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ABSTRACT. Lucien Hardy has laid out a program for deducing quantum phy-
sics from reasonable axioms. One step of the process is the inductive construc-
tion of level N quantum physics (QP) from level 2 QP (the Bloch sphere). In
this note, we point out a detail to be filled in in Hardy’s program, and supply
the proof. By this stage of Hardy’s derivation, we know that level 2 state space
is QP, and that level N state space is identified as a subset of the Hermitian NxN
matrices. The key technical result of this article is that an embedding of level 3
state space into the Hermitians is rather rigid – to convert it to standard QP re-
quires only a conjugation and/or scaling of select entries of the 3x3 Hermitians.
The corresponding result, for level N at least 4, follows by induction.

P.A.C.S.: 03.65.Ta ;02.10.Yn

1 Introduction

Lucien Hardy [1] has laid out a program for deducing quantum physics
from reasonable axioms. One step of the process is the inductive construction
of level N quantum physics (QP) from level 2 QP (the Bloch sphere). In this
note, we point out a detail to be filled in in Hardy’s program, and supply the
proof. By this stage of Hardy’s derivation, we know that level 2 state space is
QP, and that level N state space is identified as a subset of the Hermitian NxN
matrices. The key technical result of this article is that an embedding of level
3 state space into the Hermitians is rather rigid – to convert it to standard QP
requires only a conjugation and/or scaling of select entries of the 3x3 Hermi-
tians. The corresponding result, for level N at least 4, follows by induction. We
denote by PU(N), the projective unitary group, the isometry group for level N
QP.
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The detail in question occurs in §8.7 of [1], after Equation 90. Taking the
case N = 3 for concreteness, the discussion begins with the three basis states

S 1 = |1〉 〈1| , S 2 = |2〉 〈2| , S 3 = |3〉 〈3|

The point of the discussion is to conclude that any rank 1 state may be reached
via a succession of group actions on the above states, ending with Equation 91.
The above states are next rotated to a new basis, using a transformation, U12,
in the 12 subspace :

S ′1 = |1′〉 〈1′| = U12 |1〉 〈1|U
†

12 S ′2 = |2′〉 〈2′| = U12 |2〉 〈2|U
†

12 S 3 = |3〉 〈3|

The next step is to apply a similar rotation, U1′3, in the 1′3 subspace. However,
the 1′3 subspace is not known to consist of rank 1 matrices, and the argument
breaks down at this point.

The current article takes a different approach to proving that level N state
space may be embedded into the rank 1 Hermitian matrices. Consider the two
matrices

A = 1
3

 1 1 1
1 1 1
1 1 1

 B = 1
3

 1 1 i
1 1 1
−i 1 1


Both A and B restrict to (unnormalized) states in the three fundamental level 2
subsystems, but matrix B is not rank 1. The key technical result of this paper,
Proposition 1 [p58], is that any level 3 embedding will almost consist of rank 1
matrices : A change of fiducial basis, consisting of scaling and conjugating the
off-diagonal entries of the Hermitian matrices, as in the above example, is all
that is needed to convert a general level 3 embedding into a level 3 embedding
consisting of rank 1 matrices. The scaling amounts to rotating the fiducial basis
in state space, while conjugation amounts to changing their orientation. This
is the full orthogonal group on the 2-dimensional fiducial spaces defined by
Hardy [1, §8.7].

In §2 we analyze Hermitian matrices, and give a convenient characteriza-
tion of being rank 1. In §3, we review Hardy’s approach to embedding level
N state space into the Hermitian matrices, and refine this for the case N = 3,
to embed state space into the rank 1 Hermitian matrices. Section 4 extends the
N = 3 results to show how to embed state space, for arbitrary N, onto standard
QP.

Throughout, S 1, . . . , S N denote a state basis for a level N state space, S, as
defined by Hardy [1]. A standard level M subspace (relative to the {S i}) has
basis S i1 , . . . , S iM for some M of the {S i}. If A is a subset of a vector space, V ,
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we denote by, < A >, the linear span of A in V . For a complex matrix, M, its
conjugate transpose is denoted, M∗.

2 Hermitian Matrices

A matrix is decomposable if it can be written as the product of a row vector
with a column vector i.e. if the matrix has rank at most 1. Every non-negative
decomposable Hermitian N × N matrix, A, may be written as

A = c c∗, c ∈ CN , a column vector

A principal submatrix of an N × N matrix, A, is obtained by deleting a
set of rows, and the corresponding set of columns, from A. The ith principal
submatrix is the (N − 1) × (N − 1) submatrix of A obtained by deleting the ith

row and column from A.

Definition 1. A matrix is principally 2-decomposable if its principal 2 × 2
submatrices are decomposable.

Hardy [1] shows that, when embedding state space into the Hermitian ma-
trices, the state matrices have the following properties :

Principally 2-decomposable This is because a norm 1 trace 1 Hermitian
2 × 2 matrix is necessarily singular.

Non-negative diagonal The vanishing of the principal 2 × 2 determinants
shows that all the diagonal elements are of the same sign (or 0). The
trace being 1 means the diagonal elements must all be non-negative.

We call such matrices, positive principally 2-decomposable, and it is conve-
nient to characterize them :

Lemma 1. A Hermitian matrix, A, is positive principally 2-decomposable, if
and only if it can be written in the following form :

Aii = xi
2, xi ≥ 0

Ai j = xix jωi j, ωi j ∈ C,
∣∣∣ωi j

∣∣∣ = 1

ωi j = ω ji, ωii = 1

(1)

The xi are uniquely determined. If xix j > 0, then wi j is uniquely determined.

Démonstration. The xi are uniquely determined as the non-negative square
roots of the diagonal entries of A. The principal 2 × 2 submatrix for i < j
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is  xi
2 Ai j

Ai j x j
2


The determinant is 0, so

∣∣∣Ai j

∣∣∣2 = (xix j)2. The lemma follows from this. �

Using the notation of Equation 1, let X be the diagonal matrix with elements
x1, x2, . . . , xN , and define the matrix W = {ωi j}. We evidently have,

A = XWX

We call W, the modulus matrix for A.
As we would like to embed the states into the rank 1 matrices, we use the

following characterization :

Lemma 2. Using Equation 1 to describe an N × N positive principally 2-
decomposable matrix, A, let αi = ωi,i+1, i < N, be the elements of the super-
diagonal of the modulus matrix, W. Then A is decomposable if and only if the
ωi j may be chosen so that

ωi j = αiαi+1 . . . α j−1, i ≤ j (2)

Démonstration. Suppose that A = c c∗ is decomposable. So, xi = |ci|, we can
set ci = xiηi, and ωi j = ηiη j. The decomposition Equation 2 follows.

Conversely, suppose that decomposition Equation 2 holds for A. We will
show that the modulus matrix for A has rank 1, by showing that the ( j + 1)th

column of W is α j times the jth column of W. It is clear that ωi jα j = ωi, j+1 for
i ≤ j. For i > j, we have

ωi j = ω ji = α j α j+1 . . . αi−1

and we see that multiplying by α j again yields ωi, j+1.
�

For 3 × 3 principally 2-decomposable matrices, we use the following nota-
tion for the modulus matrix :

W =

 1 γ̄ β
γ 1 ᾱ
β̄ α 1

 (3)

and we note that



Reasonable Induction of Quantum Physics 57

Remark 1. W is rank 1 if and only if β = α γ i.e. αβγ = 1.

We end this section with a well-known result :

Lemma 3. Let H be the N×N Hermitian matrices with the usual inner product
〈A, B〉 = Tr(A∗B). Suppose that T belongs to a connected group of orthogonal
operators on H that preserve the decomposable Hermitian matrices. Then T ∈
PU(N).

Démonstration. According to [2] Theorem 6 Corollary 1, in our situation there
are two possibilities for T :

1. T (A) = εS ∗AS for some n × n matrix S , ε = ±1, or

2. T (A) = εS ∗AtS for some n × n matrix S , ε = ±1.

The identity of the group is of type #1, with S = I and ε = 1, so by continuity,
all the group elements satisfy T (A) = S ∗AS for some matrix S . Orthogonality
implies

〈A, B〉 = 〈T (A),T (B)〉 = Tr(S ∗AS S ∗BS ) = Tr(S S ∗AS S ∗B)

so that A = S S ∗AS S ∗ . Taking A = I, we see that S S ∗ is a positive square root
of I, so that S S ∗ = I, i.e S ∈ U(n) and T ∈ PU(n). �

3 Basic Embeddings

Hardy [1] Appendix 3.4 decomposes N-level state space as

<S>=
⊕

i=1...N

<S i> ⊕
⊕

i< j

V2D
i j

where the S i are a state basis, and the V2D
i j are the fiducial subspaces. The

induced embedding to Hermitian matrices, HN , is

Definition 2 (Basic Embedding).
— S i 7→ Ei, where Ei is the 0 matrix except for a 1 at the ith slot of the

diagonal.
— V2D

i j is mapped to the corresponding off-diagonal entries of the 2 × 2
block containing Ei and E j. Explicitly, given an orthonormal basis,
ui j, u⊥i j, for V2D

i j ,

— ui j is mapped to 1
√

2

(
0 1
1 0

)
in the i j sub-block.
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— u⊥i j is mapped to 1
√

2

(
0 i
−i 0

)
in the i j sub-block.

As it stands, this is an isometric linear embedding of state space into the
Hermitian matrices. The embedding needs to be further specialized, in order
for the image of the (pure) states to be standard QP i.e. to consist of the rank 1
matrices. We note that a level N basic embedding restricts to a basic embedding
of any standard level M subspace.

Definition 3 (Hermitian Scaling). Let κ ∈ C be a unit length complex number.
The linear isometry Hermitian scaling by κ

Lκi j : HN −→ HN

multiplies the i j entry of a Hermitian matrix by κ and the ji entry by κ.

Definition 4 (Hermitian Conjugation). The linear isometry Hermitian conju-
gation

Ci j : HN −→ HN

conjugates both the i j and ji entries of a Hermitian matrix.

The two operators, Hermitian scaling and conjugation, also preserve the
positive principally 2-decomposable matrices, Definition 1 [p55].

Once we have a basic embedding of state space into the Hermitians, Her-
mitian conjugation and Hermitian scaling are equivalent to changing the choice
of basis in the relevant V2D

i j – Hermitian scaling rotates ui j and u⊥i j, and Hermi-
tian conjugation changes the sign of u⊥i j. At times, it will be convenient to work
with explicit bases of state space, and at other times more convenient to work
with Hermitian matrices via a given basic embedding.

The Hermitian scaling, Lκ13 transforms {αβγ = 1} to {αβγ = κ}. Similarly,
the Hermitian conjugation, C13, transforms {αβγ = 1} to {αβγ = 1}. These
two examples make it clear that not any level 3 embedding, as constructed in
Definition 2, will have its image contained in {αβγ = 1}. It turns out, that
we only need to account for Hermitian scaling and Hermitian conjugation, in
choosing bases for the V2D

i j , in order to ensure that a basic embedding of N-level
state space maps into the rank 1 matrices.

The following proposition is the main technical result of this paper.

Proposition 1. The image of a level 3 basic embedding, as constructed in
Definition 2, satisfies one of the constraints listed in Table 1.
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Table 1. Level 3 embedding constraints

αβγ = τ αβγ = τ αβγ = τ αβγ = τ

α, β, γ are as in Equation 3 [p56]. For a level 3 embedding, one of these four constraints
is valid for every matrix in the image of the embedding. The modulus, τ, is a constant

unit length complex number.

The lengthy proof of Proposition 1 is written out in Appendix A. Table 1 is
distilled from Table 2 [p66]. This result captures the rigidity of a level 3 basic
embedding.

We point out that state space cannot be contained in a vector subspace of
the Hermitians, since state space linearly spans the Hermitians (K = N2, as
expressed by Hardy [1]§8.2). As well, state space is the homogeneous space
of a connected Lie group, so state space is a connected real analytic manifold.
For example

Remark 2. A level 3 embedding satisfies exactly one constraint of Table 1.

The reason is, that if two constraints were satisfied, one of α, β, γ would be
constant, imposing a linear constraint onto state space.

Definition 5 (Modulus 1). A basic embedding of level N state space is modulus
1 if, on each standard level 3 state subspace, the modulus, τ, from Table 1 is 1.

Proposition 2. A level N state space has a modulus 1 embedding.

Démonstration. Choose a generic matrix, of a basic embedding, where each
coefficient is non-zero. Scale all the off-diagonal entries to be positive. For any
3 × 3 principal submatrix, we have α = β = γ = 1, so the modulus is 1 for the
embedding of this level 3 subspace, regardless of where the conjugation occurs
in the constraint from Table 1. �

Lemma 4. A modulus 1 embedding of level 3 state space into the Hermitians,
may be altered to embed into the rank 1 matrices, in both the following ways :

1. Conjugate none, one, or both elements in the top row (and so, also, in
the leftmost column).

2. Conjugate none, one or both elements in the rightmost column (and so,
also, in the bottom row).
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Démonstration. The embedding satisfies one of the constraints from Table 1,
with τ = 1. Either of the two proposed schemes can be used to ensure a resul-
ting αβγ = 1. By Lemma 1 [p57], the image is then contained in the rank 1
matrices. �

4 Induction

Let SN denote level N state space. This section contains a proof of

Proposition 3. For all N ≥ 2,

1. Any basic embedding of SN may be altered by conjugation and scaling
to be contained in the rank 1 Hermitian matrices.

2. Any basic embedding of SN , contained in the rank 1 matrices, is onto
standard QP.

The proof is by induction on N.

4.1 N=2

Hardy [1] shows that any level 2 basic embedding is necessarily contained
in the rank 1 Hermitian matrices, and is onto standard QP.

4.2 N=3

Proposition 2 and Lemma 4 confirm the first claim.

As for the second claim, we note that the 3x3 rank 1 Hermitian matrices
are the complex projective space, P2

C. Let S2A and S2B be two principal level
2 subspaces of S = S3. By the induction hypotheses, each of these is a linear
P1
C ⊂ P2

C. Since these two subspaces intersect transversely in P2
C, we must have

that dimS = dim P2
C i.e. S is an open subset of P2

C.

Viewing G as a subgroup of the orthogonal group for the positive definite
probability transition pairing, the closure, G, of G is compact and acts transiti-
vely on S, so that S is also a manifold, and compact, so must be equal to all of
P2
C. Since G leavesS invariant, G must leave invariant all the rank 1 Hermitian

matrices (S being dense in P2
C). By Lemma 3, G ⊂ PU(3). But, according to

our assumptions, Hardy [1]§A3.3, G contains all the PU(2) for the principal
subspaces, so that G = PU(3). In particular, G is compact and so is S, so that
S = P2

C.
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4.3 N ≥ 4

Lemma 5. Let A be a generic matrix in the image of a modulus 1 embedding
of level N state space. Assume that the 1st and N th principle submatrices are
both decomposable. Then, either A is decomposable as is, or A becomes de-
composable after conjugating A1N (and AN1). Note that A1N and AN1 do not
belong to either of the two principal submatrices.

Démonstration. We illustrate the proof with the modulus matrix for A :

W =



1 α1 . . . d f = A1N

1 . . . c e
. . .

...
...

1 αN−1
1


(4)

Because of the hypotheses, and recalling Lemma 2 [p56], we need only show
that

f̃ = α1α2 . . . αN−1 (5)

where f̃ denotes either f or f . In the former case, there is nothing to do, and in
the latter case, conjugate f . So, assume, then, that Equation 5 does not hold.

Since N ≥ 4, we have the two distinct standard level 3 subspaces corres-
ponding to the following two principal 3 × 3 submatrices of W :

W1 =

 1 d f
1 αN−1

1

 W2 =

 1 α1 f
1 e

1


where, by Lemma 2 [p56] and Equation 4

d = α1α2 . . . αN−2
e = α2α3 . . . αN−1

Proposition 1 implies that W1 and W2 impose constraints on f , and, by assump-
tion, f does not satisfy Equation 5. Consequently the constraints on f are(

f = d αN−1 ∨ f = d αN−1

)
∧ ( f = e α1 ∨ f = e α1)

We consider the case f = dαN−1 = e α1 :

α1 αN−1 = αN−1 α1

αN−1
2 = α1

2



62 N. Goldstein

However, the α’s can not be constrained to a lower dimensional space, for
the following reason : The two principal subspaces of the lemma imply that
state space contains two standard PN−2

C
’s that intersect transversely in standard

PN−1
C

, so state space must have (real) dimension at least 2(N−1). In our current
situation, the following 2(N − 1) variables map onto state space, so they must
be analytically independent :

— The magnitudes S N−1 = {x ∈ RN : x1
2 + x2

2 . . . + xN
2 = 1}

— S 1N−1
= The superdiagonal elements of the modulus matrix : α1, . . . , αN−1

We next consider the case f = d αN−1 = e α1 :

α2 . . . αN−2 = α2 . . . αN−2

1 = α2
2 . . . αN−2

2

which, again, puts a constraint on the α’s, as N ≥ 4, and so is inadmissible.

The remaining two cases are the same as the first two, so our assumption
was incorrect, and f must, indeed, satisfy Equation 5.

�

With the above lemma, we proceed to prove the first claim of the proposi-
tion :

By Proposition 2, we may assume a modulus 1 embedding. By the inductive
assumption, we can conjugate the elements of the 1st principal submatrix (the
lower right (N −1)× (N −1) submatrix) to lie in the rank 1 Hermitian matrices.

Now, consider the upper left 3 × 3 principal submatrix, M3, of the full
embedding. We can conjugate within its top row (and left column) to convert
M3 into a level 3 rank 1 embedding, according to Lemma 4 [p59]. This leaves
unchanged the 1st principal submatrix.

We, next, step along the top row of the embedding, addressing the upper
left principal submatrices Mk ∈ {M4,M5, . . . ,MN}, invoking Lemma 5 [p61]
to convert Mk into a rank 1 embedding : Mk−1 is decomposable, and so is the
upper left (k− 1)× (k− 1) submatrix of the 1st principal submatrix. This leaves
unchanged the 1st principal submatrix. Since MN is the full matrix, this com-
pletes the proof of the first claim of the proposition.

The proof of the second claim of the proposition is mutatis mutandis the
same as the case, N = 3.
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5 Conclusions

Hardy[1] gives a novel approach to the foundations of quantum physics.
In the current article, we have supplied the mathematics that fills in a step in
Hardy’s program – the induction of level N QP from level 2 QP.

Below, we discuss some of the results obtained in the current article.

QP state space is closed We have shown, Proposition 3 [p60], that state
space is a topologically closed subset of Euclidean space. From the measu-
rement perspective, this has the following meaning :

A sequence of states, (S k), is weakly convergent if for every measurement,
f , the real sequence ( f (S k)) is convergent. The sequences of states that we
consider are not restricted to being ensembles, as all the states in an ensemble
are identical. State space is closed when every weakly convergent sequence of
states, converges to some state i.e.

∃S ∈ S f (S k) 7−→ f (S ) for every measurement, f

For a non-QP scenario, when state space is embedded into Euclidean space, as
we have done, every weakly convergent sequence of states does converge to a
point of S, and it is tempting to just replace S with S and G with G. But what
physical meaning would there be to the points of S \ S? Would the axioms
extend to S? We are spared these question in the QP scenario.

Level 3 embeddings The rigidity of level 3 embeddings, Proposition 1 [p58],
is derived from the fundamental constraint Equation 12 [p67], which relates
the three moduli of the Hermitian matrix state representation, to the matrix
elements of the group acting on this state space. Some relevant observations
are :

— The 4-dimensional level 3 state space is contained in the 5-dimensional
variety of trace 1 principally 2-decomposable matrices, X5D, as per the
discussion after Definition 1 [p55]. A priori, the level 3 state space
would simply be contained in the 9-dimensional Hermitian matrices,
or the 8-dimensional affine subspace of trace 1, or the 7-dimensional
sphere within this affine space.

— The isotropy group of a state has the rich structure of PU(2). Moreover,
the isotropy group representation on the 9-dimensional vector space of
Hermitian matrices decomposes, with the various pieces being inter-
related due to the constraint of the states lying in X5D.
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— The axioms further mandate a tight connection between level 2 state
space and level 3 state space : The subspace axiom describes how a
level 3 state may be restricted to a level 2 subspace, and every isometry
of a level 2 subspace is the restriction of a level 3 isometry, Hardy [1].

The above highlights that the level 2 inductive assumption both constrains the
level 3 state space, while also bringing a rich structure of its own. This com-
bination is conducive to reducing degrees of freedom, as in the fundamental
constraint.
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A Level 3 Constraints

This section contains the proof of Proposition 1 [p58]. We have a basic
embedding of level 3 state space, S, into the Hermitian matrices, according to
Definition 2 [p57]. The goal is to construct Table 2 for this embedding.

Definition 6 (Trace 1 Principally 2-Decomposable). Referring to Equation 3
[p56], let

X5D =


 x2 xyγ̄ xzβ

xyγ y2 yzᾱ
xzβ̄ yzα z2

 : x2 + y2 + z2 = 1, |α| = |β| = |γ| = 1


be the 5 (real) dimensional variety of principally 2-decomposable trace 1 Her-
mitian 3 × 3 matrices.

X5D is roughly parameterized by S 2 × S 1 × S 1 × S 1, and, according to
Remark 1 [p57], contains the rank 1 matrices

P2
C = {A ∈ X5D : αβγ = 1}

The level 3 embedding has its image contained in X5D, but not necessarily in
the P2

C subvariety.
We follow Hardy, and decompose the Hermitian matrices, H, as

H = V4D
12 ⊕ <S 3> ⊕V2D

23 ⊕ V2D
13

where
— V4D

12 is the 4-dimensional vector space of the level 2 state subsystem
S12.

— V2D
23 and V2D

13 are the two fiducial subspaces for the other two funda-
mental level 2 subsystems.

Let G be the automorphism group of the level 3 state space, and G12 the
connected component of the identity of the subgroup leaving invariant S12 (or,
equivalently, fixing S 3). Let g ∈ G12. The action of g on H can be described as

— g0 = g|V4D
12

acts as an element of PU(2). According to the discussion in
[1] §A3.3, the restriction map, G12 −→ PU(2), is onto.

— g|<S 3> is the identity.
— g1 = g|W ∈ Aut (W), since g leaves W = V2D

23 ⊕ V2D
13 invariant.

The derivation of the table proceeds through several steps, and exploits
the above state space decomposition and group action, to derive constraints on
the group elements and states. In the end, the group dependence is explicitly
eliminated, except for the parameter, σ, as shown in Table 2.
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Table 2. Level 3 embedding constraints : Derivation

ε β′ = β β′ = β

1 γ = σβ α γ = σβ α

-1 γ = σβ α γ = σβ α

α, β, γ are as in Definition 6. For a level 3 embedding, one of these four constraints is
valid for every matrix in the image of the embedding. The parameter, σ, is a constant
unit length complex number. The parameters ε, β′ and σ arise during the derivation of

the table.

A.1 Coordinates

Keeping in mind Definition 6 for the format of a member of X5D, the four
real components of xzβ and yzα are the components of an orthonormal basis
for W (actually, uniformly scaled by

√
2). Correspondingly, denote the 4 × 4

matrix of g1 as the block matrix

g1 =

(
A B
C D

)
where A, B,C,D are 2 × 2 real matrices.

At this point we change notation, slightly, and view α and β as the 2-vectors

a =

(
Reα
Imα

)
b =

(
Re β
Im β

)
With this in mind, the action of g1 is

g1

(
xb
ya

)
=

(
xAb + yBa
xCb + yDa

)
=

(
x′b′

y′a′

)
(6)

We factor out the z’s, since z is fixed by these transformations. The second
equality expresses that the group action takes states to states.

As for g0, it is a member of PU(2) for S12 :

g0 =
(

u v
)

=

(
cos t ω sin t
η sin t −ηω cos t

)
where u, v are an orthonormal pair of vectors in C2, defined in terms of t, ω, η,
where t is real, and ω, η are unit length complex numbers. The action of g0 is

g0

(
x
γy

)
= xu + γyv =

(
x′

γ′y′

)
κ (7)
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where κ is a unit length complex number.

A.2 Fundamental Constraint

The first components of Equations 6 and 7 have the same magnitude (x′) :

|xAb + yBa|2 =
∣∣∣xu1 + γyv1

∣∣∣2
Collect in monomials of x and y :

0 = x2
(
|Ab|2 −

∣∣∣u1
∣∣∣2) + y2

(
|Ba|2 −

∣∣∣v1
∣∣∣2) + 2xy

(
btAtBa − Re(u1γv1

)
(8)

The states where y = 0 comprise the S13 subspace, where xz is generically
non-zero, so the first coefficient in Equation 8 vanishes on S13 :

|Ab|2 =
∣∣∣u1

∣∣∣2 = cos2 t

But, b is arbitrary on S13, so

A = cos t E , for some E ∈ O(2) (9)

Similarly, working with the second coefficient of Equation 8, we have

B = sin t F , for some F ∈ O(2) (10)

and the first two coefficients of Equation 8 vanish identically on the entire level
3 state space. All that remains of Equation 8 is the third term. But, xyz is
generically non-zero, so that the third term vanishes, too :

btAtB a = Re(u1γv1) = cos t sin t Re(ωγ) (11)

Substitute Equations 9 and 10 into Equation 11 :

Re(ωγ) = btEtF a (12)

A.3 The α, β, γ constraints

Referring to Equation 12, let

L = EtF

so that
Re(ωγ) = btL a
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Choose a transformation g ∈ G12 with ω = 1 and another transformation with
ω = i, to get the two equations

Re γ = btL1a (13a)
Im γ = −btLia (13b)

where L1, Li ∈ O(2) are constant. From this we calculate

Re (ωγ) = ωxbtL1a + ωybtLia
= bt(ωxL1 + ωyLi)a

L = Lω = ωxL1 + ωyLi

Since L ∈ O(2), we must have I = LtL, so that

0 = L1
tLi + Li

tL1

i.e. L1
tLi is a skew symmetric element of O(2), so that

L1
tLi = εJ, ε = ±1

J =

(
0 −1
1 0

)
∈ SO(2)

Rewrite Eq 13b as
Im γ = −ε btL1J a (14)

For simplicity, we set ε = 1, but keep in mind, whatever solution we get for
γ, that γ is also a solution, corresponding to ε = −1.

With regards to L1, there are two cases to consider :

case L1 ∈ SO(2) Set L1 = Rθ, rotation by some θ, and define b′ = b.

case L1 < SO(2) Set L1 = KRθ where

K =

(
1 0
0 −1

)
, and define b′ = Kb = b

Equations 13a and 14, can now be rewritten as

Re γ = b′tRθ a
Im γ = −b′tRθJ a

and these two equations can be combined to express

γ = Re γ + i Im γ = b′tRθ (I − Ji) a
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where

I − Ji =

(
1 i
−i 1

)
=

(
1
−i

) (
1 i

)
so that

γ = b′t
(

σ
−iσ

)
α

where σ = cos θ + i sin θ. We conclude that

γ =

{
σβ′α, ε = 1
σβ′α, ε = −1

where β′ = β or β. The four possible constraints are listed in Table 2. �


