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In this paper, we analyze methods of solving the Maxwell equations.
First, we investigate a method based on direct differentiation of the
Maxwell equations and on reduction of them to the wave equation for
the electric field. Unfortunately, this method cannot obtain the closed
form solution containing no integrals. It is caused by the physical
limitation on our knowledge of the structure of the electron. Analysis
of the solution methods using the introduction of potentials and the
gauge conditions show that the calculated expressions for the EM fields
will be different for each gauge. Thus, we conclude that the Maxwell
system of equations can have several solutions. For a unique choice of
a single solution, we must fix the gauge. That is, it can be concluded
that the gauge condition is a physical condition and different gauge
conditions can be realized in different electrodynamic systems.
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1 Introduction

In this paper, we will analyze methods for solving the Maxwell equations.
Although the equations themselves are the most well-known and most
used equations in physics, perhaps due to obvious reliability of these
equations, some of their aspects remain outside consideration.

For example, the physicists write the Maxwell equations to describe
electrodynamic systems but these equations are not solved to find the
E and H fields. Instead, as O’Rahilly notes (p. 184 of [1]), everyone
uses the retarded potentials introduced by L. Lorenz [2] to obtain the
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solution. Lorenz has shown too that the wave equations, introduced by
B. Riemann [3], and the condition on potentials, now called the gauge
condition, are equivalent to the Maxwell equations. However, no one
has shown the opposite - if the Maxwell equations are equivalent to the
Riemann-Lorenz wave equations? Meanwhile, if the wave equations give
a unique solution, the problem: whether the Maxwell equations have
a unique solution, remains out of the question. Despite the seeming
absurdity of raising such a question because there is no reason to doubt
the validity of the Maxwell equations, it can be stated.

First, the question concerns not the validity of the Maxwell equations
but possible existence of several solutions of this system. Secondly, when
solving this system of equations by means of the potentials, an additional
condition linking these potentials is introduced (the gauge condition). In
fact, this condition is introduced arbitrarily since in the modern interpre-
tation of electrodynamics, the potentials are treated as a mathematical
tool. But if the gauge condition is introduced arbitrarily, and therefore
the potentials are also determined with a certain degree of arbitrariness,
it is reasonable to ask whether any sets of potentials defined by this
condition lead to the same expressions for the fields. The latter is nec-
essary because the fields are solutions of the Maxwell equations. And if
the expressions for the fields are different when choosing different gauge
conditions, we can conclude that the system of the Maxwell equations
has several solutions for the EM fields.

In this paper, we investigate methods for solving the Maxwell equa-
tions and show that indeed the system of these equations has more than
one solution. To do it we consider a canonical electrodynamic system,
namely, the classical (point)charges moving in a vacuum in an arbitrary
way and creating the EM fields. We show that a procedure of solving the
Maxwell equations to find the EM fields of this system without intro-
ducing potentials, has a number of fundamental difficulties that do not
allow obtaining the solution itself. This will be done in the next section.

2 Derivation of the wave equation for the electric
field

The undoubted merit of Maxwell is the physical justification of the basic
equations of electrodynamics. His opponents, the physicists of continen-
tal Europe (Kirchhoff, Weber, Riemann, Lorenz) paid more attention to
mathematical aspects of the equations they introduced. For example,
Riemann had proposed the solution of the wave equation for a scalar
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potential still in 1858 but withdrew his paper because he found errors in
the calculation of the integral in the case of no single but some sources.
Although, as it had been later shown, Riemanns method was correct.

We will pay more attention to the mathematical aspect of the
Maxwell equations too since we are interested in methods of their so-
lution. The physical interpretation of our analysis will be given in the
last section. We will not be interested in the properties and not in the
derivation of the Maxwell equations, but only in methods of solving these
equations.

The original set of equations presented by Maxwell in his work of
1865 [4] and then in his Treatise are equations not only for the elec-
tromagnetic fields, but also for potentials, currents and forces acting on
these currents. Meanwhile, these equations were presented in so called
physical form, that is, rather as relations, but not in the classical form
used in the theory of partial differential equations (PDE) when differ-
ential operators are being in the lhs and the sources in the rhs of the
equations. Moreover, Maxwell did not distinguish between ”the cause
and the effect.” Obviously, it was almost impossible to obtain solutions
of such equations. The followers of Maxwell, so called Maxwellians, i.e.
Heaviside, Fitzgerald, Lodge and Hertz significantly reduced the number
of the initial equations. First, they excluded the forces from the origi-
nal set of Maxwells equations, and second, they excluded the potentials.
After their simplification of Maxwells system of the equations, the po-
tentials are used as auxiliary quantities to determine the EM fields (we
use the Gauss units; ε = µ = 1 for the vacuum)

E = −∇ϕ− 1
c

∂A
∂t

; H = ∇×A . (1)

Despite the number of the basic equation had been essentially reduced
to four ones, the general method of solving this system of PDE has not
been known.

In order to solve the system of the Maxwell equations, it is necessary
to reduce these equations to an equation whose solution is known. The
PDEs with known solutions are the Poisson equation and the wave equa-
tion. But the Poisson equation contains only spatial variables. Mean-
while two of the Maxwell equations contain the partial time derivatives.
Therefore, it is reasonable to reduce the Maxwell equations to the wave
equation since the latter contains the time derivative. It can be done
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either by introducing the potentials (a method dating back to Lorenz),
or by direct differentiation of the initial equations for the EM fields.

Let us consider the derivation of the wave equation for the elec-
tric field without the introduction of the potentials. First we have two
Maxwell equations:

∂H
c∂t

= −∇×E ; (2)

∇×H =
∂E
c∂t

+
4πj
c

. (3)

Taking the curl of Eq. (2) and the time derivative of Eq. (3), we have

∇× ∂H
c∂t

= − [∇× [∇×E]] ; (4)

∇× ∂H
c∂t

=
∂2E
c2∂t2

+
4π∂j
c2∂t

. (5)

Since the lhs’s of the equations are equal, their rhs’s should be equal too.
As a result, we have

− [∇× [∇×E]] =
∂2E
c2∂t2

+
4π∂j
c2∂t

,

or presenting in a form more acceptable to mathematicians when the
source is in the rhs of the equation, and the differential operators are in
its lhs

− [∇× [∇×E]]− ∂2E
c2∂t2

=
4π∂j
c2∂t

. (6)

We have obtained some differential equation for the E field. Usually
this equation is treated as a differential equation that does not contain
the longitudinal component of the radiated E field since the operator
∇× ’cuts’ it from the equation. However, Eq. (6) has no form of the
wave equation yet. To reduce this equation to the wave equation, it is
necessary to use the vector identity

− [∇× [∇×E]] = ∇2E−∇ (∇ ·E) ,

and then remove the last term of that identity. Removal of this term is
possible using one more Maxwell equation

∇ (∇ ·E) = 4π∇ρ . (7)
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Indeed if we make term-by-term summation of Eqs. (6) and (7), we have

− [∇× [∇×E]]− ∂2E
c2∂t2

=
4π∂j
c2∂t

;

+ ∇ (∇ ·E) = 4π∇ρ ;

=⇒ ∇2E− ∂2E
c2∂t2

= 4π

(
∇ρ +

∂j
c2∂t

)
. (8)

Thus, we obtain the wave equation for the electric field in Jefimenko’s
form [5].

However, there are two problems with this derivation. The first one
is related to the procedure of derivation of Eq. (8). To obtain the latter
equation, we make summation of two PDEs’ of different types – Eq. (6) is
of the hyperbolic type and Eq. (7) is of the elliptic type. Strictly speak-
ing, there is no theorem in the theory of partial differential equations
that allows doing such a term by term addition. The second problem is
related to physical limitations. The solution of Eq. (8) is

E(R; t) =
∫

θ(τ)δ
[
c2(t− τ)2 − (R− r)2

]{
∇ρ +

∂j
c2∂τ

}
drdτ . (9)

where θ(t) is the step–function.
At the end of the XIX century, when Lorentz derived the wave equa-

tion for the E field [6], charges and currents were considered as objects
having small but finite dimensions. In modern classical electrodynamics,
it is assumed that the classical charge has a finite radius, but we shall
ascribe physical significance only to those properties which are indepen-
dent of the magnitude of the radius (Ch. 19.1 of [7]). However if the
integral contains not a charge density but a gradient of this density, it is
necessary to know the structure of the charge or the charge distribution
over the radius of the electron. Meanwhile, this distribution is unknown
even on a quantum level. So we can derive the wave equation for the
E field (even ignoring a certain incorrectness of the derivation) but this
equation cannot be solved, since its rhs is unknown.

If we would use the delta function to describe the charge density, it
does not solve problem too because integral (9) will contain three singu-
lar functions. Moreover, one singular function should be differentiated.
According to the theory of distributions, the integral containing some
singular functions can be calculated, but if it is also necessary to cal-
culate the derivative of the distribution (delta-function), this derivative
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must be transferred to a regular function. However, there are no such
functions in the above integral. Therefore, the delta-function also cannot
be used as the charge density in the formula of the solution of the wave
equation for E.

If we consider the solution of the wave equation for the E fields given
in [5] we find that the final result of Jefimenko (Eq. (2-2.12)) is still the
retarded integral, and the algorithm how to compute this integral in the
general case is absent.

Therefore, we have the following result: in the procedure of solution
of the Maxwell equations, the wave equation for the fields cannot be
used. In the other words, solving the Maxwell equations is possible only
by introducing the potentials.

3 Solving the Maxwell equations by introducing the
potentials

The second method to solve the Maxwell equations is to rewrite the
EM fields via the potentials A, ϕ, and then to find the solution of the
equations for A and ϕ .

In the middle of the XIX century Riemann and Lorenz introduced
equations that should explain the propagation of electromagnetic po-
tentials with a finite velocity, the wave equations. They presented the
solutions of these equations too. Maxwell derived equations for compo-
nents of the vector potential in a form of homogeneous wave equation
(Sec. 784 of [4]) but without solution of these equations. Starting from
the form of these equations, Maxwell concluded that light should prop-
agate as waves of a magnetic field. It has been established still in XIX
century that propagation of light is a wave process. Hertz experimen-
tally confirmed that propagation of the EM fields is the wave process
too. So it was quite reasonable that to solve the Maxwell equations one
should reduce them to the wave equations.

As far as the authors know, it was Lorentz who first reduced the
Maxwell equations to the wave equations for the potentials [6]. Mean-
while Lorenz treated only the scalar potential as a physical quantity.
Analysis of the equipotential surfaces of the uniformly moving single
charge allowed to Lorentz to make a conclusion that the size of such a
charge should contract in a direction of motion because the surface of
the charge should be equipotential too.
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But instead of the vector potential, Lorentz introduced a certain
auxiliary quantity without associating any physical properties to it. It
was an important point in the further interpretation of potentials as
abstract values or mathematical tool to solve the Maxwell equations.

Still in 1867 Lorenz showed that the solutions of their wave equations
presented in the form of retarded integrals

ϕ =
1
4π

∫
[ρ]
r
dr ; A =

1
4πc

∫
[j]
r
dr ,

and if the potentials ϕ and A are connected by the relation

1
c

∂ϕ

∂t
+∇ ·A =

1
4πc

∫
[∂ρ/∂t +∇ · j]

r
dr = 0 , (10)

these potentials are solutions of the Maxwell ’s equations too (p. 182
of [1]). So it is obvious that solutions of these equations should be
sought using potentials. To do it, one needs:
1) to express the EM fields via the potentials;
2) to separate the potentials in the obtained equations.
Realizing p. 1 for the Maxwell equations, we have for ∇ ·E = 4πρ

−∇
(
∇ϕ +

1
c

∂A
∂t

)
= 4πρ → −∇2ϕ− 1

c

∂

∂t
(∇ ·A) = 4πρ , (11)

and for the equation

∇×H =
∂E
c∂t

+
4πj
c

→

[∇× [∇×A]] = − ∂2A
c2∂t2

−∇ ∂ϕ

c∂t
+

4πj
c

. (12)

Separation of the potentials in Eqs. (11) and (12) should be made by
eliminating the term ∇ ∂ϕ/∂t from Eq. (12) or the term ∇·∂A/∂t from
Eq. (11). Using the Lorenz condition (the Lorenz gauge, Eq. (10)), we
have for Eq. (11)

−∇2ϕ− 1
c

∂

∂t
(∇ ·A) = 4πρ → −∇2ϕ +

1
c2

∂2ϕ

∂t
= 4πρ .

Eliminating the scalar potential from Eq. (12) by means of the same
relation (10), we obtain a similar wave equation for the vector potential

−∇2A +
1
c2

∂2A
∂t

=
4πj
c

.
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However, the potentials in Eqs. (11) and (12) can be separated in another
way, namely by means of Maxwell?s original condition ∇ ·A = 0 (the
Coulomb gauge). Then the second term in the lhs of Eq. (11) vanishes
and this equation transforms to the Poisson equation

−∇
(
∇ϕ +

1
c

∂A
∂t

)
= 4πρ → −∇2ϕ = 4πρ .

The solution of this equation is known, it is the scalar potential that
propagates instantaneously. Having known the solution for the scalar
potential, we are able to treat the term ∇ (∂ϕ/∂t) in Eq. (12) as a
source along with the term containing the current density. In this case
it is easy to obtain the following wave equation for the vector potential

−∇2A +
1
c2

∂2A
∂t

=
4πj
c
−∇ ∂ϕ

c∂t
.

Thus we have two extreme cases of types of propagating the scalar poten-
tials. If the vector potential obeys the wave equation in both cases, the
scalar potential propagates either at a speed of light (the Lorenz gauge)
or at infinite speed (the Coulomb gauge). Moreover, by accepting the
relationship between potentials

∇ ·A +
c

u2

∂ϕ

∂t
= 0 , (13)

we are able to separate the potentials in the Maxwell equations. So we
can have a separate (wave) equation for the scalar potential and a sep-
arate wave equation for the vector potential, which, however, includes
the scalar potential as a source. Since the parameter u can vary contin-
uously in the range from u = c to u = ∞, we have infinite number of
the equations for the potentials.

The question arises: does the presence of an infinite number of sys-
tems of equations for potentials mean the presence of an infinite number
of solutions for EM fields, or do all these systems of equations give the
same expressions for the EM fields? As we have shown in Sec. 1, the
Maxwell equations can be solved only by introducing potentials so the
question can be stated in another form: do the Maxwell equations have
a unique solution for the EM fields, or they have infinite number of so-
lutions (in accordance to infinite number of possible gauge conditions)?

We note that Eq. (13) does not contain any physical justification
it is purely mathematical constrain, and its introduction became to be
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possible after work of Heaviside when the potentials began to be treated
as mathematical symbols. Meanwhile, both Lorenz and Coulomb gauge
conditions were initially considered as a link between the physical quanti-
ties. The Lorenz gauge can be considered as a consequence of the charge
conservation law [2]. Maxwell used certain physical arguments when in-
troducing the Coulomb gauge. So he did not introduce divA = 0, but
the condition divA = J (here, J is not the current density; we use the
original Maxwells notations, Sec. 99 of [4]) and then explained why the
value J should be equal to zero.

In the next section, we study the question if the potentials found
in different gauges give the same expressions for EM fields. We will
not investigate an infinite number of systems of equations, but consider
only “physically justified” gauges their use should give expressions for
“physically justified” fields. If we finally obtain that the expressions
for the fields are different, we will have the right to conclude that the
Maxwell equations cannot be solved unambiguously.

4 On the inequality of the E fields in different gauges

The simplest way to verify if the potentials evaluated in different gauges
give the same expressions for the EM fields is to find the relationship
between the potentials calculated in the Lorenz and Coulomb gauges.
Assuming the electric fields in these gauges are equal, we rewrite the
difference between these fields in terms of potentials

EL −EC = 0 =⇒

−∇ϕL +∇ϕC −
1
c

∂AL

∂t
+

1
c

∂AC

∂t
= 0 . (14)

Because the vector potential in two gauges obeys the following equations,

∇2AC −
∂2AC

c2∂t2
= −4π

c
J +

1
c
∇∂ϕC

∂t
, (15)

∇2AL −
∂2AL

c2∂t2
= −4π

c
J , (16)

we have for the difference of the vector potential in two gauges

AL −AC = − 1
4πc

∫
G(R− r; t− τ)∇r

∂ϕC(r; τ)
∂τ

drdτ ,
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where G(R− r; t− τ) is the Green function of the wave equation. After
integration over the τ variable, we have

AL −AC = − 1
4πc

∫
1

|R− r|

[
∇r

∂ϕC(r; t)
∂t

]
dr , (17)

where the square brackets [...] are used (the notations of Jefimenko [5])
for the quantities depending on the retarded time tret = t− |R− r|/c.

If we compute the partial time derivative of Eq. (17) and insert the
result into Eq. (14), the latter takes a form

∇ϕC −∇ϕL +
1

4πc2

∂

∂t

∫
1

|R− r|

[
∇r

∂ϕC(r; t)
∂t

]
dr = 0 . (18)

One can show that the operator ∇r that acts on the internal variable in
the Coulomb scalar potential can be moved out of the integral∫

1
|R− r|

[
∇r

∂ϕC(r; t)
∂t

]
dr = ∇R

(∫
1

|R− r|

[
∂ϕC(r; t)

∂t

]
dr

)
.

All details of such a procedure are given in the Appendix. So (18) takes
a form

∇R ϕC(R; t)−∇R ϕL(R; t)+
1

4πc2
∇R

(∫
1

|R− r|

[
∂2ϕC(r; t)

∂t2

]
dr

)
= 0 .

We are able to omit the operator ∇R that acts on all terms in the above
expression, that leads to

ϕL(R, t)− ϕC(R, t) =
1

4πc2

∫
1

|R− r|

[
∂2ϕC(r, t)

∂t2

]
dr . (19)

We emphase that (19) (as well as (18)) is not the equation 1 but some
equality between the expressions for the potentials. This equality – if it
is fulfilled – can be treated as a proof of equivalence of the electric field
computed in different gauges. We note that a similar criterion is used by
Jackson [8]. Therefore, our task is to verify the fulfillment of (19). To do
it, we consider two equations for the scalar potential in the Lorenz and
Coulomb gauges created by a single classical charge being in arbitrary
motion

∇2ϕL −
1
c2

∂2ϕL

∂t2
= −4πρ ; (20)

∇2ϕC = −4πρ . (21)
1Because they cannot be used to find the difference of the potentials.
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where ρ is its charge density. Now we subtract Eq. (21) from Eq. (20),
which gives

∇2ϕL −∇2ϕC −
1
c2

∂2ϕL

∂t2
= 0 . (22)

One can state a question if the functions ρ are identical in both Eqs. (20)
and (21). But because we consider a point classical charge, ρ is described
by the delta-function in both cases as ρ(r; t) = qδ (r− r0(t)), where r0(t)
is the coordinate of the “center” of the charge determined by its law of
motion.

The following steps can be considered as formal (but correct!) oper-
ations. Let us move the term with the second time derivative in the lhs
of Eq. (22) to its rhs and act on all terms by the operator

∇2ϕL −∇2ϕC =
1
c2

∂2ϕL

∂t2
. (23)

Application of the integral identity∫
∇2f(r, t)
|R− r|

dr = 4πf(R; t)

to Eq. (23) gives

ϕL(R, t)− ϕC(R, t) =
1

4πc2

∫
1

|R− r|
∂2ϕL(r, t)

∂t2
dr . (24)

We note that we repeat the procedure of evaluating the difference be-
tween the potentials given in [9], although the physical meaning of our
procedure is different to the interpretation of Engelhardt.

The key point of our proof is the comparison of Eqs. (19) and (24).
Because the lhss of the equations are equal, we conclude that their rhs s
must be equal too, or∫

1
|R− r|

[
∂2ϕC(r, t)

∂t2

]
dr =

∫
1

|R− r|
∂2ϕL(r, t)

∂t2
dr . (25)

where we omit the factor 1/4πc2 from both sides of the above equation.
This expression can be simplified by removing the second time derivative
out of the integral (it is valid for the retarded quantities [5]), and then
omit the time derivatives from both sides of the equation too. It gives∫

ϕL(r; t)
|R− r|

dr =
∫

[ϕC(r; t)]
|R− r|

dr . (26)
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So, we have obtained the integral relation between the scalar potential
calculated in the Coulomb gauge, which depends, however, on the re-
tarded time, and the scalar potential in the Lorenz gauge. Although in
most formulas this scalar potential is given as dependent on the retarded
coordinates, in Eq. (26) it should be expressed in the current coordinates.

If the relation (26) is fulfilled, then the difference between the expres-
sions for the electric field, calculated in different gauges, will be equal to
zero. It should mean too that the expressions for the E field, calculated
in any gauge, must be identical.

Eq. (26) allows the further simplification. Considering that the scalar
potential in both cases is created by a point charge and writing the
expressions for the scalar potential as a solution of the corresponding
equation with the source the δ–function, we obtain∫

1
|R− r|

(∫
δ {r′ − r0(t− |r− r′|/c)}

|r− r′|
dr′

)
dr =

=
∫

1
|R− r|

(∫
δ {r′ − r0(t− |R− r|/c)}

|r− r′|
dr′

)
dr . (27)

Because the δ-functions in Eq. (27) have different dependences on the
variables, it cannot be satisfied in the general case. This result proves
that the expressions for the fields, calculated in different gauges, should
be different.

5 Conclusions

In this paper, we analyze the methods of solving the Maxwell equations.
In fact, only three such complete solutions exist, namely, the method of
direct solving equations solely for the EM fields, i.e. without introducing
potentials, and two methods for solving equations by introducing poten-
tials. The method of direct solving has been developed by Jefimenko
in a number of his articles. However, Jefimenko did not give the closed
form expressions for the EM fields. His final expression is written in a
form of the retarded integral and therefore is not explicitly calculated.
This is explained by the fact that the sources that Jefimenko considered
are extended charged bodies. Meanwhile, for the electrodynamic sys-
tem, mentioned in Sec. 2, Jefimenkos expression cannot be calculated,
since it contains singular functions, and the integral contains not only a
singular function, but its derivative.
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The most used method to solve the Maxwell equations is based
on their reduction to two wave equations for potentials written in the
Lorentz gauge. Another commonly used method to solve these equations
is based on separation of the equations for the potentials in the Coulomb
gauge. Meanwhile it is commonly accepted opinion that the expressions
for EM fields calculated in any gauge should be identical.

However, our analysis shows that this is not the case. Both Lorenz
and Maxwell introduced the conditions, subsequently called gauge con-
ditions, as physical link between the potentials. Only after works of
Maxwellians (Heaviside, Lodge, Fitzgerald, Hertz), both the potentials
and the conditions on the potentials began to be interpreted as purely
mathematical subjects. This assumption, however, requires proof of the
equivalence of the EM fields under different choice of the gauge con-
dition. This proof has not been made that time. In the next years,
several papers containing proof of the equivalence of the EM fields in
the Coulomb and Lorentz gauges appear. But the main lack of all these
works is in the absence of an example of calculating the equality of such
fields in the closed form.

Indeed, the expression for the E field in the Coulomb gauge contains
a retarded integral of a non-local source. Such an expression cannot be
calculated in general form in elementary functions or reduced to special
functions. The only calculated example is the EM fields of a single
charge, when the latter moves uniformly in a straight line from x = −∞
to x = +∞. As shown by Hnizdo [10], in this case the expressions for
the fields are identical in both gauges. This is quite understandable
in our consideration. If in Eq. (26) the time variable can be treated
as a parameter and coordinate transformations allow eliminating this
parameter from the further consideration, the second derivative of the
potentials will give zero, which provide equality of the previous relation
(25). So the fields EC and EL are equal in this case.

However, if a time variable cannot be treated as a parameter that
is true for any non-stationary process, then the fields will not be equal.
This can be confirmed by calculations in a system in which the unit
charge is initially at rest and at time t = 0 begins to move at a constant
speed v along the x–axis. In this case, the difference between the Ex

fields can be calculated in the closed form. We note that it is the only
possible case when the calculations of the difference between the E fields
can be led to the expressions containing no uncomputable integrals.

Meanwhile, our proof shows that the expressions for the fields calcu-
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lated in different gauges should be different. As a result, we can make
the following conclusions:

1. For a system of point classical charges, a direct solution of the
Maxwell equations cannot be obtained;

2. Solving the Maxwell equations is possible only via introduction of
the potentials;

3. Expressions for EM fields should depend on the choice of a gauge.
Finally we suggest that our results can open certain perspective in

the study of solutions of the Maxwell equations. To our point of view,
the gauge conditions are physical conditions and therefore they can be
determined by the specific type of initial and boundary conditions gen-
erated by corresponding distribution of the sources. In particular, of
great interest is the study of the properties of the component of the field
E created by the scalar potential in the Coulomb gauge. This scalar
potential propagates instantaneously and the E component created by
this potential must propagate instantaneously too. It is not fully studied
how does the latter impact on various charged objects.

6 Appendix

Let us consider transformation of the rhs of Eq. (18). Here, we use the
notations of Jefimenko that the expression in the squared brackets [f ] is
a function of the retarded time. Then the notations [∇r f ] means that
the operator ∇r acts only on the coordinates and after calculation of the
action of this operator, the time dependence associates with the retarded
time. Then

∇r[f ] = [∇r f ] +
[
∂f

∂t

]
· ∇r

(
t− |R− r|

c

)
= [∇r f ] +

[
∂f

∂t

]
· R− r
c|R− r|

Let us calculate the partial derivative of the integrand with respect to
the inner variable r.∫

∇r

(
1

|R− r|

[
∂ϕC(r; t)

∂t

])
dr =

∫ (
∇r

1
|R− r|

) [
∂ϕC(r; t)

∂t

]
dr+

+
∫

1
|R− r|

[
∇r

∂ϕC(r; t)
∂t

]
dr+

∫
1

|R− r|
∂

∂t

[
∂ϕC(r; t)

∂t

]
· R− r
c|R− r|

dr
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But the volume integral∫
∇r

(
1

|R− r|

[
∂ϕC(r; t)

∂t

])
dr

is transformed into the surface integral where the surface of integration
is expanding to infinity so the value of this integral tends to zero.

Also one can find that∫ (
∇r

1
|R− r|

) [
∂ϕC(r; t)

∂t

]
dr+

∫
1

|R− r|
∂

∂t

[
∂ϕC(r; t)

∂t

]
· R− r
c|R− r|

dr =

= −∇R

(
1

|R− r|

[
∂ϕC(r; t)

∂t

])
dr

So we finally have∫
1

|R− r|

[
∇r

∂ϕC(r; t)
∂t

]
dr = ∇R

(∫
1

|R− r|

[
∂ϕC(r; t)

∂t

]
dr

)
which means that the operator ∇r can be removed from the integral
with the change ∇r → ∇R
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