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ABSTRACT. We review some aspects of the double solution theory
proposed by de Broglie at the beginning of the quantum era (i.e., in
the period 1924-28). We specifically analyze and rederive the so called
guidance theorem which is a key element of the full theory. We compare
the double solution approach to the most known pilot-wave interpre-
tation, also known as de Broglie-Bohm or Bohmian mechanics. We
explain why de Broglie rejected the pilot wave interpretation and ad-
vocated the double solution. We also discuss some philosophical issues
related to difference of strategies between de Broglie on the one side
and Bohm on the other side.

Le grand drame de la microphysique contemporaine a été, vous le
savez, la découverte de la dualité des ondes et des corpuscules[1]

Contrary to a widespread belief quantum mechanics (QM) is neither
a closed nor a complete theory. Indeed, the standard ‘Copenhagen’ in-
terpretation of QM is, despite its enumerable successes, barely a catalog
of tools and operational recipes for describing measurements and exper-
iments made in the laboratory by physicists and engineers. However, as
it is well recognized, e.g., by J.S. Bell [2], this usual interpretation says
nothing about the precise definition of a quantum measurement, neither
does it clarify the nature of the ‘observed’ quantum systems separated
from the ‘observer’ macroscopic world by the vaguely defined Heisenberg
quantum/classical boundary. This lack of a clear ontological framework
in QM is responsible for a duality which is totally foreign to the former
ideal of clarity prevailing in classical physics, i.e., from Newton’s period
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until the Einstein time.
However, this conclusion is not forced by experimental facts and bet-

ter represents a minimalist interpretation adapted to the experimental
physicist in his lab, i.e., for all practical purposes. However, the appli-
cation of this standard interpretation to the Universe taken as a whole
leads, as it is well known, to very strong paradoxes exemplified by the
famous Schrödinger cat and Wigner’s friend contradictions.

The aim of this present work is therefore to show that we are not
obliged to accept the Copenhagen retreat but that if one really want
to define a clear ontological framework adapted to QM and then return
to classical determinism in space-time, one must be prepared to modify
strongly the foundation of quantum physics far beyond the aim of the
Copenhagen interpretation.

The present work will follow the strategy opened by the work of
L. de Broglie and known as the ‘double solution program’ (DSP) in
which particles are represented by localized solutions (i.e., solitons) of
some nonlinear-field equations evolving in the usual Minkowsky space-
time [3, 4]. In this DSP the particle is compared to a localized clock
continuously phase-locked to the quantum wave guiding its path; this
guiding wave being a solution of the usual linear Schrödinger, Klein-
Gordon or Dirac equations. In the recent years, this theory has regained
an interest in part because of the role played by the beautiful experi-
ments initiated by Y. Couder 1 and E. Fort concerning walking droplets
bouncing on a oil bath, and mimicking some aspects of wave-particle
duality [5] (see also the complete review by Bush [6, 7]). Unfortunately,
there are not so many available reviews concerning the DSP (see how-
ever [8, 9, 10]) and very often it is only mentioned en passant in order
to introduce the most popular ‘Bohmian’ mechanics. In 2017, the An-
nales de la Fondation Louis de Broglie published a special volume (Ann.
Fond. de Broglie, 42 (2017)) acknowledging the importance of de Broglie
DSP [9, 10]. In the continuity the aim here will be to review the original
DSP obtained by de Broglie in the period 1924-28. In this version [3]
only singular waves solutions of linear wave equations are involved. We
will discuss a beautiful theorem obtained by de Broglie in 1927 [3] and
called the ‘guidance theorem’ which states how singular waves are piloted
by the phase of the guiding field. Curiously this theorem is never even
mentioned by Bohmians. We will also review some of the biggest issues
concerning the mathematical development of the DSP and explain why

1We dedicate the present work to the path and memory of Y. Couder
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the so called pilot-wave interpretation (PWI) developed by de Broglie
also in 1927 [3, 11] where particles are point-like objects moving in a
guiding field but without producing field singularities has been favored
by Bohm in its causal interpretation of quantum mechanics [12, 13]. At
the difference of the DSP the PWI works not only for single particle but
can also be applied to the many body problem (specially in the non-
relativistic regime where the Schrödinger equation holds). While this so
called ‘Bohmian mechanics’ can be seen as a minimalist version of the
DSP de Broglie (like Einstein who coined it ‘too cheap for me’) never
liked it and rejected this approach until the end of his life favoring,
instead, the DSP. Reciprocally, Bohm [14] considered the DSP as too
mechanical and too classical for explaining the major issue of quantum
mechanics: i.e., quantum entanglement and nonlocality existing between
several quantum objects [2]. This nonlocality is predicted in the PWI
and this theory is actually in complete agreement with standard quantum
mechanics whereas the DSP is mainly a research program full of difficul-
ties and presently unable to justify nonlocality. The present work will
not solve this issue but it constitutes the first of a series of articles by the
author devoted to the DSP and its logical development. Therefore, by
reviewing some of the most important results and problems concerning
the single-particle DSP the author hope to show that the DSP program
could be ultimately completed and fully justified.

1 Prehistory of the double solution approach

We remind that de Broglie already conceived the main ideas of the DSP
just after his PhD thesis of 1924 [15, 16]. Specifically, while in the period
1923-24 he postulated, as a Grand law of nature, the association of a
local clock of pulsation ω0 (i.e., in its res frame) to any quantum particle
and introduced the notion of a synchronized phase-wave accompanying
its motion and its internal vibration [15], it is really in 1925-1926 that
he developed the concept of a singular wave-field u(x) (here xµ = [t,x])
representing the composite wave-particle system [17, 18, 19] and evolving
in the usual 4D space-time. Generalizing some early ideas proposed by
Einstein in 1905-09 for photons 2 . This wave-field was initially supposed

2This idea of singular photon is implicit in the special relativity and photon article
of 1905 and 1917 [20, 21, 22]. Einstein, explicitly mentioned the idea of singular
photon during a conference made in Salzburg in 1909 [23]. He also introduced in
the 1910-1920’s the concept of ghost-field [24] and planed an article about photon
guiding waves for the 5th Solvay conference [25]
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to be a solution of the standard d’Alembert equation

�u(x) = [∂2
t −∇2]u(x) = 0 (1)

valid for every positions outside a moving point singularity associated
with the particle and incorporated into the extended wave-field. In
particular, looking for a singular solution associated with uniform motion
and analyzing the problem in the proper reference frame R0 where the
particle is at rest he found the monopolar solution

u(t0, r0) = e−iω0t0
cos (ω0r0)

4πr0
(2)

with ω0 := m the Compton pulsation associated with the rest mass of
the particle and r0 a radius going from the singularity to an observa-
tion point in R0. Of course in the Lorentzian laboratory frame R where
the particle is moving with a uniform velocity v the scalar u−wave will
be a Lorentz invariant but the Lorentz transformation actually mod-
ifies the space -time coordinates t0 and r0. This plays a key role in
de Broglie wave mechanics as explained below. Importantly, de Broglie
selected the stationary solution (i.e., separating space and time) corre-
sponding to a half-half separation into retarded and advanced waves,

i.e., Gω0(r0) = cos (ω0r0)
4πr0

= 1
2 [ e

iω0r0

4πr0
+ e−iω0r0

4πr0
] (this is a time-symmetric

Green function of the Helmholtz equation [ω2
0 +∇2

0]Gω0
(r0) = −δ3(x0)).

This is fundamental because it leads to the stability of the microobject
(since the system energy radiation losses are exactly compensated by
the converging advanced waves) and at the same time implies a time-
symmetric causality which is reminiscent of early ideas by Tetrode and
Page [26, 27] for explaining the stability of atomic orbits (such ideas were
later resurrected by Fokker,[28], Feynman and Wheeler in their absorber
theory [29], by Hoyle and Narlikar for cosmological purposes [30], and
by Costa de Beauregard for explaining nonlocality and the EPR para-
dox with retrocausality [31, 32]). We emphasize that all this was made
before Schrödinger even introduced his equation. In subsequent works
de Broglie [3, 33] considered that the u-field should better obey the so
called Klein-Gordon equation [34]

�u(x) = −ω2
0u(x) (3)

discovered by him and many others [35]. This equation admits the simple
monopolar solution

u(t0, r0) = e−iω0t0
1

4πr0
(4)
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as well as several other ones. Indeed, the Klein-Gordon equation admits
constrained monopolar solutions with pulsation ω (defined in the rest
frame of the particle and associated with the local clock of the particle):

u(t0, r0) = e−iωt0
cos (

√
(ω2 − ω2

0)r0)

4πr0
for ω ≥ ω0

u(t0, r0) = e−iωt0
e−
√

(ω2
0−ω2)r0

4πr0
for ω0 ≥ ω. (5)

For reasons which will be exposed elsewhere we believe that the original
guess was more meaningful (for the moment it is enough to say that the
d’Alembert equation doesn’t depend of the proper mass ω0 and is there-
fore more universal). Moreover, in the present article we will consider
the general case. Importantly, for both Eq. 2 and 4 the phase ϕ = −ω0t0
reads in the laboratory frame (where the particle moves at the uniform
velocity v) as ϕ(x) = −kx = −ωt + k · x with kµ = [ω = γω0,k = ωv]
and γ = 1/

√
(1− v2). From this we deduce the dispersion relation

kk = ω2 − k2 = ω2
0 reminiscent of the Klein-Gordon equation for the

phase-wave Ψ(x) = eiϕ(x) satisfying

�Ψ(x) = −ω2
0Ψ(x) (6)

even if u itself obeys �u(x) = 0. The key findings of de Broglie was
to observe that if we evaluate the phase at the particle location z =
[t, z(t) = vt] we have

ϕ(z) = −ω0t0 = −ω1t (7)

with ω1 = ω0γ
−1 6= ω is the clock pulsation of the particle as seen

from the laboratory frame. The internal clock of the particle is thus
synchronized with the phase of the monochromatic Ψ-wave which is also
locally the phase of the u-wave. Moreover, introducing the proper time
τ (i.e., dτ =

√
dxdx = dtγ−1) for the particle we have

dϕ(z(τ))

dτ
=
dz(τ)

dτ
∂zϕ(z(τ)) = −ω0,

with
dz(τ)

dτ
= −∂zϕ(z(τ))

ω0
. (8)

This is the guidance condition that de Broglie saw as a key feature of
the DSP and PWI for understanding wave-particle duality. We point out
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that in his first work [36, 37] de Broglie used instead Rayleigh’s formula
v = ∂ω

∂k to define the particle as a wave-packet which is by essence a poly-
chromatic and dispersive structure. However, the DSP used in Eqs. 2,4
favors a model of monochromatic singular-fields. While a plane wave
expansion of such fields is possible, u(x) is rigorously not everywhere
a solution of the homogeneous d’Alembert or Klein-Gordon equations
because of the presence of the singularity. This induces the presence
of a bound near-field which in turn modifies the dispersion relation of
the plane waves ω2

0 6= k2 appearing in the Green modal expansion [38]

u(t0, r0) =
∫

d3k
(2π)3 e

i(kx0−ω0t0)P[ 1
k2−ω2

0
] associated with Eq. 2 (P[...] de-

notes the principal value). Therefore, even though Rayleigh’s formula
can be applied in the DSP and in PWI the physical meaning is a bit
different from the usual dispersion theory.

2 The theory of 1927

After this condensed summary of the early ideas about the DSP we go to
the work of 1927-28 [3, 33] where de Broglie attempted to extend the DSP
to non-monochromatic guiding waves Ψ(x) in free space and in external
fields, i.e., in order to describe particle interactions with potentials and
obstacles. For this purpose we introduce the more general Klein-Gordon
equation for the Ψ−wave ∈ C in presence of external fields:

(∂ + ieA(x))(∂ + ieA(x))Ψ(x) = −(χ(x) + ω2
0)Ψ(x)

(9)

where e is the electric charge, Aµ(x) = [V,A] an external electromag-
netic vector potential, and χ(x) an external scalar potential. This wave
equation contains the Schrödinger equation in the non relativistic regime
and it was already recognized at that time by Max Born and others that
the continuous Ψ wave must be interpreted statistically. Actually, this
idea was also explicit in de Broglie work since 1924. However, at the
difference of Born [24] de Broglie conceived the Ψ-wave as a dynamic
guiding agent for the particle, i.e., having both an ontic and epistemic
status. We here recognize the key ideas of the PWI [3] which de Broglie
developed further for the 5th Solvay conference [11] (see also [39]). In the
PWI the particle is a point-like object immersed in the Ψ−field guiding
its motion and at the same time determining the probability evolution
and conservation (i.e., like in classical statistical physics). Yet, in the
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PWI the precise meaning of the Ψ−wave is unclear.
Moreover, we introduce on top of the DSP beside the continuous Ψ-

wave the singular u-wave ∈ C presenting a typically moving singularity
and representing a more complete description of the corpuscle. For the
sake of generality we write

(∂ + ieA(x))(∂ + ieA(x))u(x) = −(χ(x) + Ω2)u(x)

(10)

where Ω is not necessary identical to ω0 (in 1927 and later writings [3,
4, 40] de Broglie considered only the case Ω = ω0). Introducing the
de Broglie-Madelung [17, 19, 41] polar representation Ψ(x) = a(x)eiS(x)

and u(x) = f(x)eiϕ(x) with a, S, f, ϕ ∈ R we deduce (from Eq. 9 and 10)
two sets of equations. The first one reads

(∂ϕ(x) + eA(x))2 = Ω2 +
�f(x)

f(x)
+ χ(x)

(∂S(x) + eA(x))2 = ω2
0 +

�a(x)

a(x)
+ χ(x) (11)

and these formulas are reminiscent of Hamilton-Jacobi or Euler hydrody-
namical equations for fluids. The main difference 3 with classical physics
being that Eq. 11 contains quantum potentials �a

a and �f
f curving the

paths in unusual ways. In the PWI only the Ψ−wave is considered and
the quantum ‘Bohmian’ potential is usually associated with �a

a := QΨ.
The second set of equations reads

∂[f2(x)(∂ϕ(x) + eA(x))] = 0

∂[a2(x)(∂S(x) + eA(x))] = 0 (12)

and the formulas are reminiscent of conservation laws for relativistic
fluids with density f2 and a2. These relations can equivalently be written
as

vu(x)∂ log (f2(x)) =
d

dτ
log (f2(x)) =

∂(∂ϕ(x) + eA(x))√
[(∂ϕ(x) + eA(x))2]

(13)

3We also emphasize that the phase ϕ (the same is true for S) is not univo-
cally defined near a vortex and we have around any closed loop C the quantization∮
(C) dx∂ϕ = 2πn with n and integer (this is reminiscent of the Bohr-Sommerfeld

quantization rules).
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and

vΨ(x)∂ log (a2(x)) =
d

dτ
log (a2(x)) =

∂(∂S(x) + eA(x))√
[(∂S(x) + eA(x))2]

(14)

with vu(x) = − ∂ϕ(x)+eA(x)√
[(∂ϕ(x)+eA(x))2]

and vΨ(x) = − ∂S(x)+eA(x)√
[(∂S(x)+eA(x))2]

two

unit 4-vectors associated with the local velocity of the relativistic fluids
(the operators vu(x)∂ = d

dτ and vΨ(x)∂ = d
dτ define Lagrangian deriva-

tives in these fluids with proper times along the flow lines).
The characteristic curves associated with the flow in the two fluids

allow us to introduce a set of trajectories or paths given by the equations
vu(x) = d

dτ xu(τ) and vΨ(x) = d
dτ xΨ(τ). At that stage these paths are

not associated with a particle but are mere properties of the continuous
fluids.

In the PWI we identify xΨ(τ) to particle trajectories and Eq. 12
is reminiscent of the current conservation law ∂µJ

µ
Ψ(x) = 0 where the

current is given by

JΨ(x) =
i

2ω0
Ψ∗(x)

↔
D Ψ(x) = −a

2(x)

ω0
(∂S(x) + eA(x))

=
a2(x)

ω0

√
[ω2

0 +QΨ(x) + χ(x)]vΨ(τ). (15)

This relation 4 plays a fundamental role for interpreting probabili-
ties and electric current in scalar QED. In the PWI we can identify

ρ0(x) = a2(x)

√
[1 + (QΨ(x)+χ(x))

ω0

2
] with a comoving density of proba-

bility in the rest-frame of the particle. A clear interpretation is done
in the non-relativistic regime where J0

Ψ ' ρ0(x) ' a2(x) := Ψ(x)∗Ψ(x)
is identical with the quantum probability density given by Born’s rule
for finding a particle in an elementary 3D volume around x at time t.
Moreover, in the PWI this probability is associated with ignorance a la
Maxwell-Boltzmann (see [42, 43] for a review) and is not a fundamen-
tal or genuine property of a somehow mysterious and non deterministic
world. We emphasize that de Broglie initially developed the PWI in the
context of the Klein-Gordon equation for a single particle. However the
theory is difficult to interpret generally because JΨ is not necessarily
a time-like and future oriented 4-vector. Therefore, during the Solvay
congress of 1927 [11] de Broglie presented a non relativistic version of

4where: ψ1(x)
↔
Dµ ψ2(x) := ψ1(x)Dµψ2(x)− ψ2(x)D∗

µψ1(x).
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the PWI adapted to Schrödinger equation for the many-body problem.
It is this theory which is nowadays known as Bohmian mechanics 5.

Now, after this reminder about the PWI we go back to the DSP.
Following de Broglie [40] the general principle of the DSP states:

To every regular solution Ψ(x) = a(x)eiS(x) of Eq. 9 corre-
sponds a singular solution u(x) = f(x)eiϕ(x) of Eq. 10 having
the same phase ϕ(x) = S(x), but with an amplitude f(x) in-
volving a generally moving point singularity z(τ) representing
the particle.

The relation ϕ(x) = S(x) was called ‘phase-harmony’, ‘phase-matching’,
‘phase-locking’ or ‘phase-tuning’ condition by de Broglie. Comparing
this principle with Eq. 11 implies the strong constraint

Ω2 +
�f(x)

f(x)
= ω2

0 +
�a(x)

a(x)
= (∂S(x) + eA(x))2 − χ(x)

(16)

which is supposed valid for every positions outside the singularity (i.e.,
if x 6= z(τ) ∀τ). Furthermore, by introducing the definition F (x) =
f(x)/a(x) we equivalently deduce

�F (x) + 2∂ log a(x)∂F (x)− (ω2
0 − Ω2)F (x) = 0 (17)

which shows that the F -field depends on the a−field.
Moreover, using the phase-matching condition we get vu(x) =

vΨ(x) = d
dτ x(τ) where x(τ) = xu(τ) = xΨ(τ) defines common trajecto-

ries labeled by a proper time τ . For the present studies we limit ourselves
to the case (∂S(x) + eA(x))2 ≥ 0 and consequently the fluid velocity is
time-like (we have also vu(x)2 = 1 and vΨ(x)2 = 1). This is important
since the Klein-Gordon equation admits also trajectories with space-like
segments, i.e., tachyonic fluid motions which are difficult to interpret in
the DSP (even though a self consistent PWI can be proposed for this
tachyonic cases as well 6).

5It should thus be clear that de Broglie is the only creator of PWI. In the same
way as we can not say that Laplace invented Newtonian Mechanics the PWI should
better be called ‘deBroglian’ mechanics.

6This will be discussed in a subsequent article.
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Furthermore, since vu(x) = vΨ(x) and �ϕ(x) = �S(x) the two
Eqs. 13 and 14 can be combined together to give:

d

dτ
log [F 2(x)] = 0. (18)

Eq. 18 means that the density F 2(x) is transported and preserved along
the trajectories during the τ -evolution. The requirements for the DSP to
fulfill both Eq. 17 and Eq. 18 for every points x is extremely demanding
and probably impossible to satisfy rigorously.

Physically speaking Eq. 18 seems to contradict the original motiva-
tion of the DSP. In particular, in the 1950’s Francis Perrin ([4], chapter
18) objected to de Broglie that such condition implies that the solitary-
wave amplitude f(x) ∝ a(x) in general changes in time along flow-lines
near the trajectory x ∼ z(τ) (i.e., near the singularity). This means
that the particle can generally not be considered as a stable or perma-
nent structure in the version of the DSP presented here.

2.1 The guidance theorem and Perrin’s objection

In order to be more quantitative concerning the Perrin objection we have
to discuss an important guidance theorem obtained by de Broglie already
in 1927 [3, 44, 4, 40]. This theorem has a weak and strong formulation
and we should discuss both of them. Starting with Eq. 13 we get for the
singular u-field

d

dt
log (f2(x)) = [∂t + vu(x) ·∇] log (f2(x))

= −∂(∂ϕ(x) + eA(x))

∂tϕ(x) + eV (x)
(19)

with vu(x) = −∇ϕ(x)−eA(x)
∂tϕ(x)+eV (x) the 3-velocity of the u−fluid. Now, watch-

ing the motion in a reference frame where the singularity is practically
at rest instantaneously (i.e., in a frame where the singularity motion
can be analyzed non relativistically) we expect near the particle center
a multipolar field amplitude

f(x) ' α(x)

R(t)n
(20)

with n an integer, R(t) = |x−z(t)| the distance to the singularity center
and α(x) is a smooth and regular function. This implies the relation
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[∂t + dz(t)
dt ·∇] log ( f

2(x)
α2(x) ) = 0 and therefore in combination with Eq. 19

(vu(x)− dz(t)

dt
) ·∇ log (

f2(x)

α2(x)
)

= (vu(x)− dz(t)

dt
) · 2nR̂(t)

R(t)

= −∂(∂ϕ(x) + eA(x))

∂tϕ(x) + eV (x)
− d

dt
log (α2(x)). (21)

In other words, since ∂(∂ϕ(x)+eA(x))
∂tϕ(x)+eV (x) is supposed to be finite we get the

condition

(vu(x)− dz(t)

dt
) · R̂(t) = O(R(t)) (22)

and thus at the limit

vu(z) =
dz(t)

dt
(23)

which means that the singularity moves at the local velocity of the u-
field at z. Therefore, the singularity follows one of the path xu(τ) of the
u-field flow. This constitutes the weak-guidance theorem:

For any singular solution u(x) = f(x)eiϕ(x) of Eq. 10 associ-
ated with a moving point z(τ) and such that Eq. 20 occurs in
a local reference frame associated with the singularity we have

the guidance formula: dzµ(τ)
dτ = limx→z{− ∂µϕ(x)+eAµ(x)√

[(∂ϕ(x)+eA(x))2]
}.

Two remarks are important here. First, we emphasize that this theo-
rem doesn’t mean that the amplitude of the field near the singularity is
necessarily transported as a whole. Indeed, if we write Iu(t,x) the right
hand side of Eq. 19 we have by formal integration along a xu(t) line:

f(t,xu(t)) = f(t0,xu(t0))e
1
2

∫ t
t0
dt′Iu(t′,xu(t′))

(24)

where the integral is made along the xu(t) line between time t0 and
t. Therefore, if Iu 6= 0 we have in general f(t,xu(t)) 6= f(t0,xu(t0))
and this even for paths xu(τ) very close to the singularity-path z(τ).
Following a suggestion of Gérard Petiau in 1956-7 de Broglie used this
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integral formulation to derive once again the guidance theorem [4, 40] (de
Broglie didn’t however emphasized the role of the condition Iu 6= 0). As
a second remark, we stress that the (weak) guidance theorem is relatively

robust since it only assumes the multipolar form f(x) ' α(x)
R(t)n (which

will be partially justified later) near the singularity and doesn’t even rely
on the phase-harmony condition ϕ(x) = S(x) or ϕ(x) ' S(x), i.e., we
didn’t have to introduce a guiding field Ψ for its derivation.

Now, if we introduce the Ψ−field and accept at least a first-order
contact vu(x) ' vΨ(x) Eq. 23 reads (and this constitutes the strong
form of the guidance theorem stated by de Broglie):

vΨ(z) ' vu(z) =
dz(t)

dt
(25)

i.e., we now have that the particle singularity is guided by the local
velocity vΨ(z) of the Ψ-field. Importantly, if in agreement with the DSP
we furthermore impose a second-order contact Eq. 18 holds and we have

d

dt
log (F 2(x)) = [∂t + vΨ(x) ·∇] log (F 2(x)) = 0 (26)

which by integration along a path xΨ(t) = xu(t) leads to

F (t,xu(t)) = F (t0,xu(t0)) (27)

and shows (as already stated with Eq. 18) that the F−field (with F =
f/a) preserves its value along paths near the singularity trajectory z(t).
We have thus the strong form of the guidance theorem:

If two solutions of the wave equations of wave mechanics are
such that one of them is regular and the other one has a mov-
ing, point-like singularity and they admit the same stream-
lines then the singularity of the second solution will follow
one of these streamlines[40]

As already explained Eq. 27 is physically not sound since, if valid, it
would imply that a particle guided by the Ψ−field should have and am-
plitude f(xΨ(τ)) ∝ a(xΨ(τ)) which is in general not constant along paths
located near the singularity. This casts some doubts on the possibility
to justify the strong guidance theorem. Especially, as pointed out by
F. Perrin to de Broglie [4], this is paradoxical in the case of a spreading
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Ψ-wave (as for example with a diffracted amplitude decaying after a pin-
hole). Indeed, in that case Eqs. 18,26,27 would imply that the particle
amplitude F (x) is constant (i.e., carried by the vu(x) = vΨ(x) flow) near
the singularity whereas the total u−field amplitude f(x) should decay as
a(x). Since a(x) can take arbitrarily small value but still (in principle)
induce a particle detection very far-away from the pinhole or source it is
difficult to believe that the particle u− field could have such a strongly
decaying amplitude 7.

2.2 An existence proof

In order to conclude this section about the original de Broglie DSP and
the guidance theorem we go back to the justification of the weak guidance
theorem and to the missing existence proof concerning the multipolar

structure f(x) ' α(x)
R(t)n near the singularity (this proof was not given by

de Broglie but only guessed by him). For this purpose we assume that
we can write f(x) = β(x)G(x) with the hypothesis

[∂t +
dz(t)

dt
·∇]G(t,x) = 0. (28)

and β(x) a regular function. Eq. 28 can be better understood if we use
the new variables t′ = t and x′ = x − z(t) such as G′(t′,x′) = G(t,x).

With these variables we have also ∇ = ∇′ and ∂t′ = ∂t + dz(t)
dt · ∇.

Therefore, Eq. 28 means ∂t′G
′ = 0 and thus G′ is independent of t′, i.e.,

G′ := g′(x′) = g′(x − z(t)). We now go back to Eq. 11 for the u−wave
and using the definition f(x) = β(x)G(x) we get

�G(x) + 2∂ log β(x)∂G(x) = y(x)G(x) (29)

with y(x) = (∂ϕ(x) + eA(x))2 − χ(x)− �β(x)
β(x) −Ω2. Moreover, with the

new variables t′ and x′ and the properties of G′ we obtain

−∂ log β∂G = [
dz

dt
∂t + ∇] log β ·∇′G′. (30)

7We point out that this Perrin objection motivated the so called ‘tired-light’ model
which was introduced to justify the red-shift of light coming from far-away galaxy,
i.e., as an alternative and exotic explanation to the cosmological expansion. In this
model advocated by de Broglie [46] and others the ∝ 1/r spreading of the Ψ− field
induces an amplitude decay of u− field near the singularity and thus of the photon
energy with time.
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and

−�G = (1− (
dz(t)

dt
)2)∇2

||′G
′ + ∇2

⊥′G
′ − d2z(t)

dt2
·∇′G′ (31)

where ∇||′ denotes the partial derivative along the dz(t)
dt direction

whereas ∇⊥′ is associated with the direction perpendicular to the veloc-
ity. To go further, we have to consider three approximations: First, we

will neglect relativistic effects and thus write 1− (dz(t)
dt )2 ' 1. This actu-

ally means that we are watching the motion of the singularity in a refer-
ence frame where it is practically at rest (in the proper rest-frame we have
dz(t)
dt = 0). Second, we write |∇′G′| ∼ |G′|/l, and |∇′2G′| ∼ |G′|/l2 with

l a typical length and thus we have |d
2z(t)
dt2 ·∇

′G′/∇′2G′| ∼ |d
2z(t)
dt2 |l. Re-

markably, following early works by M. Born and E. Fermi [47, 48] on the
concept of rigidity in special relativity we can show that the condition for

‘quasi-stationarity or rigidity’ of the field G′ reads precisely |d
2z(t)
dt2 |l� 1.

Assuming this, we deduce −�G(x) '∇′2G′. As a third approximation,
we neglect spatial variations of β, ϕ and of the applied external fields
compared to the spatial variations of G (carrying the singularity) and
thus write [dzdt ∂t + ∇] log β(t,x) ' [dzdt ∂t + ∇] log β(t, z(t)) := A(t′) and
y(t,x) ' y(t, z(t)) := B(t′). Regrouping all these approximations to-
gether we finally have the formula

∇′2G′ + 2A(t′) ·∇′G′ +B(t′)G′ = 0 (32)

or equivalently

(∇′ + A(t′))2G′ + (B(t′)−A(t′)2)G′ = 0. (33)

To solve Eq. 33 we use the transformation G′(t′,x′) = H ′(t′,x′)e−A(t′)·x′

which leads to

∇′2H ′ + (B(t′)−A(t′)2)H ′ = 0. (34)

This equation is of the Helmholtz form and admits multipolar solutions.
For example, considering only the radial monopolar solution we get

H ′ = C
cos (

√
[B −A2]χr′)

r′
if B −A2 ≥ 0

H ′ = C
e−
√

[A2−B]r′

r′
if B −A2 ≤ 0 (35)
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with C a constant and r′ = |x′| = |x − z(t)|. Moreover, all this is
supposed to have a meaning only near the singularity where H ′ ' C

r′

and G′(t′,x′) ' H ′(t′,x′). Therefore, we have G′ ' C
r′ and finally:

f(t,x) = β(t,x)
C

|x− z(t)|
(36)

which, with the identification α = Cβ, has the appropriate form for de-
riving the weak guidance theorem, i.e., Eqs. 21-23.

Therefore, we have shown that assuming the form f(x) = β(x)G(x)
satisfying Eq. 28 the Klein-Gordon equation for the u−field admits sin-
gular multipolar solutions which obey the weak guidance theorem. Of
course, this result says nothing about the function α(x) and whether or
not it is possible to find or construct such a function. In particular, we
focused our attention on the field near the singularity but the α(x) func-
tion could depend strongly on the boundaries located far away from the
particle center, i.e., through reflections of waves generated by the singu-
larity on the singularity it-self. This is typically what occurs for a Green
function associated with a singular wave and we expect something sim-
ilar here. We believe that the previous analysis is more or less all what
can deduce from the DSP without going to a more detailed description
of the singularity properties or structures (i.e., obtained if we replace the
singularity by a soliton or if we define precisely the localized source of
the u−wave). Furthermore, the present analysis of the weak guidance
theorem based only on the u−wave let completely open the role of the
Ψ−wave in the DSP for guiding the particle and therefore questions the
validity of the strong guidance theorem postulated by de Broglie in his
DSP8.

Subsequently, in the 1950’s, de Broglie clearly admitted how challeng-
ing the phase-harmony condition is and suggested (without developing
the idea) to relax a bit the constraints of Eq. 18 by imposing the relation
ϕ(x) ' S(x) only in the vicinity of the world-tube associated with the
particle singularity x ' z(τ) [4, 44]. This is important since the deriva-
tion of Eq. 16 only requires a first order contact between the two fluids

8We here emphasize that Francis Fer in his doctoral thesis [49] analyzed the guid-
ance theorem with retarded Green functions using analogies with general relativity
discussed by Vigier (i.e., in relation with works by G. Darmois, A. Einstein and A.
Lichnerowicz concerning the motion of singularities in a metrical background [44, 45]).
He also attempted to demonstrate how singularities carried by a guiding wave can
mathematically merge to give rise to a localized soliton associated with a nonlinear
wave equation. These very interesting issues will be discussed in a subsequent work.
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(i.e., φ(x) ∼ S(x) and ∂φ(x) ∼ ∂S(x) for points near the singularity
and implying vu(x) ' vΨ(x)), whereas Eq. 18 requires a second order
contact (i.e., φ(x) ∼ S(x), ∂φ(x) ∼ ∂S(x) and, ∂2

i,jφ(x) ∼ ∂2
i,jS(x) for

points near the singularity and leading to �ϕ(x) ' �S(x)).
Moreover, soon de Broglie followed a different path and after the re-

marks of his collaborator Jean-Pierre Vigier [44, 45] de Broglie modified
the method and basis of the DSP by including non-linearities in the wave
equation for the u-field [44, 4, 40]. The idea was to derive the existence
of the particle as a localized solitonic wave-solution of a non-linear equa-
tion. More precisely, de Broglie and Vigier hoped that the presence of
the non-linearity would eventually modify Eq. 18 and lead to a locally
stable singular guided u−wave i.e. with a local amplitude f(z) not nec-
essarily proportional to a(z) (for recent reviews concerning nonlinearity
in the context of the DSP see [8, 9, 10]). The strategy was very similar
to the one followed by Einstein in his quest for a theory unifying gravi-
tation and quantum mechanics (for a review see [45]). For Einstein the
geometrical field gµν(x) characterizing gravity should be able to generate
localized objects acting as moving particles (i.e. due to the nonlinearity
of general relativity). This was for example the case with the ‘Einstein-
Rosen’ bridge [50] (better known as a space-time wormhole) introduced
originally as a model of particles. The great vision of Einstein [50] and
Vigier [44, 45] was thus to derive quantization from a future ‘geometrico-
dynamics’ yet to be constructed. Therefore, DSP was envisioned as a
part of a larger program or quest.

3 Conclusion

In order to conclude this review we would like to to go back to the ori-
gin of the DSP. De Broglie was strongly motivated by the success of
Einstein in general relativity and Lorentz, Abraham, Poincaré or Mie
in electrodynamics for developing a self-consistent model of particle in
the context of classical field theory. However, in order to account for
wave-particle duality he had to introduce the notion of phase-harmony
and a guidance theorem to define singular u-waves guided by regular
Ψ−waves. The PWI, which is a by product consequence of his research
program, doesn’t involve singular waves and accept the notion of parti-
cle as an external pattern surfing on the Ψ−wave. Contrarily to some
claims, the fundamental reasons explaining why de Broglie renounced
to his theory in 1928 are not completely related to some technical ob-
jections made by Pauli and others at the Solvay Congress (even if this
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context certainly played a role) but are more connected to the fact that
he could not complete the DSP and also because the PWI was for him
problematic. It is useful here to review some of the objections made by
de Broglie to his own PWI (see [44, 39]). First of all, de Broglie had
big issues with the concept of wave collapse which was discussed during
the Solvay congress. Specifically, Einstein [11] introduced an example
with a particle diffracted by a screen and pointed out that the particle
detection at one location preclude the subsequent detection of any effect
of the Ψ−wave at any other position of the screen. In other words, the
wave has disappeared or ‘collapsed’ in agreement with Heisenberg inter-
pretation (Heisenberg and also von Neumann actually formalized this
idea in the following years). How, could we account for that in the PWI
if the Ψ−wave is a physical agent? A collapse is indeed acting instan-
taneously and therefore this would involve faster than light action at a
distance and non-locality. Furthermore, with Schrödinger the Ψ−wave is
generally propagating in the configuration space for the N -particles. It
is thus generally very difficult to find a physical content to the Ψ−wave
in the 3D space. Subsequent works by Einstein Podolsky and Rosen in
1935 and much later by Bohm and Bell stressed even more the role of
nonlocality in the PWI [14, 2]. However, even without going to Bell
nonlocality the problem is already present at the single particle level as
we saw with Einstein example 9. The concept of collapse is not however
necessary in the PWI as it was demonstrated by Bohm: this is an old
relic of the 1930’s before people understood entanglement and quantum
measurements. In Einstein’s experiment entanglement with detectors
would have the same effect as an effective collapse. Still, despite some
clarifications the PWI looks very peculiar and mysterious. Some Bohmi-
ans resigned to find a better explanation and accepted a ‘nomological’
approach which, in the end, is not really better than the Copenhagen
interpretation 10. However, de Broglie could not resign. He wanted a

9from an empirical point of view however it has not yet been possible to find any
manifestation of single-particle nonlocality in the past despite many claims by L.
Hardy and others. Actually as pointed out years ago by A. Zeilinger [51] an hypo-
thetical single-particle nonlocality is always a many-particles nonlocality in disguise.

10De Broglie could not afford such a perspective on the PWI. For him, there is
something like a deny in the PWI philosophy since we accept that an actual trajectory
is modified by all the other possible paths which could have been realized but which
are not. This interaction is carried by the quantum potential QΨ. Therefore, we can
not use the Ψ−wave simply like a statistical and epistemic tool but we must add an
ontological content to it. The exact nature of this ontological content is however not
clear for Bohmians and thus the retreat to a nomological approach is at best only a
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clear description of the sequence of events in the 4D space-time not in
the configuration space. That was the reason why he could not advocate
the PWI even though he invented it and that’s why he preferred the
DSP despite its uncompletion.

As we saw the Guidance theorem offers an interesting promise for a
future DSP. We have proven a weak form of this guidance theorem there-
fore completing the historical proof of de Broglie. However, de Broglie
hoped to justify the strong form of the guidance theorem in which the
phase of the Ψ−wave determines the complete motion of the singularity.
However, F. Perrin objection is very important in this context since (i.e.,
with Eq. 18) it means that the singularity guided by a Ψ− wave would
not be a permanent object. Of course, if we don’t accept the second
order phase-matching condition Eq. 18 doesn’t hold anymore but still
Perrin’s objection is very vivid. Indeed, if the particle amplitude in the
region of the singularity is not changing proportionally to the amplitude
a(x(τ)) of the Ψ−wave it could be that the u−wave sometimes loses
its Ψ−wave. This could occur in the same situation as before where
a spreading Ψ−wave decays continuously whereas the u−wave is now
keeping a more or less constant value (i.e., like a soliton or a singular-
ity). That’s a very strange consequence of the DSP which must be taken
seriously. This issue is very much connected to the problem of energy
conservation in the DSP (and PWI) and to the previous issue concerning
wave collapse. Indeed, if a particle is going through a beam-splitter the
Ψ−wave will be separated in two branches. If the particle in agreement
with the DSP follows only one path some energy should necessarily go
in the two branches if we want in a subsequent step to realize an inter-
ference experiment by reuniting the two Ψ-beams. The question is thus
how small should be this amount of energy in order not to make the par-
ticle unstable or to have noticeable effect which should have been already
observed . At the same time, the energy should be big enough to disturb
the subsequent motion of the particle in the interference experiment. In
the PWI the magical ingredient is the quantum potential QΨ(x) which
in general is time dependent (even if the external potential are not) and
thus the particle energy E = −∂tS is in general not constant. But what
is the physical meaning of that quantum potential? What is the source
of the energy giving birth to QΨ(x)? Is this ultimately connected to

temporary expedient.
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quantum vacuum 11 and fluctuations in the zero-point field which are
already responsible of Casimir effects and drive spontaneous emission of
light? It is interesting to observe that Bohm wanted to interpret this
feature as the signature of a new form of information he called ‘active
information’ [14] and which is used by quantum systems to guide their
motions. As Bohm and Hiley wrote ‘the basic idea of active information
is that a form having very little energy enters into and directs a much
greater energy’ [14]. Bohm used the analogy with a radar or a radio
wave signal which carries a very small amount of energy but can be used
by the human receiver to direct its future motion. For Bohm the particle
has a rich inner structure able to exploits the nonlocal information about
its environment to direct its path. However, de Broglie and his collabo-
rators like Vigier hoped in the 1950-60’s to find a mechanical explanation
for the existence of this QΨ(x) without abandoning the possibility of a
clear causal description in the 4D space-time background and without
hiding everything behind the label ‘it is nonlocal’. Bohm criticized DSP
by claiming that nonlinearity of the u−wave could not explain the strong
effect induced by the quantum potential on the particle motion and that
nonlocality is an essential element in the explanation. Remarkably, the
quantum potential QΨ = �a

a only depends on the form of the wave func-
tion and not on its absolute value a = |Ψ|. Therefore, the key ingredient
is the phase S which is related to QΨ by Eq. 11. However, the phase is
also the key element for interpreting de Broglie internal clock and the
guidance theorem, and thus it seems to me that both the point of view of
de Broglie and the one of Bohm are somehow telling the same thing. As
we see the difficulties are important and all alternatives are very much
demanding. De Broglie and Vigier hoped to solve these issues by intro-
ducing nonlinearities and solitons in the DSP. In future papers of this
series we will show that with nonlinearity it is indeed possible to push
the DSP to its logical development.
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11It is remarkable that the quantum potential for an harmonic oscillator in its
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