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Bouncing oil droplets are complex systems. They present some analogy
with quantum (de Broglie) particles, in the sense that their trajecto-
ries are guided by a self-generated “pilot” wave. Their dynamics is also
characterized by a non-negligible memory time which often imposes, if
we wish to theoretically grasp their behaviour, to resort to rather heavy
and opaque numerical treatments. Moreover the interaction between
two droplets is not simple: it exhibits a spatial alternance of repulsive
and attractive behaviours. When many droplets are present, the collec-
tive dynamics is even more complex. It may thus happen to be helpful
to adopt a simplified, effective description of their dynamics if we wish
to be able to predict certain aspects of their collective behaviour. The
model presented here (rosette model) encapsulates the main features
of the two by two droplets interaction and makes it possible to predict
some properties of the dynamics of an isolated droplet orbiting around
a dense “core” where many droplets are present, in analogy with the
dynamics of a star orbiting around the dense centre of a galaxy.

1 Introduction

In ref. [1] one can read:

...It is worth moting that, quite recently, de Broglie’s point of view
has been revived, be it indirectly, by experimental observations in hydro-
dynamics, which show that certain macroscopic objects, so-called walkers
(bouncing oil droplets), exhibit many of the features of the de Broglie-
Bohm (dB-B) dynamics [2, 3, 4, 5]. These unexpected developments not
only show that de Broglie’s ideas encompass a large class of systems, but
they might in the future also allow us to build a bridge between quantum
and classical mechanics, where ingredients such as nonlinearity, solitary
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waves and wave monism play a prominent role... ... These (bouncing oil
droplets or walkers) take the form of oil droplets bouncing off the sur-
face of a vibrating bath of oil, excited in a Faraday resonance regime
(the walkers are prevented from coalescing into the bath, the vibration of
which creates a thin film of air between its surface and the droplet, and
therefore seem to levitate above it). Walkers exhibit rich and intrigu-
ing properties. Roughly summarized, they were shown experimentally to
follow dB-B-like quantum trajectories. For instance, when the walker
passes through one slit of a two-slit device, it undergoes the influence of
its “pilot-wave” passing through the other slit, in such a way that, after
averaging over many dB-B like trajectories, the interference pattern typ-
ical of a double-slit experiment is restored and this despite the fact that
each walker passes through only one slit. The average trajectories of the
drops exhibit several other quantum features such as orbit quantization,
quantum tunneling, single-slit diffraction, the Zeeman effect and so on.

At this level it is worth noting that the analogy with quantum (de
Broglie) particles is de facto limited: two droplets entanglement does not
exist in nature, as far as we know, and the dynamics of droplets, as it is
modeled in a classical hydrodynamical approach, is characterized by a
non-negligible memory time, which maybe explains why up to now it was
impossible to derive an effective (Markovian) Schrodinger equation on
the basis of the (non-Markovian) droplets phenomenology [6, 7]. For the
same reason, the connection [2, 3, 8, 9] with dB-B dynamics [10, 11, 12]
and de Broglie’s double solution program [13, 14] has still today merely
the status of a stimulating analogy. Actually, the dynamics of a single
droplet exhibits memory effects [15, 16], self-interaction [4, 17], ergodicity
[18], spinning [19] and wave-particle duality [5] altogether, which makes
it particularly complex, even in the single particle (droplet) case.

The interaction between two droplets has also been shown to exhibit
a rich and remarkable behaviour [20, 21]: depending on the distance
between the two droplets the interaction will alternatively be attractive
and repulsive.

In ref. [3], for instance, it is mentioned that: ...Depending on the
value of d (which represents the impact parameter of the collision) the
interaction s either repulsive or attractive. When repulsive, the drops
follow two approximately hyperbolic trajectories. When attractive, there
is usually a mutual capture of the two walkers into an orbital motion
similar to that of twin stars ... .

As has been emphasised in ref.[22] this observation is seemingly re-
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lated to the properties of the Green function of the Helmholtz equation
which is ubiquitous in the literature related to bouncing oil droplets [23].
In section 2, we apply to droplets a model [24] previously conceived by
one of us (TD) in another context (galactic rotation curves), from now
on called the rosette model, because it predicts that trajectories have
the shape of a rosette. In this model, the Green function of the (3D in
this case) Helmholtz equation also plays a fundamental role. The rosette
model predicts in accordance with the model of ref. [24] that when a
dense distribution of droplets is located in a small region of space, an iso-
lated droplet situated far away from this region will undergo an effective
attractive force towards the dense “droplets” core. Due to the alternance
of attractive and repulsive forces the trajectory will have the shape of a
rosette as will be confirmed by our numerical treatment. As we discuss
in section 2, two regimes can be distinguished: coherent and incoherent,
depending on whether or not the droplets in the dense core interact “in
phase” or independently (incoherently) with the isolated droplet.

In the coherent case the interaction is similar to the interaction
with one central droplet but its intensity is multiplied by the number
of droplets in the central region.

In the incoherent case the resulting interaction is still attractive but
the intensity is quite weaker and we expect that it scales like the square
root of the number of droplets in the core, in accordance with the law
of large numbers.

Even if our treatment is not fully analytic, our model makes it pos-
sible :

1. to develop a simple intuition of the problem and to predict the ap-
pearance of an effective attractive force on the isolated droplet, directed
towards the centre of the dense region.

2. to simulate thanks to a rather simple numerical treatment (section
3) the main features of this effective attractive force (intensity, escape
velocity, and so on).

3. to infer (in the incoherent regime) the appearance of a generalized
Kepler law for circular movements, characteristic of an effective force in
1/r in 3D (galactic velocity curves), and 1/r/2 in 2D (droplets).
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2 The rosette model.

2.1 Two droplets interaction: alternance of attraction and
repulsion; Green function of Helmholtz’s equation.

In ref. [22] one of us (TD) developed a model aimed at fulfilling de
Broglie’s double solution problem which led to the prediction of the
appearance of a pseudo-gravitational field between two particles A and
B proportional to the 3D Green function of the Helmholtz equation
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with |xp — z 4| the distance between the two particles.
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Figure 1: -47 times the Green function of the 3D Helmhotz equation.

This model explained the appearance of repulsive and attractive
gravitation in droplets phenomenology in terms of alternating regions
of pseudo-gravitational attraction and repulsion.

It also explains explains an apparent quantization rule of stable orbits
in terms of the topology of attractive and repulsive basins. For instance,
one can read in ref.[22] the following:

In the same vein, we explain the appearance in the case of two
interacting walkers of a pseudo-quantisation rule, self-adapting to the
forcing frequency, and similar to the one observed in ref. [4] according
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to which orbital radii obey d°™® = (n/2 — €)Ap, with n a positive integer,
where it was made use of the fact that the Faraday frequency is one
half of the forcing frequency. From our point of view this effect is not
specifically quantum, it is rather related to the very unfamiliar topology
of the attractive and repulsive (!) gravitational basins ...

As we noted before, g*(r) = — - w is (1) a Green function of

the 3-D Helmholtz equation. However it is more appropriate to work
with the Green function of the 2-D Helmholtz equation if we wish to
describe bouncing oil droplets, in which case, instead of (1), it is more
appropriate, following [23], to consider an effective potential of the form

T (5°(1)) = 2§ 1" ) &)

where Hél) is a Hankel function, which is proportional [8] to a Bessel
function Jo(kr). In our model the isolated droplet is situated far away
from the dense central region where many droplets are located. It is
then justified to replace the 2D Green function (2) by its asymptotic
expression g2(r), proportional [23] to

—(1/4m)cos(kr — w/4) |V kr. (3)

Note that the dephasing —7/4 does not modify the qualitative features
of the dynamics so that we omitted it in the rest of the paper, as well as
in the simulations, on order to simplify the treatment.

Although the 3-D potential can be considered as representing an
abstract action-at-a-distance, for instance a generalised gravitational in-
teraction, the situation is different in the case of droplets, where the
potential represents the heigth of the bouncing fluid in the vicinity of
the droplet. It possesses thus a direct reality that we can “touch with
the finger”. The force is similar to the force undergone by a massive
ball moving on an irregular surface. When the surface is flat, the gra-
dient of the potential (height) is zero, otherwise, the ball undergoes a
force proportional to the gradient of the potential. In the same vein,
the parameter k represents 27 divided by the Faraday wavelength in the
case of droplets. In the 3D case the value of k& depends on the situation
that we wish to represent in our model. For instance, as we explain in
appendix, if we wish to represent a generalised Newtonian gravitational
potential, k is equal to 27 divided by a length which is of the order of 5
to 6 lightyears.
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2.2 N+1 droplets interaction: basic ingredients of the rosette
model.

Let us from now on consider an isolated droplet orbiting around a dense
“core” where many droplets are present, in analogy with the dynamics
of a star orbiting around the dense centre of a galaxy. The interaction
undergone by the external droplet is the sum of the interactions between
this droplet and each droplet of the core.

V(z,y) = -C 3L, g(V(z — )2+ (y —9:)%) = —C =L g(ri)  (4)
with C an appropriate dimensional factor.

e In 2-D we get, replacing the Green function by its asymptotic ex-
pression and disregarding the dephasing —m /4

(5)

e In 3-D (which provides a model for an external star orbiting
around the dense centre of a plane galaxy) we get

cos(kr;)
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(6)

These are the basic ingredients of the rosette model: in our numerical
treatment (next section) we shall in a first time randomly generate N
locations in a finite region of the 2D space. Then to predict the dynamics
of an isolated droplet far away from the central region we shall integrate
Newton’s law with an effective potential which is equal to the sum of the
two by two interaction potentials between the isolated droplet and each
droplet in the central region.

At this level it is worth distinguishing two regimes, coherent and
incoherent, in analogy with optics!:

1The analogy with optics is due to the fact that the effective force, at a distance
quite larger than 1/k is dominated by the contribution C EfV: 1 (_)S;W where
each force is characterized by a phase. When all phases are the same,z we will say
that the regime is coherent, when all phases are independent from each other we will

say that the regime is incoherent.



Rosette model for droplets 133

- the coherent one where the distance between the droplets in the
central cluster is smaller than the inverse of k. Then, roughly

~OSLig(V(@ — i) + (y —9:)?) = —=N - C - g(/(& = 20)* + (y = %0)?) (7)

where (xg, o) represents the position of the center of mass of the

cluster; this is so because the attractions and repulsions are always “in
phase”.

- the incoherent regime occurs when the size of the central cluster is
larger than the inverse of k. Then attractive and repulsive forces add to
each other incoherently. As was discussed in ref. [24], even though the
intensity of the global force is null in average, there should appear an
effective force directed towards the central cluster, due to the fact that
all attractions are always directed towards this centre, which induces a
persistent curvature around it. This is not true for what concerns the
repulsive contributions to the curvature which globally compensate each
other. We represent in figure 2 a drawing representing a regular succes-
sion of attractive and repulsive forces; it helps to understand why despite
of the fact that the force is null in average it however results into an ef-
fective curvature directed towards the densely populated region. These
features explain why out model has been called the rosette model.

Remark that we observed by performing numerical simulations an
orbit very similar to the one represent in the drawing of figure 2 as can
be seen from figure 3 (of course it is very regular which corresponds to
the coherent regime). In the simulation corresponding to figure 2 the
parameter L represents the size of the central core inside which we chose
at random the positions of the N = 40 central stars. Here, L was taken
to be equal to 1, while k was taken to be equal to 7/4. Obviously, the
distance between the stars is small relatively to 27/k (here 27/k=8)
which corresponds to the coherent regime. In all our simulations the
distance between the centre of the core and the external star is quite
larger than the size of the core L and is also larger than 1/k.

We expect that the effective force will scale in the incoherent regime
like the square root of N. It should also scale like 1/R ( 7 1 )

(x—20)>+(y—v0)?
if we make use of the 3-D Helmholtz Green function (g = ¢*) [24] and
like 1/vVR ( L in the 2D case (g = ¢?) [23, 8].

V& @=z0)+(y—v0)?)
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Figure 2: Drawing of a external droplet undergoing a regular succession
of attractive and repulsive forces (with the radius of curvature respec-
tively situated inside the orbit and outside from it).

This model is of course oversimplified:

- droplets are treated as 2-D classical material points; we do not
associate a phase to each of them although it has been shown experi-
mentally that in stable configurations droplets bounce either in phase or
in anti-phase [3, 25] (see also [20, 21));

- the positions of the droplets of the core are artificially frozen;

- the interaction is expressed through an instantaneous classical po-
tential of interaction (no delay, no memory effect).

It is thus clear that many aspects of the complexity of the droplets
dynamics are completely ignored here; nevertheless it leads, as we show
in the present paper thanks to various numerical simulations, to the
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Figure 3: Simulation of an orbit in the coherent regime, very similar to
the drawing of figure 2. Here we chose k = 7, L =1 and N = 40.

prediction of the existence of attractive orbits of quasi-circular shape,
in the coherent and incoherent regimes as well. It also leads to the
prediction in the incoherent regime of a generalised Kepler law, typical of
a force in 1/R in 3D and in 1/v/R in 2D (droplet case) which constitutes
an experimental challenge in the case of droplets.

3 N+41 droplets interaction: numerical simulations.
3.1 Incoherent regime: 3D Green function.

In a first time we simulated the rosette model with the 3D Green func-
tion. Numerical simulations show that for a certain regime of velocities
there exist stable nearly-circular orbits. This can be seen from figures
4, 5 and 6. In the simulation corresponding to figure 4 the parameter
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Figure 4: Plot of the trajectory of a droplet (Incoherent regime) with
k =10, N = 40, L = 5, initial position (zo = 0,y = 300) and initial
velocity (vg, = 0.3,v,, = 0).

L which represents the size of the central core was taken to be equal to
5, while k was taken to be equal to 10. Obviously, the typical distance
between the stars is large relatively to 27 /k (here 27 /k ~ 0.6) which
corresponds to the incoherent regime.

Moreover for the same initial tangential velocities there also exist
stable nearly circular orbits located at various distances from the central
cluster which is reminiscent of a force in 1/R as can be seen? from figure
6. The analogy with a force in 1/R is only partially true however because,

2Indeed, for a force in 1/R, circular orbits obey w? R = C/R where w is the angular
velocity and R the distance to the attractive centre. This implies that rotation curves
are flat: wR is a constant.
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Figure 5: Plot of the square of the distance to the origin (left), and of
the kinetic energy of the droplet plotted in the previous figure, illustrat-
ing the randomness of the force undergone by the external droplet in
the incoherent regime. Relative fluctuations of the radius are relatively
small, of the order of 0.3 percent, while fluctuations of the kinetic energy
(and thus of the velocity) are relatively large, of the order of 50 percent.

as can be seen from the figure 5 (right), the statistical fluctuations of the
kinetic energy are not negligible at all, as it would be the case with an
effective force in 1/R in the case of a circular orbit. Amazingly, despite
of these strong fluctuations, stable trajectories seemingly adopt a nearly
circular shape and obey a generalised Kepler law through an adaptative
process that we did not elucidate yet.

It is worth noting that the modified Kepler law corresponding to a
force in 1/R has been observed in galactic rotation curves (“flat” ro-
tation curves). This observation is at the origin of various speculative
models, e.g. dark matter models, modified Newton dynamics (MOND)
and so on (as explained in ref. [22] and in appendix). From this point of
view, the (3D version of the) present model constitutes another explana-
tive attempt of the modified Kepler law characterizing galactic rotation
curves.
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Figure 6: Generalised Kepler law-Plot of the trajectory of a droplet
(Incoherent regime) with same parameters as in figure 5 but with initial
position (zg = 0,y0 = 100) and initial velocity (vz, = 0.3,v,, = 0)
(left) and initial position (xg = 0,yo = 200) and initial velocity (v, =
0.3, vy, = 0). The shapes of both trajectories were checked to be quasi-
circular.

3.2 Coherent regime: 3D Green function.

As can be seen from figures 3 and 7, the trajectory in the coherent
regime has still the shape of a rosette but quite more regular than in the
incoherent case. What happens here is that the trajectory is trapped in
a valley of the potential. As we discussed before, the potential is equal in

N cos(ky/(z—x0)%+(y—yo0)?)

good approximation to —N C ;1 v o E
T—Zg Y—Yo

represents here the position of the center of mass of the droplets in the
core. The external particle regularly oscillates inside this valley (see e.g.
figure 1 for visualizing the succession of valleys of the effective potential
in the 3D case). Randomness nearly disappears from the dynamics in
the coherent case.

) where (.130, yo)

3.3 2-D Green function.

If we use the 2D Green function in place of the 3D one, the main features
of the dynamics are preserved, excepted that the scaling in the incoherent
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Figure 7: Plot of the trajectory of a droplet (Coherent regime) with
k=1, N =40, L = 1, initial position (g = 0,yo = 13) and initial
velocity (vz, = 1,vy, = 0) (left) and plot of the square of the distance
to the origin (right).

Figure 8: Plot of the trajectory of a droplet (Incoherent regime) with
k = 10, N = 40, L = 5, potential=25 cos(kr)//7, initial position
(o = 0,y0 = 100) and initial velocity (vs, = 5,vy, = 0) (left), and
new initial position (zo = 0,y0 = 200) and velocity (vy, = 6,v,y, = 0)
(right).

regime is different. This can be seen from figure 8 where we found
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quasi-circular orbits associated® to a generalized Kepler law w? - R3/? =
constant, to compare with the law w - R = constant associated to the
3D Green function or with the Kepler law w? - R® = constant in the case
of a Hookian attractive force in 1/R2.

In the coherent regime, we find the same regular rosette-shape tra-
jectories as can be seen from figure 9.
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Figure 9: Plot of the trajectory of a droplet (Coherent regime) with
k=1, N =40, L = 1, initial position (zo = 0,y = 200) and initial ve-
locity (v, = 6,vy, = 0) (left) and initial position (zg = 0,50 = 20)
and initial velocity (vy, = 6,v,, = 0) (right). Here we used the
D=2Greenfunction, not the D=3 one as before, with an effective po-
tential equal to 25 cos(kr)/+/T.

4 Conclusion

In this paper we confirmed through numerical simulations the main
features of the rosette model, originally aimed at explaining the non-
standard (flat) distribution of velocities exhibited by stars orbiting in
the periphery of galaxies, far away from the galactic cluster. In the in-
coherent regime, the rosette model leads to the prediction according to
which an alternance of repulsive and attractive forces, always directed
in the same direction, does not result into a global null accelaration,
but results into an effective attraction towards the centre of the random
force, here a cluster of bouncing oil droplets confined in a small region

3Indeed, for a force in 1/v/R, circular orbits obey w?vR = C/R where w is
the angular velocity and R the distance to the attractive centre. This implies that
rotation curves obey wR3/% is a constant, so to say the velocity varies like R'/4, in
good agreement with the plots of figure 8 where 6/5 ~ 21/4,
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of space (in analogy with the dense core of a galaxy as was considered
in the original formulation of the rosette model [24]).

The numerical simulations presented in section 3 show that indeed
there exist stable trajectories with a rosette shape, in the coherent and
incoherent regimes as well, a prediction that deserves to be investigated
in the lab....

The next step would thus be to test experimentally the predictions of
the rosette model in an experiment involving a similar configuration of
bouncing oil droplets. For instance the generalized Kepler law w?- R3/2 =
constant mentioned in section 3.3 could be scrutinized in experiments.

Various types of collective effects have been reported recently, for
instance analogies with spin arrays [26, 27]. Here we propose a new
type of dynamics, where the collective effect of a dense community of
droplets results into a rosette shape trajectory for an isolated droplet
located far away from this dense core. This trajectory is characterized
in the incoherent regime by a generalized Kepler law which constitutes
a prediction that could be tested experimentally.

Experimental confirmation of our simplified model would reveal a
new facet of bouncing oil droplets, which were shown in the past to con-
stitute a vivid source of inspiration regarding our description of the micro
world. Here we propose to mimic thanks to droplets intriguing proper-
ties of the macro world at the galactic scale e.g. flat rotation curves
[24]. In this approach, bouncing oil droplets would provide an analogi-
cal computer aimed at simulating (speculative) non-standard models of
gravity. From this point of view, they would deserve to be considered
as a bridge between the micro, quantum, world and the macro world at
galactic scale, an unexpected surprise.

Last but not least it could be interesting to observe the dynamics
of an isolated droplet orbiting around a regular lattice of bouncing oil
droplets. The existence of such lattices has for instance been reported
in refs. [28, 29].

Developing the analogy with optics such a lattice would have prop-
erties similar to those of a periodic optical array which implies the ap-
pearance of very strong interferences at the level of the dynamics of the
isolated droplet.
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Appendix: MOdified Newton Dynamics (MOND)
versus Vacuum Influenced Newton Dynamics (VIND),
an attempt to explain flat galactic rotation curves.

Since the 30’s, astronomical observations accumulated showing that Ke-
pler’s third law was not respected in the case of isolated stars orbiting far
away from a dense galactic core. Several models aim at explaining this
anomaly (see ref.[24] and references therein) among which dark matter
models according to which invisible massive particles explain why the ef-
fective gravitational potential does not scale in 1/R%. Another succesful
model is the MOND model proposed by Milgrom according to which at
very large distance from the galactic core, when the Newtonian accelera-
tion an gets very weak, it should get replaced by a modified acceleration
equal to y/an - apr which is the geometric mean between ax and a phe-
nomenological constant introduced by Milgrom. This quantity, from now

on denoted ajs has the dimensions of an acceleration (ap; = 1,2-1071°
2
s79).

The 3D rosette model described in the present paper constitutes an-
other alternative explanation. The gravitational potential undergone
by an orbiting star of mass M is then equal to —XN GMml‘m(Tﬂ
where G is Newton constant and m; represents the mass of a star be-
longing to the central cluster. At large distance, R >> 1/k, we get a
nearly radial force the intensity of which is equal, in good approxima-
tion, to XY, GMm % In the incoherent regime, the phases
are randomly distributed, so that sin(kr;) is randomly distributed too,
between -1 and +1. Making use of the law of large numbers, we expect
the effective gravitational acceleration to be gaussian distributed around
zero, with a variance of the order of VN G < m; > R, where < m; >
represents the average mass of a star inside the central cluster and R the
distance to this core. In a previous work [24], one of us (TD) calibrated
the value of k based on the astronomical observations realized with the
Pioneer probes and found that 27 /k” (where k% represents the value of
k infered from the Pioneer anomaly) is of the order of 5 to 6 lightyears
(k ~ 3-10~m™1). Estimating < m; > to be of the order of the mass
of the sun, we find that the effective acceleration towards the core of the
galaxy is of the order of VNG < migyy > %. Amazingly, this prediction
is of the same order of magnitude as the prediction made in the MOND
model. In fine, this is so because Pioneer’s anomalous acceleration is
comparable to Milgrom’s acceleration aj;. Indeed, ap ~ 8- 107 '1%m
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s™2 and ap = 1,2-107'%m s~2. Making use of the fact that ap, the
acceleration of the Pioneer probe(s) can be shown [24] to be equal to
Gmigun (kT )2, the rosette model leads to the prediction that the effective
centripetal acceleration of a far away star is of the order of

\% G<m‘jmsun R <m — \4 Gmsun R

Msun

_<m;> / [<m;> [ | NG<m;>
= NGm Msun R2 Msun= m Gmsun — RrRZ
sun sun
<m;> NG<m;>
Moun VOP R?

=iz heing of the order of 1 and ap being of the order of ayy, the

predictions made in the framework of the rosette model qualitatively fit
with the predictions of the Milgrom MOND model (the modified accel-

eration being equal to \/ay - apy=+/anr/ NG<m ~Esiz ) a5 already discussed

in ref.[24]. Note that our model links Ploneer anomaly to the Milgrom
constant in a natural manner, which is not the case with the MOND
model. One could object that the ratio /ap/aps is still of the order of
2,5 and not equal to unity, but we should not forget that with a prob-
ability fifty percent the interaction between the external star and the
core is repulsive in the rosette model, which tends in the practice to
compensate this factor 2,5.



