ0

) [
g µνm ∂µϕ∂νϕ − Ω2

m

c2m
ϕ2

]
(11)

and
√
−gm denotes the square root of the negative of the determinant

of gmµν . (The action reads S =
∫
L
√
−gm dtdx1 dx2 dx3.)

2.2 Wave equation and symbiosis equation

The wave equation stems from the principle of least action (see Appendix
A for more details) and is written as

a
2mϕ+

Ω2
m

c2m
ϕ = − ρ0

µ0

(
a
2mϕ+

Ω2
m

c2m
ϕ

)
− 1
µ0

g µνm ∂µ(ρ0) ∂νϕ . (12)

where
a
2m explicitly denotes the d’Alembert operator (specific to the elas-

tic medium) in curvilinear coordinates, i.e.
a
2mϕ = 1√

−gm
∂µ (

√
−gm g µνm ∂νϕ).

(In this paper we are not interested in the equation of motion for the
concretion because, as seen in [13] and in the low-velocity approximation,
this equation could very weakly perturb the velocity and trajectory of
the concretion given by the guidance formula, i.e. by the wave equation.)
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The concretion does not generate waves any longer when the two
following conditions are fulfilled: (i) the wave is governed by the Klein-

Gordon-like equation in curvilinear coordinates (
a
2mϕ + Ω2

m
c2m

ϕ = 0) and
(ii) the symbiosis equation,

g µνm ∂µ(ρ0) ∂νϕ = 0 , (13)

is satisfied. As expected, the corresponding previous result (5) is gener-
alized.

2.3 Newtonian elastic-medium metric, constant in time

In general relativity the simplest metric tensor used to describe a motion
of a particle in a gravitational field under the low-velocity and small
gravitational field approximation is a Newtonian metric (e.g. [24] §87).
In our context, from now on we only study the case in which the elastic-
medium metric, gmµν , is Newtonian and constant in time. gmµν is then
written as

gmµν =


gm 00 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (14)

in which gm 00 is constant in time and conveniently written as
√
gm 00 = 1 + ε(r) . (15)

In general relativity, ε(r) of a Newtonian metric constant in time is
equal to the gravitational potential energy per unit mass and divided
by c2 (cf. e.g. [24] §87), i.e. m0 c

2 ε(r) is equal to the gravitational
potential acting on a point mass m0 at position r. Similarly we define
the potential energy acting on the concretion (if it was located at point
r) as

V (r) = m0 c
2
m ε(r) . (16)

Finally, ρ0, the mass density of the concretion expressed in its proper
reference frame, is written (cf. e.g. [24] §90) in R as

ρ0 = m0

√
1− V2/c2m δ(r − ξ(t)) , (17)

where V denotes the velocity of the concretion measured in terms of the
proper time, that is, by an observer located at the given point (cf. e.g.
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[24] §88) – which implies that V = 1√
gm 00

v, where the velocity of the

concretion measured in R is v = dξ
dt .

In the following, the case |ε| � 1 corresponds to the small-potential
approximation.

2.4 Effective Schrödinger equation with an external potential

In the Newtonian elastic-medium metric under the low-velocity and
small-velocity approximation, by using the modulating wave ψ (6), the
wave equation (12) without source leads to −2 i Ωm

c2m

∂ψ
∂t −∆ψ−∇ε·∇ψ+

2 ε Ω2
m
c2m

ψ = 0. (Calculations are very similar to the one detailed in the
appendix of [13], in which the definition of the modulating wave ψ (6) is
used and the term ∂2ψ

∂t2 is neglected in the low-velocity approximation as
well as a term with ε ∂ψ∂t .) When ε(r), as ωm(r) in the previous section,
is very smooth comparatively to the wave (i.e. when the variation of ε(r)
is very small over a wavelength of ψ), the term ∇ε · ∇ψ is negligible.
This leads to

i
∂ψ

∂t
= − c2m

2 Ωm
∆ψ + εΩm ψ . (18)

It is worth noting here that this equation is a generalization of Eq. (7)
and is obtained by similar techniques (in agreement with de Broglie’s
original ideas concerning the link between Klein-Gordon and Schrodinger
equations, as seen e.g. in [7] §II.7 ).

By using ~exp (8) and the potential energy V (16) related to the
concretion in R, we get

i ~exp
∂ψ

∂t
= −

~2
exp

2m0
∆ψ + V ψ . (19)

This equation has the exact form as the Schrödinger equation with an
external potential V .

2.5 Assumption about the pulsation of the medium and the elastic-
medium metric

Let us now make a link between the elastic-medium metric, gmµν , and
inhomogeneous PM, Ω′

m(r). In general relativity, the metric gµν can
be directly related to the gravitational field in a reference frame. It
is then natural to assume in our toy system that the elastic-medium
metric, gmµν , is also related to properties in the elastic medium. We
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have seen in Section 1 that not only PM is related to a crucial property
of the elastic medium, but also (even if there is some misleading in this
formalization) can generate an external field applied on the concretion
and on the transverse wave. By comparison with effective Schrödinger
equations (Eqs. (7) and (18)) it is very tempting to assume that ωm(r)
is related to ε(r) in the Newtonian elastic-medium metric such that

ε(r) =
ωm(r)
Ωm

. (20)

This expression means that the potential energy V (r) = ~exp ωm(r)
written in previous section (10) is the same as the one in this section (16).

Then, we make the following assumption in our macroscopic toy
system (under the low-velocity and small-potential approximation):
in a system with the PM Ω′

m(r) the elastic-medium metric gmµν is
Newtonian-like such that

√
gm 00 =

Ω′
m(r)
Ωm

= 1 +
ωm(r)
Ωm

. (21)

(Hence, for a system with uniform and reference PM, Ω′
m(r) = Ωm, the

elastic-medium metric is Minkowski-like.)

2.6 From the symbiosis equation to the concretion guidance formula

The symbiosis equation associated with the conservation of the mass m0

of the concretion lead to a covariant guidance formula – which yields
the effective de Broglie-Bohm guidance formula in low-velocity approx-
imation [13]. By using Eq. (13) and the mass continuity equation (see
Appendix B for more details) we get

1
c2m gm 00

√
1− V2/c2m√
gm 00

∂ϕ

∂t

[
d
dt

√
gm 00√

1− V2/c2m

]
ρ0

+
[

v

c2m gm 00

∂ϕ

∂t
+ ∇ϕ

]
·∇ρ0 = 0 ,

(22)

(Recall that this relation only concerns a concretion studied in a referen-
tial R with a Newtonian elastic-medium metric (14) constant in time.)

It is worth noting that ρ0 (and then the Dirac delta function) must
be seen as the limit of a derivable function (for instance a 3D Gaussian
function). Recall that this is fully in agreement with the fact that our toy
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model could be interpreted as a limiting case of a wave monistic model,
still to write (as discussed in Section 1.2). Hence, when ∇ρ0 = 0 (i.e. at
the maximum of ρ0), the first term of the above equation is zero. This
again implies that the second term is zero. So, Eq. (22) encapsulates the
two following results:

d
dt

√
gm 00√

1− V2/c2m
= 0 , (23)

v

c2m gm 00

∂ϕ

∂t
(ξ, t) + ∇ϕ(ξ, t) = 0 , (24)

in which gm 00 is evaluated at the position of the concretion, r = ξ.
These equations generalize the corresponding ones in Section 1.6.

Eq. (23) has a direct counterpart in general relativity: the energy of
a point mass m0 in a static gravitational field (

√
g00m0 c

2
√

1−V2/c2
, cf. e.g. [24]

§88) is constant in time. Eq. (24) yields (see below, Eq. (26)), in the low-
velocity approximation, an analogous de Broglie-Bohm guidance formula
in quantum mechanics. (This equation, which concerns the transverse
displacement wave ϕ and not only its phase, is called in the following
the ϕ-guidance formula.) It is very interesting to note that the symbiosis
equation not only leads to a guidance formula, but also leads to an energy
conservation. The symbiosis equation then appears to be very crucial.

So, when the concretion is in symbiosis with the wave (if this ex-
ists): (i) the transverse wave ϕ is governed by a Klein-Gordon-like equa-
tion (12) (without source of waves) and (ii) the motion of the concretion
is given by the symbiosis equation (13). Furthermore it is worth noting
that the latter equation encapsulates both an energy conservation of the
concretion and its guidance formula. (This means that when one of the
previous results is not satisfied, for instance when the energy conserva-
tion of the concretion is not satisfied, the concretion and the wave are
not in symbiosis.) Finally, note that Eqs. (23), (24) and the linear wave
field (12) do not depend on the maximum amplitude of the wave field ϕ.

On the contrary of the previous Section 1.6 and by using a general
covariant formulation, the problem concerning the guidance formula and
the velocity of the concretion under the influence of a potential does not
exist any more. Here, the velocity of the concretion under the influence
of potential (10) or (16) can change in time and this occurs in agreement
with energy conservation (23).
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2.6.1 In the low-velocity and small-potential approximation

In the low-velocity and small-potential approximation and by using the
modulating wave ψ (6), the ϕ-guidance formula (24) yields v ψ(ξ, t) =
c2m

i Ωm
∇ψ(ξ, t). It is then convenient to write ψ as

ψ = F eiΦ , (25)

where the magnitude F and the phase Φ are two real functions. Thus,
the velocity of the concretion reads

v =
c2m
Ωm

∇Φ(ξ, t) . (26)

This equation has a direct counterpart in quantum mechanics: the de
Broglie-Bohm guidance formula [3, 29] (i.e. by using notation (25) and
~exp (8), v = ~

m0
∇Φ) 3.

There is another manner to express v. The effective guidance for-
mula (26) and the effective Schrödinger equation (18) (both based on
the symbiosis between the transverse wave ϕ and the concretion) yield

m0
dv

dt
= −∇ [Q(ξ, t) + V (ξ, t)] ,

where Q = −
~2

exp

2 m0

∆F
F

. (27)

(Calculations are very similar to the ones in Bohmian mechanics,
e.g. [28], or in our context in the appendix of [13].) The wave potential
Q has the same form as the de Broglie-Bohm quantum potential [29]
(and also e.g. [7] §X).

When the velocity of the concretion obeys the guidance formula, the
amplitude of the transverse wave at the location of the concretion is
such that ∇F (ξ, t) = 0. (Indeed, in the low-velocity and small potential
approximation and by using the modulating wave ψ, Eq. (24) becomes
−i Ωm
c2m

v ψ(ξ, t)+∇ψ(ξ, t) = 0, whose real part yields ∇F (ξ, t) = 0.) The
concretion is then located at a local extremum of the vibration amplitude
field F (r, t). To give an image, apart from transverse oscillations, the
concretion moves as if it surfs on the wave.

3Nevertheless relation (26) is only valid at the location of the concretion. This
corresponds to the de Broglie’s double solution viewpoint. In the context of walkers,
see [5] for an acute discussion between the latter viewpoint and the one in bohmian
mechanics.
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2.7 Energetic considerations

The energy Wconc and momentum pconc of the concretion are defined
naturally from time-averaged values (over one transverse oscillation) of
the energy and momentum densities in the oscillating elastic medium
around the location of the concretion. These energy and momentum
densities are associated with the stress-energy tensor of the system, Tαβ ,
which results from the Lagrangian density of the system (cf. e.g. [24]
§94). Here (see Appendix C for more details) we get

T0α = T
(

1 +
ρ0

µ0

) [
∂0ϕ∂αϕ−

1
2
gm 0α

(
∂µϕ∂νϕg

µν
m − Ω2

m

c2m
ϕ2

)]
,

(28)
where ρ0 is given by Eq. (17). Without ρ0, i.e. without the concretion,
this result is in agreement with the stress-energy tensor of the Klein-
Gordon field in a metric gµν (cf. e.g. [30] §6.7), as expected.

When the concretion is assumed to be in symbiosis with the wave
(i.e. the generalized ϕ-guidance formula (24) is satisfied), expression (28)
leads to (see Appendix C for more details) the energy Wconc and mo-
mentum pconc of the concretion:

Wconc =
1

2
m0

q
1 − V2

c2m√
gm 00

·

"„
1 +

V2

c2
m

« * „
∂ϕ(ξ, t)

∂t

«2
+

+ gm 00 Ω2
m 〈ϕ2(ξ, t) 〉

#

pconc = m0

q
1 − V2

c2m√
gm 00

* „
∂ϕ(ξ, t)

∂t

«2
+

1

gm 00 c2
m

v . (29)

Now, we have to distinguish two different cases. In the first one,
Wconc and pconc have a same form as in general relativity in a Newtonian
metric constant in time. This case occurs when the concretion has a
specific transverse oscillation which depends on the PM; the concretion
is then called in its reference state (precisely defined in the following
paragraph). The study of a concretion in an effective free fall, below
in Section 2.8, corresponds to this case. The second case, more general
than the first one but restricted to the small velocity and small potential
approximation, provides for Wconc and pconc a same form as in quantum
mechanics. The study of a concretion in an effective harmonic potential,
below in Section 2.9, corresponds to this second case.
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2.7.1 Concretion in its reference state and counterpart in gen-
eral relativity

Following [13] we define the reference state of the concretion when (i)
the concretion is in symbiosis with the wave and when (ii) the relation〈(

g µνm ∂µϕ∂νϕ − Ω2
m

c2m
ϕ2

)
ξ(t)

〉
= 0 , (30)

is satisfied, in which 〈(· · · )ξ(t)〉 denotes the time-averaged value over
one transverse oscillation at the location of the concretion. (We assume
throughout this article that the time period of transverse oscillations
is much shorter than the characteristic evolution time of the motion of
the concretion given by ξ(t). This assumption is experimentally real-
ized for walking droplets experiments and also for the bead sliding on
a vibrating string [12].) Taking into account the generalized ϕ-guidance

formula (24), Eq. (30) leads to
〈 (

∂ϕ(ξ,t)
∂t

)2
〉

= gm 00
1−V2/c2m

Ω2
m 〈ϕ2(ξ, t)〉.

This implies that a concretion in its reference state and at rest in a ref-
erential R oscillates at the pulsation

√
gm 00 Ωm in R – which means, in

a Newtonian-like metric, that the concretion oscillates at pulsation Ωm

measured in its proper time. Taking into account relation (21) between
gm 00 and PM, this simply means that the concretion has a transverse
oscillation at pulsation equal to the PM at its location, Ω′

m(ξ).

It is also worth noting that the wave potential at the location of the
concretion, Q(ξ, t), is related to the reference state of the concretion in
the low-velocity and small-potential approximation: when Q(ξ, t) = 0
the concretion is in its reference state (this relation is established at
the next subsection). This could be interesting because in quantum
mechanics with the Bohmian point of view, the quantum potential Q is
responsible for deviations of Bohmian trajectories from classical behavior
in classical mechanics (e.g. [28]).

Eqs. (29) and (30) lead to

Wconc = m0

√
gm 00√

1− V2/c2m
Ω2

m 〈ϕ2(ξ, t)〉

pconc = m0
v

√
gm 00

√
1− V2/c2m

Ω2
m 〈ϕ2(ξ, t)〉

c2m
. (31)



218 C. Borghesi

Whenever the condition

Ω2
m 〈ϕ2(ξ, t)〉 = c2m (32)

is fulfilled, which means that the average quadratic transverse oscillation
velocity of the concretion is equal to c2m, the energy and momentum of
the concretion are written in the same form as in general relativity for a
point mass m0 in a static gravitational field and in a Newtonian metric
(i.e.

√
g00m0 c

2
√

1−V2/c2
and m0 v

√
g00

√
1−V2/c2

respectively, e.g. [24] §88 or [31] §ii.2).

Finally, it is interesting to note that condition (32) means in par-
ticular that the amplitude of the transverse wave at the location of the
concretion remains constant in time, i.e. ∂F

∂t (ξ, t) = 0. This condition
associated with Eq. (23) (which is deduced from the symbiosis equation)
implies that the energy of the concretion remains constant in time.

2.7.2 General case under the low-velocity and small-potential
approximation and counterpart in quantum mechanics

Now, we consider the general case in which the concretion is not neces-
sarily in its reference state but under the low-velocity and small-potential
approximation. It is then convenient to write the pulsation ω and the
wave vector k in the phase Φ of ψ (25) as

ω(r, t) = − ∂ Φ(r, t)
∂ t

k(r, t) = ∇Φ(r, t) . (33)

By using the pulsation ω at the location of the concretion and provided
that condition (32) is fulfilled, the energy and momentum of the concre-
tion in Eq. (29) are now written as

Wconc = m0 c
2
m + ~exp ω(ξ, t) (34)

pconc = m0 v , (35)

(see Appendix C for more details). The total energy of the concretion
is equal to the effective rest mass energy of the concretion (m0 c

2
m, as in

relativity) plus an additional energy Econc = ~exp ω(ξ, t) (as in quan-
tum mechanics). It is worth noting that both the effective rest mass
energy (m0 c

2
m) and the coefficient ~exp come naturally from the only

condition (32).
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It is particularly interesting to write Econc and pconc by using ψ, the
modulating wave. It is easy to show that Eq. (34) reads

Econc = − ~exp
∂ Φ(ξ, t)
∂ t

i ~exp
∂ψ

∂t
(ξ, t) = Econc ψ(ξ, t) , (36)

and Eq. (35),

pconc = ~exp ∇Φ(ξ, t)
~exp

i
∇ψ(ξ, t) = pconc ψ(ξ, t) , (37)

(where we have used relations (8), (33), ∂F∂t (ξ, t) = 0 and ∇F (ξ, t) = 0).
The additional energy Econc and the momentum pconc of the concretion
are then in exact agreement with the energy and momentum of an anal-
ogous quantum system – apart from they specifically concern ψ at the
location of the concretion. As has been suggested by Louis de Broglie
in quantum mechanics (see e.g. [7], §xi), in our macroscopic toy sys-
tem the ‘particle’ concretion accounts for quantities (here energy and
momentum) commonly attributed to the wave-like nature of the system.

Finally, similarly to quantum mechanics with a particle point of view
(see e.g. [32]), the energy of the concretion is also written as

Econc =
1
2
m0 v

2 +Q(ξ, t) + V (ξ, t) . (38)

(Calculations are very common in Bohmian mechanics, e.g. [28], and use
in our context the real part of the effective Schrödinger equation with
Ψ = F eiΦ.) Moreover it is easy to show (by using Eqs. (6), (36), (37)
and condition (32)) that Eq. (38) leads to

1
2

〈(
g µνm ∂µϕ∂νϕ − Ω2

m

c2m
ϕ2

)
ξ(t)

〉
=
Q(ξ, t)
m0 c2m

. (39)

Therefore, the more Q, the more the concretion is out of its reference
state.

2.8 Effective free fall

We now illustrate a system in which there is particular and simple
potential-like energy V . The concretion is considered in symbiosis with



220 C. Borghesi

the transverse wave. Let this potential correspond to the one of a free
fall in a uniform effective gravitational acceleration g. We here consider
a (flat) 2D elastic medium (Oxy). (Transverse oscillations are directed
along the vertical axis.) Finally, calculations are performed under the
low-velocity and small-potential approximation. (See Fig. 2 for a basic
representation of the system.)

An effective potential V (r) (10) generates an effective gravitational
acceleration such that

g(r) = − c2m
Ωm

∇ωm(r) (40)

(because ~exp = m0 c
2
m

Ωm
). When

ωm(r) =
aΩm x

c2m
, (41)

where a is constant and has the dimension of an acceleration, the effective
gravitational acceleration is uniform and equal to g = −a ex, where ex
denotes the unit vector along the (Ox) axis.

From now on, we only consider the solution [33]

ψ(r, t) = e−i Ωm(a x t/c2m + 1
6 a

2 t3/c2m) (42)

for the corresponding effective Schrödinger equation (19) with ωm(r) =
aΩm x
c2m

. Definition (6) of the modulating wave ψ leads to the (real-valued)
transverse wave:

ϕ(r, t) = A cos
(

Ωm(1 +
a x

c2m
) t +

Ωm a
2 t3

6 c2m

)
. (43)

Let us now investigate the velocity v and the location ξ of the
concretion. According to ψ given by Eq. (42), the phase (25) is
Φ(r, t) = −Ωm(a x t/c2m + 1

6 a
2 t3/c2m). The guidance formula (26) leads

to v = −a t ex. This implies (because v = d ξ
d t ) that ξ(t) = − 1

2 a t
2 ex,

where we have assumed that ξy(t = 0) = 0. It is interesting to note that
neither waves ϕ or ψ nor the velocity of the concretion do not depend
on the mass m0 of the concretion.

Let us now evaluate the additional energy of the concretion, Econc,
and the momentum pconc of the concretion. According to Eqs. (35) or
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Figure 2: (Color online)
Schematic representation of
the system corresponding to
an effective free fall. (a):
Transverse wave ϕ and the
location of the concretion, ξ,
at times t and t + dt. (b):
PM, Ω′

m(r) (41), leading
to the effective gravitational
acceleration, g = −a ex.
(c): Stroboscopic view of
the transverse wave ϕ (43)
and the corresponding loca-
tion of the concretion (black
points). Each time t is an
integer multiple of 2 π

Ωm
. Pa-

rameters of the theoretical
system: cm = 10 m · s−1,
Ωm = 1000 s−1 and a =
0.5 m · s−2. Color bar is ex-
pressed in A, the maximal
amplitude of transverse os-
cillations; x and t are re-
spectively expressed in m
and s.

(37) (and provided that condition (32) is fulfilled), pconc = −m0 a t ex.
The pulsation (33), ω(r, t) = −∂Φ(r,t)

∂t , at the location of the concretion
is ω(ξ, t) = 0 (because ξx(t) = − 1

2 a t
2). According to Eqs. (34) or (36),

the additional energy of the concretion, Econc, is then zero and remains
constant in time. (The total energy of the concretion, Wconc, remains
then constant in time and equal to m0 c

2
m.)

It then appears that both motion and energy of the concretion in
symbiosis with the wave ϕ (43) are in agreement with corresponding
motion and energy of a point mass in a uniform gravitation field g =
−aex in classical mechanics (in which the gravitation potential energy
transfers in kinetic energy). In other words, the concretion behaves as a
point mass in classical mechanics moving in a potential V (10). This is
fully in agreement with the fact that Q(ξ) = 0 (and then the concretion
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is in its reference state).

2.9 Concretion in an effective harmonic potential

We now study a system with an effective linear harmonic potential
V (x) = 1

2 m0 ω
2
osc x

2, which corresponds to a linear harmonic oscilla-
tor in quantum mechanics. We here consider a (flat) 1D elastic medium
(Ox) (where transverse oscillations are directed for instance along the
vertical axis). The wave ϕ is considered as standing in the laboratory
reference frame R and, in addition, in symbiosis with the concretion.
Calculations are performed under the low-velocity and small-potential
approximation.

According to Eq. (10) the effective potential V (x) is generated by
modifying PM such that

ωm(x) =
ω2

osc Ωm x
2

2 c2m
. (44)

A solution of the effective Schrödinger equation (19) with this effec-
tive potential and for a standing modulating wave ψ(x, t) = F (x) e− iω t

is such that (cf. e.g. [34] §23) F (x) ∝ e−
m0 ωosc
2 ~exp

x2

Hn

(√
m0 ωosc

~exp
x

)
and

ω = ωosc

(
n+ 1

2

)
, whereHn denotes a Hermite polynomial of degree n (n

being a natural number). Due to the effective guidance formula (26), the
velocity of the concretion is zero. (This is in agreement with the study
of a harmonic oscillator with the Bohmian point of view, e.g. [32] §4.9.)
Moreover the concretion is located at a local extremum of the vibration
amplitude field F (x) (cf. Section 2.6.1), for instance ξ = 0 for n = 0 and

ξ = ±
√

~exp
m0 ωosc

for n = 1. According to Eqs. (34) and (35) (and provided
that condition (32) is fulfilled), the additional energy of the concretion is
Econc = ~exp ωosc

(
n+ 1

2

)
and its momentum pconc = 0. Here, the wave

potential Q (27) is not zero. By using the expression of F and a little bit

of algebra Eq. (27) leads to Q(ξ) = ~2
exp

2 m0

[
2m0 ωosc

~exp
(n+ 1

2 ) − m2
0 ω

2
osc

~2
exp

ξ2
]
.

This is of course in agreement with expression (38) of Econc. Finally, it
is worth noting that the concretion is not in its reference state (because
Q(ξ) 6= 0) and here the (standing) transverse wave ϕ oscillates at pulsa-
tion Ωm + ω (cf. (Eq. 6)).

This simple example is particularly interesting because it sheds light
on a surprising and peculiar form of energy of the concretion. The ve-
locity of the concretion is here zero. Consequently, the kinetic energy in
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relativistic and in classical mechanics of a mass m0 should also be zero.
But here, the concretion has an additional energy (Econc = ~exp ω, like
in quantum systems) to its effective rest mass energy (m0 c

2
m). We can

interpret this result as follows: The concretion is ‘more’ than an usual
point mass m0 as it would have been in common classical and relativis-
tic systems. The concretion (a point-like high elastic medium density)
shares properties both of the elastic medium (i.e. the PM at its loca-
tion) and of the transverse wave with which it is in symbiosis. Then, the
fact that the concretion is here embedded in a standing transverse wave
oscillating with a pulsation greater than Ωm leads to an energy of a con-
cretion greater than m0 c

2
m. In other words, the energy of the concretion

can be split in two different origins: one from its motion along the elastic
medium and the other one from its transverse vibration (the latter pro-
vides in particular an effective rest mass energy m0 c

2
m). Thus, even if

the concretion has no kinetic energy along the elastic medium, its total
energy can be greater than m0 c

2
m coming from its transverse oscillation

– and its transverse kinetic energy. (We note that common effective rela-
tivistic expression for energy is naturally extended in our context, when
the concretion is out of its reference state (i.e. Q(ξ) 6= 0).)

This peculiar form of energy of the concretion is reminiscent with the
“variable proper mass”, M0, suggested by de Broglie – which played a
great role in his work, for example for the motion of a particle [8, 35].
(By using notations in (6) and (25) and m0 the proper mass of the

particle, M0 =
√
m2

0 + ~2

c2
2F
F ; which becomes in the low-velocity ap-

proximation, M0 = m0 +Q/c2, where Q is here the quantum potential.)
But more importantly in the context of walking droplets (which are also
‘more’ than a usual point mass in classical mechanics), since the verti-
cal/transverse speed is approximately 10 times larger than the horizontal
speed, the horizontal kinetic energy could be considered as a usual ki-
netic energy (as in classical mechanics or in non-relativistic quantum
mechanics) while the vertical kinetic energy (approximately 100 times
larger than the horizontal one) could be considered as an additional
or internal energy, which plays the role of de Broglie’s variable proper
mass [36]. (In this vein it is interesting to note that recent studies on
walkers [37, 38, 39, 40, 41] highlight the role of their vertical motion [42]
on the wave and the coupling between a drop’s vertical and horizontal
motion, which plays in particular a crucial role in systems of two inter-
acting walkers, in orbiting pairs [43, 44, 45] as well as in promenading
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pairs [46, 47] 4.)

Conclusion

In this paper we study a simple system – inspired by walking droplets
experiments with non-uniform fluid depth in the container – in which a
non-uniform pulsation of the medium (PM) is present. (A PM at point
r reads Ω′

m(r) = Ωm + ωm(r), where Ωm is the reference pulsation in
this paper, as in [13]; Ω′

m(r) corresponds to the pulsation of transverse
standing oscillations that the elastic medium of the system tends to
support at point r.) Recall that a submerged barrier in the vibrating
container generates a kind of potential barrier acting both on walking
droplets and on surface waves.

We first show that a Lorentz-Poincaré covariant description of the
system leads to inconsistencies and contradictions. (The velocity of the
concretion in symbiosis with the wave would have been constant in time,
whatever the external potential). The contradiction is solved by using
a general covariant formulation. In this paper we use a Newtonian-like
metric tensor, which corresponds in general relativity to a gravitational
field under the small-velocity and small-potential approximation. (Recall
that almost all our calculations are also performed under this approxi-
mation.) It is important to stress that the metric tensor of the elastic
medium is related to non-uniform PM (21). So then, a system with non-
uniform PM could generate any effective potential, V (r) = ~exp ωm(r),
acting both on the ‘particle’ concretion and on the transverse wave.

Results can be grouped in two parts. The first one generalizes, in
presence of an effective potential, previous results seen in [13]. We nev-
ertheless would like to emphasize the three following points. (i) Here
again, the energy and momentum of the concretion have the same form
as in relativity (in a static gravitational field in a Newtonian metric)
and in quantum mechanics. (ii) The symbiosis equation (13) appears
to be very crucial. This equation (combined with the mass conserva-
tion of the concretion) not only leads to the general covariant guidance
formula (24) (which yields the effective de Broglie-Bohm guidance for-
mula in the small-velocity and small-potential approximation) but also
to Eq. (23) (which implies the conservation of energy in presence of an

4If the proximity between our toy model and walking droplets systems still holds,
one could expect that the vertical energy of walkers increases with the memory and
also partially accounts for the binding energy of interacting walkers.
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external potential). (iii) Last but not least, the modulating wave ψ (de-
fined from the transverse wave (6)) is governed by a strictly analogous
Schrodinger equation, of course with an external potential V .

The second part of results concerns the gravitational-like nature of
the effective potential V and a basic connection with general relativity (in
the context of our macroscopic toy system). V results from non-uniform
PM. In parallel, non-uniform PM implies that proper time elapses differ-
ently at different points of the elastic medium (as in a static gravitational
field in general relativity). (Otherwise, the Poincaré-Lorentz covariant
formalization of the system leads to inconsistency and contradiction.)
This means that the effective potential V is an effective gravitational-like
potential. Furthermore, it is worth noting that a proper time elapsing
differently at different points of space as well as the relation between the
proper time and the ‘world time’ are easy to interpret in our toy system.
In general relativity and in a Newtonian metric constant in time, the
gravitational field implies a relation between the proper time τ and the
‘world time’ t (more precisely dτ =

√
g00 dt, e.g. [24] §88) which is not

easy to interpret at first glance (because this directly involves the gravi-
tational field). On the contrary, in our toy system, the effective potential,
V (r) = m0 c

2
m
ωm(r)
Ωm

, stems from the PM Ω′
m(r) = Ωm · (1 + ωm(r)

Ωm
) at

point r. The pulsation of the medium at a given point plays the role of
a natural clock at this point (by the period of time coming from Ω′

m(r)).
Due to relation (21) between the metric tensor of the elastic medium and
PM (and then the effective potential), the relation between the ‘world
time’ and the proper time at this point reads: Ωm dτ = Ω′

m(r) dt. This
is just a comparison between the ‘world time’ given by the natural clock
at point r and the reference clock (oscillating at the reference pulsation
Ωm).

It could be interesting to very briefly connect our toy model to de
Broglie’s idea about internal quantum clock. According to him, a par-
ticle could be likened to a small clock whose frequency (i.e. its internal
vibration) depends on the “variable proper mass” (e.g. [8]). In our con-
text, this is the elastic medium itself which can be interpreted as having
a small clock at each point (i.e. its PM Ω′

m(r)) rather than only the
‘particle’ concretion. Moreover, when the concretion is in its reference
state, the concretion (at rest in the referential frame) has a pulsation of
internal vibration equal to the PM at its location. Incidentally, we also
note that the guidance formula results in de Broglie’s idea from “har-
mony of phases” (according to which the particle’s internal vibration is
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constantly in phase with the wave on which it is carried [8]) while our
general covariant guidance formula results also from a kind of harmony
(called the symbiosis state) between the wave and the concretion, in
which the concretion is no longer the source of the wave.

Our toy model, inspired by walking droplets experiments, naturally
combines some effective quantum equations with some effective relativis-
tic concepts, even with a small effective gravitational field. (Walking
droplets systems, well-known for some quantum-like phenomena, also
exhibit a kind of analogy with relativistic mechanics, as for instance an
effective speed-dependent mass of walkers [48].) Nevertheless, at this
step, our toy model does not present any stochastic phenomena. In
order to give it randomness, one maybe could be inspired by the de
Broglie–Bohm–Vigier approach in quantum mechanics [49] and/or re-
cent studies [50, 51] in a context closer to walking droplets systems.

To conclude we first mention the fact that quantum-like phenomena
as well as general relativity-like phenomena also occur in a classical sys-
tem has recently been studied in a very interesting paper [52], therein
with water waves. Next, we note that a possible kind of effective grav-
ity field generated by the concretion has not been investigated in this
article. In other words, the concretion behaves as a test particle in an
effective gravitational field. (Let us also mention another approach with
quantum solitons [25, 26] – also inspired by walking droplets experiments
and de Broglie’s double solution program – in which the appearance of
an effective gravitation is predicted.) It could be interesting in forth-
coming studies to investigate if and how the ‘particle’ concretion could
also generate an effective gravitation.
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Appendix A Calculation of the wave equation

The wave equation comes from a principle of least action, when the wave
field is subjected to a small change, ϕ→ ϕ+ δϕ, while the 4-position of
the concretion is not subjected to a small change.

ϕ → ϕ + δϕ leads to δ(ϕ2) = 2ϕ δϕ and δ(g µνm ∂µϕ∂νϕ) =
2 g µνm ∂νϕ∂µ(δϕ). According to Eq. (11) conditions for which the small
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change δϕ imply at first order δ(
∫
L
√
−gm dtd3r) = 0, where boundary

values are fixed, are written as

∫
T

(
1 +

ρ0(r, t)
µ0

) [
g µνm ∂νϕ∂µ(δϕ)− Ω2

m

c2m
ϕ δϕ

]
·
√
−gm dtd3r = 0 .

(A1)
Integrating by parts the term with ∂µ(δϕ), with fixed end points, and
since the small change δϕ is arbitrary, lead to the wave equation (12).
(Note that the generalized Euler-Lagrange equation in curvilinear coor-
dinates, ∂L∂ϕ = 1√

−gm
∂µ

∂
√
−gm L

∂(∂µϕ) , leads to the same result, as expected.)

Appendix B Combining the symbiosis equation with the mass
continuity equation

The mass continuity equation for the concretion is written in the con-
sidered elastic medium as 1√

−gm
∂µ(

√
−gm ρ0 U

µ) = 0, where gm is the

determinant of the metric tensor and Uµ = cm
dξµ

dsm
is the 4-velocity of

the concretion. In the Newtonian elastic-medium metric, −gm = gm 00

and dsm =
√
gm 00

√
1− V2

c2m
cm dt. This leads to

ρ0

 ∂

∂t

1√
1− V2

c2m

+ vi ∂i
1√

1− V2

c2m

+
1√

1− V2

c2m

∂iv
i


+

1√
1− V2

c2m

(
∂

∂t
ρ0 + vi ∂iρ0

)
= 0 ,

(A2)

in which vi is the i-th component of the vector velocity of the concretion,
v = dξ

dt , expressed in the laboratory reference frame R. It is convenient
to use the vector gradient, ∇, whose i-th component is ∂i, and the
particle derivative d

dt = ∂
∂t + vi∂i. Moreover, in the Newtonian elastic-

medium metric: ∂iv
i = v√

gm 00
· ∇√

gm 00. This result is for instance
obtained by considering a Galilean elastic-medium reference frame RX

(i.e. its metric is Minkoswski-like) which coincides with R at a given
time. (Indeed in RX , with spatio-temporal coordinates (R, T ): dT =
√
gm 00 dt, dXi = dxi, Vi = vi

√
gm 00

and ∂Vi

∂Xi = 0.) Hence, the continuity
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equation becomes

ρ0

√
1− V2/c2m

d
dt

1√
1− V2

c2m

+
v

√
gm 00

·∇√
gm 00


+
∂

∂t
ρ0 + v ·∇ρ0 = 0 .

(A3)

The symbiosis equation (13) becomes in the Newtonian elastic-
medium metric:

1
c2m gm 00

∂ρ0

∂t

∂ϕ

∂t
− ∇ρ0 ·∇ϕ = 0 . (A4)

By substituting the term ∂ρ0
∂t in Eq. (A3), we get

ρ0
∂ϕ
∂t

c2m gm 00

√
1− V2/c2m

d
dt

1√
1− V2

c2m

+
v

√
gm 00

·∇√
gm 00


+

[
1

c2m gm 00

∂ϕ

∂t
v + ∇ϕ

]
·∇ρ0 = 0 .

(A5)

Moreover, v ·∇√
gm 00 = d

dt

√
gm 00 because the elastic-medium metric is

constant in time (i.e. ∂
∂tgm 00 = 0). Then, Eq. (A5) leads to Eq. (22) in

the main text.

Appendix C Energy and linear momentum of the concretion

The energy density and the momentum density are evaluated from
the stress–energy tensor density,

√
−gm T of the system. Tαβ =

2√
−gm

∂
√
−gmL
∂g αβ

m
− 2√

−gm
∂γ

∂
√
−gmL

∂(∂γg
αβ
m )

(cf. e.g. [24] §94). According

to Eq. (11) and in the Newtonian elastic-medium metric (and using
∂
√
−gm

∂g αβ
m

= − 1
2

√
−gm gmαβ , cf. e.g. [24] §86) we get

T0α = T
(

1 +
ρ0

µ0

)
·
[
∂0ϕ∂αϕ − 1

2
gm 0α

(
∂µϕ∂νϕg

µν
m − Ω2

m

c2m
ϕ2

)]
.

(A6)

In general relativity, energy and the momentum of a particle mov-
ing in a Newtonian metric constant in time is given by its covariant
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4-impulsion pα (cf. e.g. [24] §88 and [30] §2). Furthermore, for a particle
of mass m0, c ·pα (where pα = m0 U

α is its contravariant 4-impulsion) is
equal to the spatial integration of its corresponding stress-energy ten-
sor density,

√
−g T 0α (see e.g. [53] §5.8 for a detailed calculation),

i.e..
∫ √

−g T 0α d3r = c pα. (In this context, Tαβ = ρ0 U
0 Uα; veri-

fication of calculations is very easy in a Newtonian metric constant in
time by using analogous expression (17) for ρ0.) In our context (corre-
sponding to a transverse oscillating concretion) the spatial integration
around the concretion does not suffice: we also have to take the av-
erage value over one transverse oscillation (written as 〈· · · 〉). Hence,
in a Newtonian elastic-medium metric and taking into account covari-
ant versus contravariant expressions, the 4-impulsion pα of the concre-
tion (where p0 = Wconc/cm and pi = −pconc) is equal to the time-
averaged value during one transverse oscillation of the spatial integration
around the concretion of 1

cm
√
gm 00

T0α. Hence,
∫ 〈T00〉√

gm 00
d3r = Wconc and∫ 〈T0i〉√

gm 00
d3r = cm pi, where the integration is made around the location

of the concretion. Then, according to expression (A6) for the stress-
tensor, Eq. (17) for ρ0 and the fact that the concretion is in symbiosis
with the wave (i.e. the generalized ϕ-guidance formula (24) is satisfied),
we get

Wconc =
1

2
m0

q
1 − V2

c2m√
gm 00

·

"„
1 +

V2

c2
m

« * „
∂ϕ(ξ, t)

∂t

«2
+

+ gm 00 Ω2
m 〈ϕ2(ξ, t) 〉

#

pconc = m0

q
1 − V2

c2m√
gm 00

* „
∂ϕ(ξ, t)

∂t

«2
+

1

gm 00 c2
m

v , (A7)

in which V = 1√
gm 00

v. (Recall that V denotes the velocity of the con-
cretion measured in terms of the proper time.)

Let us now consider the general case in which the concretion is
not necessarily in its reference state. However the calculation is car-
ried out under the low-velocity and small-potential approximation. By

using Eqs. (6), (25) (33) and condition (32) we get
〈 (

∂ϕ(ξ,t)
∂t

)2
〉

=

(Ωm + ω(ξ, t))2 〈ϕ2(ξ, t) 〉 – because the magnitude F at the location of
the concretion is constant in time. In first-order approximation in v2

c2m
,
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ω
Ωm

(cf. [13] Appendix) and ε, Eqs. (A7) become

Wconc = m0 Ω2
m 〈ϕ2(ξ, t)〉

(
1 +

ω(ξ, t)
Ωm

)
pconc = m0 Ω2

m 〈ϕ2(ξ, t)〉 v

c2m
. (A8)

Taking into account condition (32) and ~exp = m0 c
2
m

Ωm
, these equations

become Eqs. (34) and (35).
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mécanique ondulatoire. Gauthier-Villars Ed., Paris, 1956. English trans-
lation: Non-linear Wave mechanics – A causal interpretation. Elsevier
Ed., Amsterdam, 1960.

[8] L. de Broglie, Interpretation of quantum mechanics by the double solution
theory. Ann. fond. de Broglie 12, no4 (1987). English translation from a
paper originally published in the book Foundations of Quantum Mechan-
ics – Rendiconti della Scuola Internazionale di Fisica “Enrico Fermi”;
Course 49 (1970) ed. by B. d’Espagnat, Academic Press N.Y. 1972.

[9] D. Fargue, Louis de Broglie’s “double solution” a promising but unfinished
theory. Ann. Fond. de Broglie 42(1), 9 (2017).

[10] S. Colin, T. Durt and R. Willox, L. de Broglie’s double solution program:
90 years later. Ann. Fond. de Broglie 42(1), 19 (2017).



Effective gravity and effective quantum equations . . . 231
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