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RÉSUMÉ. L’aspect ontologique de la mécanique bohmienne, en tant
que théorie des variables cachées qui nous fournit une description ob-
jective d’un monde quantique sans observateurs, est largement connu.
Pourtant, son caractère pratique est de plus en plus accepté et re-
connu, car il s’est avéré être une ressource efficace et utile pour abor-
der, explorer, décrire et expliquer de tels phénomènes. Cet aspect
pratique émerge précisément lorsque l’application pragmatique du for-
malisme l’emporte sur toute autre question d’interprétation, encore

sujet à débat et à controverse. À cet égard, notre objectif est de mon-
trer et de discuter ici comment la mécanique bohmienne met en valeur
de manière naturelle une série de caractéristiques dynamiques difficiles
à découvrir à travers d’autres approches quantiques. Cela vient du
fait que la mécanique bohmienne permet d’établir un lien direct entre
la dynamique des systèmes quantiques et les variations locales de la
phase quantique associées à leur état. Pour illustrer ces faits, deux
modèles simples de phénomènes quantiques physiquement éclairants
ont été choisis, à savoir la dispersion d’un paquet d’ondes gaussiennes
libres et l’interférence à deux fentes de type Young. Comme il est
montré ici, les résultats de leur analyse offrent une compréhension al-
ternative de la dynamique affichée par ces phénomènes quantiques en
termes du champ de vitesse local sous-jacent, qui relie la densité de
probabilité au flux quantique. Ce champ, qui n’ exprime rien d’ autre
que la condition de guidage en mécanique bohmienne standard, ac-
quiert ainsi un rôle de premier plan pour comprendre la dynamique
quantique, en tant que mécanisme responsable de cette dynamique.
Cela va au-delà du rôle passif généralement attribué au champ de la
vitesse locale en mécanique bohmienne, où traditionnellement l’ on ac-
corde plus d’ attention aux trajectoires et au potentiel quantique.

ABSTRACT. The ontological aspect of Bohmian mechanics, as a
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hidden-variable theory that provides us with an objective description
of a quantum world without observers, is widely known. Yet its prac-
ticality is getting more and more acceptance and relevance, for it has
proven to be an efficient and useful resource to tackle, explore, describe
and explain such phenomena. This practical aspect emerges precisely
when the pragmatic application of the formalism prevails over any other
interpretational question, still a matter of debate and controversy. In
this regard, the purpose here is to show and discuss how Bohmian me-
chanics emphasizes in a natural manner a series of dynamical features
difficult to find out through other quantum approaches. This arises
from the fact that Bohmian mechanics allows us to establish a direct
link between the dynamics exhibited by quantum systems and the local
variations of the quantum phase associated with their state. To il-
lustrate these facts, simple models of two physically insightful quantum
phenomena have been chosen, namely, the dispersion of a free Gaussian
wave packet and Young-type two-slit interference. As it is shown, the
outcomes from their analysis render a novel, alternative understanding
of the dynamics displayed by these quantum phenomena in terms of
the underlying local velocity field that connects the probability density
with the quantum flux. This field, nothing but the so-called guidance
condition in standard Bohmian mechanics, thus acquires a prominent
role to understand quantum dynamics, as the mechanism responsible
for such dynamics. This goes beyond the passive role typically assigned
to this field in Bohmian mechanics, where traditionally trajectories and
quantum potentials have received more attention instead.

1 Introduction

The quantum approach that is commonly known as Bohmian mechan-
ics1 has been a source of controversy since its inception [1, 2], formerly
intended as a simple counter-proof to Von Neumann’s theorem [3] on
the incompatibility between quantum mechanics and any possibility to
complete this theory with the introduction of local hidden variables.
Therefore, after having worked for a long time taking Bohmian mechan-
ics as a fundamental theoretic-analytical tool to explore, understand
and describe different aspects of quantum and optical phenomena, one
learns to live with a series of recurrent questions from colleagues and re-
viewers: Why should anyone be interested in Bohmian-related “stuff”?
Which new physics does Bohmian mechanics add with respect to the

1Within the field of the quantum foundations, Bohmian mechanics is also widely
known as the de Broglie-Bohm interpretation. However, in recent times the term
Bohmian mechanics has become more widespread when it is used in applications.
This will be the term also considered here.
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other more conventional quantum approaches? Is it not redundant? In
addition, if the always appealing though controversial concept of hid-
den variable also appears without having made explicit mention to it
(or without having mentioned it at all), things become even a bit more
complicated.

All in all, the general trend seems to be smoothly changing towards
what could be considered to be, say, a more Bohmian-friendly attitude
than it was ten or twenty years ago (not to say earlier on). Since the
1990s an increasing number of monographs have been published on the
issue [4–16]. These works describe and discuss the physical (and meta-
physical) implications of Bohmian mechanics, revisit the standard quan-
tum formulation in terms of this approach or provide a detailed account
on its applications to different physical problems, which the interested
reader is kindly invited to consult (of course, bearing in mind that the
list of works is far from being complete, yet it serves to the purpose of
illustration). When facing such a flourishing landscape of new devel-
opments in the field, one feels compelled to revisit the above questions,
particularly the one about why any attention should be paid at all to the
Bohmian approach beyond the hidden-variable issue, i.e., beyond onto-
logical questions related to the completeness of quantum mechanics.

After a long and tough way, some conclusions have come up in that
regard, partly collected and discussed in previous works [17–19]. Now,
getting back to Bell’s pedagogical view on Bohm’s mechanics [20], the
very first point that one should address is whether, keeping our feet
on solid ground, beyond metaphysical questions, this approach provides
us with a natural scenario to think the physics of quantum phenomena.
This does not mean to consider that Bohm’s particle trajectory is the ac-
tual trajectory followed by a real quantum particle2. Yet, the possibility
to introduce this “forbidden” element in quantum mechanics allows us
to understand the evolution of quantum waves on formal and conceptual

2Note that the concept of trajectory needs not be necessarily associated with the
actual position of a particle or that of its center of mass. Rather, it should be under-
stood in a broad sense, i.e., as describing the evolution in time of any type of degree
of freedom (vibrations, rotations, etc.), which is a point often neglected in discussions
around Bohm’s theory, where trajectories are immediately and uniquely related to
point-like (structureless) particles. In this sense, Bohmian mechanics transcends the
oversimplified framework that associates the approach with a theory of motion for
quantum particles; it can be applied to any aspect of matter that is accounted for by
Schrödinger’s equation, although providing the corresponding trajectories with the
appropriate interpretation (i.e., in compliance with the context considered).
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grounds analogous to those used to describe the evolution of classical
action in phase space, namely, the theory of characteristics [21] and dy-
namical flows [22]. Of course, there are certain formal subtleties that
generate necessary differences between the classical and the quantum
descriptions: while space point dynamics is well-defined in the former,
the latter precludes it in the same terms, because it assumes mutual
spatial coherence among different spatial points (nicely evidenced by
the Moyal-Wigner representation), which in turn implies a revision of
the laws of motion. Nonetheless, this does not invalidate the existence
of a common formal structure.

Stepping down from the formal level to, say, the level of our every-
day experience, based on real experiments with real quantum particles
(including photons, whatever they might be), several facts are worth
noticing:

i) The evolution of quantum particles takes place in real time. Quan-
tum particles cannot (or should not) be dissociated from the reality
we live in (and where they also live in). In a typical diffraction or
scattering experiment, for instance, pushing a trigger on they start
being launched; pushing the trigger off the flux of particles ends.
Now, in the meantime, each one of such particles has moved from
wherever they were at a t0 to somewhere else at t > t0 (relativis-
tic issues are left aside for simplicity and because they are not
necessary at all in the discussion).

ii) The quantum theory is a statistical theory, where the so-called
observables correspond to statistical quantities. Single events or
realizations, e.g., the detection of one particle at a time t, do not
provide us with any relevant information about the process inves-
tigated; to obtain precise (physically meaningful) information, a
large number of events or realizations (detected particles) is re-
quired, which involves a statistical analysis. The probability dis-
tributions rendered by conventional quantum mechanics are di-
rectly related to this large-numbers approach, which is the way
how we can access and investigate experimentally quantum sys-
tems. In this regard, it is worth noting that the widespread con-
ception that a full interference pattern, for instance, is related
with each single quantum particle is based on the experimental
performance previous to the advent of quantum mechanics, as it
is inferred from works at that time [23, 24]. After all, the atom-
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istic understanding of matter was not solidly grounded. But, more
importantly, this view did not allow the settlement of solid con-
clusion about the inherent statistical nature of quantum particles.
Only by the end of the 1970s and along the 1980s the refinement
reached in the experimental techniques enabled single-particle pro-
duction/detection [25–27], which in turn gave complete sense to the
statistical meaning of quantum observables, as related to a collec-
tion of individually (detected) events. This leads us directly to fact
(iii) below.

iii) Even when it can be experimentally shown that there is no time-
correlation between the evolution of one particle “identically” pre-
pared with respect to another particle that precedes it, the two
particles behave as if they shared some kind of fundamental in-
formation. Independently of their nature, all quantum particles
exhibit the same behavior in event-by-event experiments (pho-
tons [28–30], electrons [31–36], atoms [37] or large macromolecular
complexes [38–40]). This behavior has also been observed even
in classical-type processes3, such as imaging produced by objects
under extremely faint illumination conditions. In these cases, the
image becomes apparent after a rather long exposure time, once
the number of collected photons is relatively high, as it is shown
and discussed in [41], in the context of the limitations imposed on
vision by the quantum (granular) nature of light. This is exactly
the same problem that affect (the imaging of) interference patterns
when the source is very weak under total coherence conditions.

The above facts are relatively well known and hence they might
seem natural to the reader (even trivial). However, they pave the
way for event-to-event statistical descriptions of quantum systems to
the detriment of the single-particle approaches typically associated with
Schrödinger’s equation. It is precisely here where Bohmian mechanics
comes into play: it gathers all the formal elements to be consistent with
quantum mechanics (it is actually quantum mechanics) without the ne-
cessity to introduce any additional quantities or approximations. Indeed
it is an ideal candidate to investigate quantum dynamics in conformity

3Here, the notion of “classical-type” applied to quantum or optical processes will
be understood in the context of wave descriptions that include a partial or even total
lack of coherence (and hence they are unable to display interference), regardless of
how the latter arises.
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with the above three experimental facts: evolution in real time, ob-
servables arising from statistics over individual events and uncorrelated
realizations (events). Leaving aside complications arising from compu-
tational implementations, we now have a convenient tool to compare on
equal (statistical) footing experiment and theory (detections vs realiza-
tions). This is precisely a legitimate argument to respond the everlasting
criticism on the additional physical content, which also leaves aside the
hidden-variable issue, because both concepts and formalism are well de-
fined. In fact, the role of the so-called quantum postulates is diminished.
So, what else could one wish?

Thus, so far, it is clear that, provided all sources of controversy are
left aside (at least in line with the renowned Copenhagian ‘shut up and
calculate!’ [42]), nothing wrong is found in Bohmian mechanics, nor even
one needs to give further explanations on which new physics it provides
us with. Of course, there are some subtleties that make Bohmian me-
chanics different at an intuitive level from the point of view of classical
Newtonian mechanics, but this is also legitimate for, after all, quan-
tum mechanics itself is conceptually different from classical mechanics,
as stressed by the Bell inequalities [43, 44]. As mentioned by Hiley [45],
this difference used to be remarked by Bohm by talking about Bohmian
‘non-mechanics’, since this quantum approach sensu stricto has little in
common with mechanics. Note, for instance, that the standard concept
of force gets diluted with the introduction of a quantum force mediated
by Bohm’s quantum potential. Yet this is a hydrodynamic-like model
that serves to the purpose, making more apparent dynamical behaviors
that go beyond our classical intuition, although they rule nature at the
microscopic and mesoscopic levels (with important implications on the
macroscopic one).

Following the preceding discussion, the purpose here is to show and
discuss a “non-mechanical” perspective of the Bohmian approach, that
is, avoiding the traditional ideas of quantum potential and quantum
force, and trying to ground the description of quantum phenomena on
a “non-observable” (in the standard sense), namely, the quantum phase
field associated with the system state. Typically, Bohmian mechanics
includes discussions that turn around the concepts of Bohm’s quantum
potential (or the forces generated by this potential) and how it rules the
behavior of the so-called Bohmian trajectories. However, the quantum
potential is only a measure of the curvature of the probability density
and, therefore, one feels compelled to find other alternative mechanisms
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responsible for the dynamics exhibited by quantum systems. The quan-
tum phase and, more specifically, its local variations, though, have not
been much exploited in the literature, although they translate into a
local velocity field that, in principle, can be measured by means of the
so-called weak measurements [46–48]. When this velocity field, which
is denoted as “local” because the system flow is determined by its lo-
cal value, is considered, a series of interesting properties emerge, which
are not proper of Bohmian mechanics, but of quantum mechanics in
general, although they cannot be easily perceived with other quantum
formulations. For instance, the so-called non-crossing rule in Bohmian
mechanics is nothing but a combination of the single-valuedness of the
quantum phase (except for integer 2π-jumps, which are unnoticeable in
the velocity field) and the dynamical domains determined by the velocity
field. In order to illustrate these properties, a simple model of Gaussian
diffraction and Young-type interference are going to be analyzed in next
sections, because of their interest not only in quantum mechanics, but
also in wave optics, which shares common theoretical grounds with the
former (despite the latter is typically regarded as a “classical” theory).

The work has thus been organized as follows. Section 2 introduces
and discusses some fundamental aspects of Bohmian mechanics in the
direction pointed out above, making emphasis on those formal aspects
that put the approach at the level of any other quantum representa-
tion rather than in those that have traditionally associated it with a
theory without observers, where trajectories are (unfoundedly) related
to paths followed by quantum particles. Furthermore, on the analytical
level, some particular aspects of the quantum potential are illustrated
by employing a simple diffraction model consisting of a free Gaussian
wave packet. Section 3 is devoted to revisit and discuss some physical
consequences related to a Young-type interference. To support the in-
terest in the theory, particularly taking into account the discrete nature
of quantum phenomena, first the outcomes from a simple event-by-event
Young-type experiment are reported and discussed. Then, Young-type
fringes are analytically described in terms of a simple model consisting
of a coherent superposition of two Gaussian wave packets. This models
describes in a convenient manner the emergence of interference fringes
along the transverse direction (assuming the matter wave propagates
forward with a fast speed, as it is usually the case in slit and grating
diffraction experiments). More specifically, it will serve to show the main
difference between the physics linked to the quantum potential and the
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physics rendered by the velocity field. Finally, the work concludes with
a series of remarks summed up in Sec. 4.

2 A critical view on Bohmian mechanics: Concepts and for-
malism

2.1 Hidden variables vs experimental facts

Since much has already been said in the literature about conceptual
and formal aspects of Bohmian mechanics, this section will be devoted
to highlight other formal aspects, which have not been so extensively
considered. Yet these aspects provide us with a different perspective of
both Bohmian mechanics itself and the quantum phenomena in general.
They will also be useful to get a better and broader understanding of
the discussion in Sec. 3, at the same time that they in compliance with
the statement made by Bohm regarding his reformulation of quantum
mechanics [1]:

“[. . . ] the suggested interpretation provides a broader con-
ceptual framework than the usual interpretation, because it
makes possible a precise and continuous description of all pro-
cesses, even at the quantum level. This broader conceptual
framework allows more general mathematical formulations of
the theory than those allowed by the usual interpretation.”

The above statement refers to interpretation, that is, how we should
or could consider that real particles behave in space and time. Now,
to put forth the question on a real-life context, consider the chip of a
CCD made of an array of pixels and connected to a screen where the
detection of a photon in a pixel translates into a scintillation on the
screen. Is there any good or deep reason preventing us from joining the
scintillation (single photon detection) with a specific source point at a
previous time? That is, can we establish a causal connection between the
two points? In principle, it seems there is no empirical evidence neither
in favor nor against it. However, assuming that we accept that such a
link can be established, the next question is whether the connection can
be done by means of a smooth trajectory, more specifically, a Bohmian
trajectory. This has been a central question in Bohmian mechanics since
its beginning in the early 1950s. Although the Bohmian approach pre-
scribes a precise way to proceed, we have no way to demonstrate that
nature operates the same way; other alternative approaches could also



Bohm’s quantum “non-mechanics” 27

be formulated with a similar result, but without the need to consider a
smooth causal connection. This is the case, for instance, of the stochastic
approaches proposed by Bohm and Vigier [49] (later on also considered
by Bohm and Hiley [50]) or by Nelson [51]. Nonetheless, it is clear that
there is an appealing feature in Bohmian trajectories over other types of
trajectory-based approaches: it renders a fair reproduction of the detec-
tion process, statistically speaking, at the same time that offers a precise
description of the system evolution (spatial diffusion, diffractive effects
or whirlpool-type motion).

2.2 Equations of motion and trajectories

The standard starting point of Bohmian mechanics consists in recasting
Schrödinger’s equation in the form of two coupled real-valued partial
differential equations [1,4]. This is achieved by writing the wave function
(formerly given in the configuration representation) in polar form, as

Ψ(r, t) = A(r, t)eiS(r,t)/~. (1)

This nonlinear transformation allows us to pass from the complex field
variable Ψ to two real field variables, namely, an amplitude A and a phase
S. This ansatz was formerly considered by Dirac [52], in connection
with the existence of quantized singularities (magnetic monopoles), and
by Pauli [53], in the context of quantum-classical correspondence. After
substitution into the time-dependent Schrödinger equation,

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VΨ, (2)

and then proceeding with some simple algebraic manipulations, the real
and imaginary parts of the resulting equation give rise to two coupled
partial differential equations:

∂A2

∂t
+ ∇ ·

(
A2∇S

m

)
= 0, (3a)

∂S

∂t
+

(∇S)2

2m
+ V − ~2

2m

∇2A

A
= 0. (3b)

The first equation, Eq. (3a), arising from the imaginary part of the
Schrödinger equation, deals with the spatial diffusion or dispersion of the
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probability density, ρ(r, t) = A2(r, t). This is a continuity equation relat-
ing the evolution of the probability density in a position (configuration)
space with the vector quantity

J(r, t) = A2(r, t)
∇S(r, t)

m
=

1

m
Re {Ψ∗(r, t)p̂Ψ(r, t)} , (4)

where p̂ = −i~∇ is the expression of the momentum operator in the
configuration representation. Equation (4) describes the quantum flux
or current density, a well-known quantity in quantum mechanics [54,55],
introduced at the very beginning of any elementary course on the subject.
As it can be noticed on the r.h.s. of the first equality in Eq. (4), the
quantum flux can be rewritten in a more compact form as

J(r, t) = ρ(r, t)v(r, t). (5)

This expression not only makes emphasis on the causal relationship be-
tween the probability density ρ and its dispersion in terms of the quan-
tum flux, but it also makes more apparent the mechanism for such a
dispersion, namely, the presence of an underlying local velocity field,

v(r, t) =
J(r, t)

ρ(r, t)
=
∇S(r, t)

m
. (6)

Physically, this vector field accounts for the density flow rate through the
point r at a time t, i.e., its value changes locally following the variations
of the quantum phase S, unlike the average drift value obtained from
the expectation value of the momentum, 〈p̂〉/m.

The velocity field (6) is not a proper quantum observable in spite of
its connection to the usual momentum operator p̂. Yet, it is going to play
a fundamental role in the quantum dynamics, because of the information
that it provides on the concentration, expansion, diversion or rotation
of the quantum flow at each point. The natural question that arises
here is why this quantity is not mentioned at all in any standard course
on quantum mechanics, although it is well defined and provides extra
local information on the deformation of the probability density in the
configuration space. Actually, not only in standard quantum mechanics,
but also in Bohmian mechanics this quantity is often neglected in favor of
other quantities, such as the so-called Bohm’s quantum potential, usually
required to explain the behavior displayed by Bohmian trajectories.

To understand the above statement, let us get back to Eqs. (3).
The second differential equation, Eq. (3b), encoded in the real part of
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Schrödinger’s equation, keeps a formal resemblance with the classical
Hamilton-Jacobi equation [56]. This classical Hamilton-Jacobi equation
arises from the so-called Hamiltonian analogy between mechanics and
optics [57], which establishes a connection (analogy) between the wave-
fronts of optics (surfaces of constant phase) and surfaces of constant
mechanical action. Hence, in the same way that light rays are per-
pendicular to the wavefronts at each point, the Newtonian trajectories
are perpendicular to constant-action surfaces. Following this analogy,
Bohm considered Eq. (3b) to be a quantum version of the Hamilton-
Jacobi equation, thus postulating the existence of a quantum Jacobi law
of motion [1, 4]

ṙ(r, t) =
∇S(r, t)

m
. (7)

This equation of motion is known as the guidance equation. In agreement
with the widespread Bohmian interpretation for this equation, it rules
the (quantum) way how particles moves, since integrating in time with
the corresponding initial conditions one obtains swarms of (Bohmian)
trajectories. Extending this idea further beyond, one might conclude
that particle instantaneous positions (e.g., the trajectory of an electron
or a photon in an interference experiment) are actually described by
the solutions to (7), thus becoming a sort of hidden causal variables.
However, as seen above, this equation of motion is exactly the same as
Eq. (6), which naturally follows from the standard formulation (from the
continuity equation), without any need to postulate anything, nor even
the existence of hidden variables.

In classical mechanics there is a clear and direct connection between
the trajectories obtained from Jacobi’s law, which describe the dynamical
properties displayed by a phase-space distribution function, and Newto-
nian trajectories, which account for the evolution of individual systems.
That is, there is a one-to-one correspondence between the descriptors
for ensembles and for individuals, which is ultimately based on expe-
rience (statistics is the large-particle limit of dynamics). However, the
same connection cannot be established for quantum systems. Note that
quantum mechanics, which is a statistical theory itself (with some pe-
culiar properties that make it different from classical statistics), lacks a
quantum counterpart for individuals, thus avoiding us to compare the
Bohmian trajectories that describe the dynamical properties of the prob-
ability density (in configuration space) with the dynamics exhibited by
individual particle trajectories obtained from a singe-body dynamical
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law, i.e., the quantum analog to Newton’s trajectories.

Bohmian trajectories have long been identified with such quantum
Newtonian trajectories. However, this is not based on solid empirical
grounds, but on a weak conceptual inference: because the statement
holds for classical particles, it must also hold for quantum ones. This
is a very weak argumentation, because classical mechanics and classi-
cal statistical mechanics are based on different formal grounds (phase
space) than quantum mechanics (positions or momenta, but not both at
the same time, unless we pay a price for it, as it happens ih the Wigner-
Moyal representation). Establishing a strong unique connection would
require empirical evidence beyond statistics-based experiments and re-
considering theoretical models in the direction of de Broglie’s former
ideas of wave fields and particles both coexisting but being different
physical entities [58], the stochastic causal model [49, 50] or subquan-
tum Brownian-type models [51, 59, 60]. This is an important point, for
instance, when using Eq. (7) in the interpretation and understanding
of single-photon experiments [61, 62], since the information provided by
such experiments is indeed understandable in terms of our actual the-
ories of light; trajectories inferred from the experiments thus do not
represent the actual motion of real photons, but just the average ex-
pansion or contraction undergone by the wave field corresponding in the
large photon-number limit. In order to switch from matter waves to light
in this regard, it can easily be noted that Eq. (7) shows a certain remi-
niscence of the optical ray equation, which describes rays as lines always
perpendicular to the surfaces of constant phase and would arise from
the aforementioned Hamiltonian analogy [57] (which, in turn, underlies
the derivation of Schrödinger’s equation). This is precisely the same
conclusion found by de Broglie earlier on4 [64], which in the case of clas-
sical light (which does not follow Schrödinger’s equation, but Maxwell’s
equations) works very nicely [65–67].

2.3 Bohm’s quantum potential

Unlike classical particles, the motion displayed by quantum particles5

that follow Eq. (7) is affected not only by the forces induced by V (r, t),

4In this regard, the interested reader might like to consult the work by Drezet
and Stock [63] on an original manuscript sent by Bohm to de Broglie in 1951, which
predates the renowned 1952 papers and, according to the authors, seems to be its
origin.

5Following the preceding discussion, the meaning of “particle” here is as denoted
above, i.e., as an entity that serves us to keep track of the quantum density flux.
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but also by an additional term, as seen in Eq. (3b). This is the so-called
Bohm’s quantum potential,

Q(r, t) = − ~2

2m

∇2A(r, t)

A(r, t)
= − ~2

4m

{
∇2ρ(r, t)

ρ(r, t)
− 1

2

[
∇ρ(r, t)

ρ(r, t)

]2}
. (8)

This contribution to the quantum Hamilton-Jacobi equation has little
in common with usual potential functions acting on physical systems.
Rather it is associated with the local curvature of the amplitude of the
wave function, undergoing important values in those regions where the
amplitude becomes negligible, but not its Laplacian. This happens in
nodes and nodal lines, where the quantum force acting on the particle
becomes very intense and so the changes in v. However, this is all
related to the quantum state of the system itself and not to any external
interaction. This is more apparent if we look at the right-hand side of the
second equality, which is explicitly written in terms of ρ. In a Bohmian
sense, ρ describes the statistical distribution of independent realizations,
i.e., it is produced by the cumulative effect arising after, for instance,
launching a large number of independent photons or electrons (but all
subjected to the same experiment), and see how they start distributing
spatially after a given (long enough) exposure time on the corresponding
detector [28, 30, 35, 40]. How can independent realizations influence one
another?

The above discussion leads us to a deeper question, namely, that of
the reality of the wave function as a physical field, beyond its usual con-
ception as a probabilistic information descriptor [68]. Quantum systems
or, more strictly speaking, their seemingly random statistical distribu-
tions would play the role of tracers that allow us to feel such a presence,
in the same way, for instance, that iron powder allows us to make ob-
servable magnetic the line forces and, therefore, to detect the presence
of magnetic fields. Of course, this does not provide any clue on the ori-
gin of this field or whether quantum systems behave in the same way
as Bohmian trajectories do (see discussion in next section), but at least
it seems there is a dynamical element that is totally neglected, namely,
the presence of an intrinsic velocity field. This field does not require
the presence (or existence) of a quantum potential, because it is directly
related to the phase (see below), hence removing the redundancy of de-
scribing quantum effects in terms of ρ and its curvature. Furthermore,
this quantity tells us that there is an underlying statistical stream be-
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havior not necessarily related with a quantum observable (although its
effects manifest through the topology displayed by ρ).

There is another important question regarding the quantum po-
tential, more important to the purpose here because of its dynamical
implications, which is the fact that this contribution to the quantum
Hamilton-Jacobi equation arises from the kinetic operator of Eq. (2).
Therefore, it is related to the diffusive part of the Schrödinger equation
and not to the action itself of an external potential function. Therefore,
even if it is used to explain in a sort of mechanistic way the motion ex-
hibited by quantum systems (within a Bohmian framework), it should
be interpreted as a kind of internal information conveyed to the system
by its own quantum state, which is continuously changing in time. It
is in this regard that the concept of “mechanics” is somehow dubious,
because the mechanism of the dynamical behaviors observed is partly
due to the own system (or, more strictly speaking, its quantum state).

2.4 Dispersion of a localized Gaussian wave packet

To illustrate the above facts in simple terms, consider the paradigm of
localized quantum system representing the free evolution of a particle of
mass m, described by Gaussian wave packet [69]. In this case, although
there are no external forces acting on the particle, its states spreads out
continuously in time, first slowly and then, after undergoing an acceler-
ating boost, linearly with time [17]. To better understand this behavior,
consider that the particle is described by a normalized one-dimensional
wave packet centered at x = 0,

Ψ(x) =

(
1

2πσ2
0

)1/4

e−x
2/4σ2

0 , (9)

with its width being σ0. The time-evolution of this wave packet is de-
scribed by the time-dependent state

Ψ(x, t) =

(
1

2πσ̃2
t

)1/4

e−x
2/4σ0σ̃t , (10)

with

σ̃t = σ0

(
1 +

~t
2mσ2

0

)
, (11)
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with its (time-dependent) width being

σt = |σ̃t| = σ0

√
1 +

(
~t

2mσ2
0

)2

. (12)

Because the initial momentum associated with the particle is zero, the
center of this wave packet remains at x = 0 (there is no translational mo-
tion). Yet, the expectation value of the energy is nonzero, but constant
in time:

Ē = 〈Ĥ〉 =
~2

8mσ2
0

. (13)

This sort of average energy (13) corresponds to the diffusive internal
energy that makes the wave packet to spread out with time, even if
it can be recast as Ē = p2s/2m, in terms of the spreading momentum
ps = ~/2σ0 [69]. Nonetheless, we can still further investigate this contri-
bution. To that end, let us recast the wave packet (10) in polar form and
proceed with the corresponding substitutions in Eq. (3b). The kinetic
contribution reads as

K =
1

2m

(
∂S

∂x

)2

=
~2

8mσ2
0

(
σ2
t − σ2

0

σ2
t

)
x2

σ2
t

, (14a)

while Bohm’s quantum potential is

Q =
~2

8mσ2
0

σ2
0

σ2
t

(
2− x2

σ2
t

)
. (14b)

As it can be noticed from Eq. (14a), the lack of an initial momen-
tum or the action of an external potential makes more apparent how the
quantum phase is responsible for the generation of a dynamics, which
eventually translates into the spreading of the wave packet. This dynam-
ics is null at t = 0, but since the spreading factor, σ̃t, in the Gaussian
state acquires a complex phase, it gradually induces the appearance of an
internal motion in the form of the spreading of the wave packet. On the
other hand, the quantum potential (14b) is nonzero even at t = 0, which
is due to its relationship with the curvature of the quantum state (either
through its amplitude or its density). Because of their different origin,
both quantities do not cancel each other or render a constant value, but
they keep evolving in time, spreading all over longer and longer distances
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in configuration space, which explains the increasing spreading of free
Gaussian wave packets.

Following a standard Bohmian prescription and appealing to a typi-
cal description of dynamical systems [22], it is seen that first the inverted
parabola with x corresponding to the quantum potential generates an un-
stable point (the kinetic term is zero), which diverts trajectories towards
positive and negative x (with respect to x = 0). Then, the parabola
describing the kinetic term starts gaining importance, which somehow
helps to counterbalance the action of the quantum potential, binding the
motion. Finally, at asymptotic times, the quantum potential becomes
relatively flat compared to the kinetic term (one term goes as σ−2t , while
the other one goes as σ−4t ), which opens up gradually, as x2/t2, thus
producing a linear spreading of the trajectories (i.e., as x/t).

Nonetheless, their combined average, K̄ + Q̄, when it is computed
with respect to the also time-dependent density ρ, i.e.,

K̄ + Q̄ =

∫ ∞
−∞

[
1

2m

(
∂S

∂x

)2

− ~2

2m

1

ρ1/2
∂2ρ1/2

∂x2

]
ρ dx, (15)

renders the constant value (13), which is consistent with the fact that
this type of motion is energy-preserving, as it is expected from a free
particle. Actually, it is interesting to note that in the long-time limit,
we obtain

K +Q ≈ 1

2
m
(x
t

)2
, (16)

which is consistent with the asymptotic behavior displayed by K in the
long-time limit, as it was commented above. Noticed that Eq. (16) re-
sembles the usual expression for the kinetic energy of a classical particle
(with v = x/t), although its average is (13), as it can readily be shown
by averaging over ρ. After all, in the long-time limit, the dispersion
undergone by the Gaussian, Eq. (12), increases linearly with time as

σt ≈ vst, (17)

where vs = ps/m [69]. Actually, this expression not only provides the
asymptotic spreading of a quantum wave packet for a massive particle,
but it also coincides with the divergence of a Gaussian laser beam in
paraxial optics [70] when the quantity ~t/m is substituted by z/k (linear
increase of the transverse dispersion with the longitudinal coordinate z).
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From a statistical viewpoint, the above discussion focuses around
ensemble dynamics, which is what ρ eventually describes, namely the
behavior of a large number of identically distributed (non interacting)
particles of mass m in free space. Following the standard Bohmian view
(the one arising from his 1952 paper), such particles follow well-defined
trajectories, which are obtained after integrating in time Eq. (7). This
is a legitimate way to understand such an equation. However, there
is an also legitimate but alternative way to understand it, namely, by
considering that such trajectories are just the streamlines that follow the
flow described by the local velocity field v, as specified by Eq. (6) and in
compliance with standard quantum mechanics. In this case, irrespective
of how real particles move (smoothly or randomly), Bohmian trajectories
only reflect the local dynamics of the ensemble, just in the same way
that a tiny floating particle provides us with a clue on how a stream
flows, but not on how each individual molecular component of the stream
behaves [17, 19, 71]. This view is closer to Madelung’s hydrodynamic
formulation of the Schrödinger equation [72]. So, going to the point,
after analytically integrating in time (7) for the Gaussian state (10), the
trajectories are found to follow the functional form

x(t) =
σt
σ0

x(0), (18)

where x(0) is the corresponding initial condition. As it can be noticed,
these trajectories diverge in compliance with the divergence undergone
by σt, being the effect more apparent as their initial condition is chosen
further and further away from the center of the wave packet. At each
time, it is possible to determine how the distribution described by ρ
behaves by only inspecting the behavior exhibited by a swarm of such
trajectories, which provides us clues on different dynamical regimes [17].

3 Young’s two slits revisited

To better appreciate the implications of the Bohmian formulation of
quantum mechanics and their reach in our understanding of quantum
phenomena, now we are going to focus on the analysis of Young’s two-slit
experiment, which, quoting Feynman [73], “has in it the heart of quan-
tum mechanics”. As it is shown, when the phenomenology of this exper-
iment is revisited in terms of Bohmian mechanics, a different perspective
arises on what is going on, which challenges its traditional Copenhagian
explanation. Furthermore, because this experiment stresses in the sim-
plest manner the capability of quantum systems to exhibit delocalization
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while keeping long-distance space correlations (necessary to observe the
well known interference fringes), by extension that analysis also provides
us with a new physical understanding of the concept of coherence, central
not only to quantum mechanics, but also to optics.

3.1 Current experiments, old explanations

The single-event-based picture of interference rendered by Bohmian me-
chanics is, perhaps, better understood by revisiting the experiment and
how it has been traditionally explained. As it was mentioned in the intro-
ductory section, there is a number of interference experiments performed
with both photons and material particles, which show that whenever the
particle flux is faint enough (to the point that each single detection can
be monitored in real time), a random-like distribution of detected events
is observed instead of the well-defined interference fringes obtained in a
standard high-flux experiment. In such experiments, interference fringes
start emerging gradually from among the point-like distribution of de-
tected events as time passes by [30, 41]. This can easily be illustrated
by considering a simple experiment, which, in the current case, has been
performed by the author in the teaching optics laboratory (an experi-
ment that our students routinely perform every year). It is a Young-type
experiment performed with a 631 nm wavelength laser (< 5 mW power)
illuminating a thin steel mask with two parallel narrow slits. The slits
have an average width of 0.145 mm and their center-to-center distance
is 0.865 mm. The light coming from the slits is made to converge with
a 150 mm focal length lens on a CCD consisting of a 1024 × 768 array
of square pixels (the side of each pixel is 4.64 µm long).

The upper panels of Fig. 1 show two snapshots that illustrate the re-
sult of performing the experiment under high-intensity conditions (left)
and under low-intensity conditions (right). In both cases, a very short
exposure time has been considered in order to emphasize who, in the
high-intensity regime, the light interference fringes appear as a contin-
uous intensity distribution. On the contrary, when the intensity is low
enough, which is achieved by placing two polarizers in front of the laser
source and then making their transmission axes to be nearly perpendic-
ular one another, we observe a series of uncorrelated scintillations that
distribute randomly across the detector surface. By zooming in the up-
per right panel (see inset), we can notice that the distribution is rather
sparse, thus offering no clue on any underlying interference-type struc-
ture. In order to get a better quantitative idea, the lower panels show the
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Figure 1: Snapshots illustrating the light distribution produced by two
narrow slits (0.145 mm wide) separated a distance of 0.865 mm when
they are illuminated by a 631 nm wavelength laser under high-intensity
conditions (left) and low-intensity conditions (right). The upper panels
show the intensity distribution recorded by a CCD consisting of a 1024×
768 array of square pixels (with a side 4.64 µm long). In both cases, the
right-hand side gray-level scale in the upper panels denotes the intensity
registered by each pixel during the time the experiment has been run
(few seconds in both cases), which is proportional to the number of
photons registered by each pixel. The lower panels show the intensity
only along the transverse direction, that is, integrating (summing) over
the vertical direction in the upper plot in order to make more apparent
that the intensity can be assumed as a continuous distribution in the
high-intensity regime and as formed by discrete scintillations in the low-
intensity regime.

transverse intensity distribution, which has been obtained by integrating
(summing) the intensity of the upper panels along the vertical direction.
The x-axis labels the position of the capture pixels along this direction,
while the y-axis provides us with the relative intensity, proportional to
the number of photons collected in the corresponding pixels (remember
the summation over the vertical pixels for a given x-position) during
the experiment performance time (for a better read of the upper panels,
the gray-level scale to their right represents the same). Regarding the
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interpretation of the data shown, several comments are in order. First,
while the horizontal axis in the lower panels runs over all the 768 pixels,
for a better visualization in the upper panels only the region around the
fringes has been considered (the same regarding the vertical axis). Hence,
the upper and lower panels cannot be directly compared, which is the
reason for the mismatching when comparing the maxima and minima in
both cases. Second, the discrete numbers that appear, in particular, in
the lower right panel does not correspond to photon counts or, in other
words, to number of photons per pixel, but to a quantity proportional to
CCD units of counts. Yet it is clear by comparing the two lower panels
that while in one case the pattern runs smoothly along the transverse
direction (left), the same does not happen in the low-intensity regime,
where a nearly uniform discretized accumulation. Finally, even with the
limitations of not having at hand a reliable single-photon source, but a
simple setup (after all, the experiment has been carried out by a the-
oretician), it still serves to the purpose of illustrating the discreteness
involved in the formation of interference patterns. This phenomenon can
only be noticed with a very faint illumination of the slits, but is of much
relevance in the understanding of the two-slit experiment.

In Fig. 2 the gradual appearance of the fringes is explicitly shown by
beans of a series of subsequent snapshots, each taken a larger exposure
time. In the upper panel of the figure there is a photograph for a short
time, as in the right panels of Fig. 1. As time proceeds, the sequence of
fringes becomes more and more apparent, as it is shown in the sequence
from panels (a) to (d). In this case, in order to focus on the region
around the interference pattern, the intensity in the 1D plots has been
taken along a given range of the 2D photographs. It can be noticed that
these fringes are more apparent in the 2D plots than in the representa-
tions of the relative intensity in terms of the transverse direction. This
is only an effect due to the summation over the vertical direction: since
the pattern is too faint, all other pixels exited with environmental noise
photons are also going to contribute, thus reducing the relative visibility
of interference pattern. This is the case in panels (a) and (b), for in-
stance. In the case of panels (c) and (d), the accumulation of photons in
the regions around interference maxima becomes more prominent than
the background noise contribution.

The key question that arises now is that of the interpretation of the
granular behavior involved in the formation of interference fringes, as
illustrated by the above experiment. The traditional Copenhagian inter-
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Figure 2: From (a) to (d), snapshots taken at subsequent times for the
experiment of Fig. 1 under low intensity conditions. The upper frame
shows the random-type distribution of scintillations for a few seconds.
Although there seems to be no correlation among those scintillations,
as time proceeds it is seen that photons arrive in a larger proportion to
certain pixels, while avoid others, thus giving rise to accumulations that
increase beyond noise-type fluctuations. Eventually these accumulations
give rise to an intensity distribution mimicking the one obtained under
high-intensity conditions, which requires times of the order of several
minutes (note that, even so, the maxima are close to relative intensity
values of 120, while in the high-intensity regime (see Fig. 1) they reached
values up to 5,000).

pretation of the phenomenon is essentially based on the pattern obtained
in the high-intensity regime, that is, a continuous intensity distribution
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that spreads all over some spatial region in the form of alternating light
and dark spots or fringes (regions with a high and low detection rates,
respectively). However, given that quantum systems consist of single,
independent particles, the explanation considers that, at some point the
particle, understood a spatially localized system, becomes and propa-
gates as a wave before, while and after passing through the slits. When
it reaches the detector, the associated wave “collapses” and the particle
acquires again its corpuscular nature in the form of a spatially local-
ized (single-event) detection [24]. Formally, this translates into the two
different processes mentioned by Von Neumann to describe the propaga-
tion and measurement of quantum systems [3]. While the particle is not
detected its evolution is unitary; when it is being detected, such unitar-
ity breaks down and it takes place a non-unitary irreversible “collapse”
to a specific but previously indefinite spatial position. This conception
might seem odd and even uncomfortable, but it is what the experiment
allows us to know about the particle, even if we appeal to single-event
experimental procedures, like the one described above or all other that
can be found in the literature; there is no way to go further away and
determine what is going on from the slits to the detector experimentally
without directly acting with the system, in which case interferences fly
away. However, it is also true that this is not the impression that one
acquires when the particle flux is weakened so much that the intensity
distribution is finally reconstructed on an event-to-event basis. For some
reason, many feel inclined to find a way to associated those individual,
spatially localized detections with the idea of a particle following a well-
defined trajectory in space, regardless of how this trajectory looks like,
i.e., of which equation of motion describes it. Therefore, even if cannot
determine experimentally such trajectories, this ontic perspective also
seems to be a reasonable and legitimate explanation (neither better or
worse than the traditional Copenhagian collapse idea), which cannot be
discarded (not, at least, with the current experimental facts).

Apart from the single-event experiments mentioned so far, there are
recent experimental facts that are making us to reconsider our tradi-
tional conception of quantum systems These changes are connected to
the rather old concept of weak measurement [46, 47] and, more impor-
tantly, its experimental implementation [74]. Even though with its limi-
tations regarding the interpretation of quantum phenomena (see below),
this technique has widened our view and understanding of quantum sys-
tems. Contrary to a strong Von Neumann measurement (the usual mea-
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surement process in quantum mechanics), a weak measurement only per-
turbs slightly the system, without making it to collapse, thus allowing
us to extract information on supplemental aspects of such a system at
once [61,75]. In the case of interference, both the probability density and
the transverse flux, responsible for how the former changes spatially with
time [following Eq. (5)], can be determined within the same experiment
without requiring extra measurements, as it happens in quantum tomog-
raphy, an also without destroying the interference fringes. With these
two quantities, the local velocity field can be computed from Eq. (6)
at any time or, equivalently, any distance between slits and detector.
From here on, considering a series of initial conditions and integrating
in time (7), one straightforwardly obtains the corresponding Bohmian
trajectories, as it is shown in [61] in the case of light (photons).

Of course, the information extracted from these experiments should
be carefully considered, avoiding conclusions that go beyond the exper-
iment itself. In the case we are dealing with, as it has been commented
above (see Sec. 2.1), there is no empirical evidence on how to relate the
inferred trajectories with the real motion of quantum particles. These
trajectories can be considered as streamlines accounting for the spatial
dispersion of ensembles, but not of individuals. Note that although the
average transverse flow, obtained from measurements over many pho-
tons, behaves as specified by Eq. (6) (or, to be more precise, in com-
pliance with the Maxwellian analog of this field [66, 70]), this does not
mean that the detected photons follow Bohmian-type trajectories. There
are stochastic approaches, for instance, which also render the same av-
erage outcomes [49–51, 59, 60]. Within this scenario, therefore, closer in
spirit to Madelung’s transformation of Schrödinger’s equation into a hy-
drodynamic form [72], Bohmian trajectories help us to understand the
dynamics of this fluid when it reaches the two slits, how it behaves af-
ter crossing them, giving rise to interference traits, or why interference
disappears if one of the slits is suddenly shut down (“observed”). This
brings in an alternative and very different picture of Young’s two-slit ex-
periment, usually associated with the effects that follow the overlapping
of the waves coming out from each slit, and that has also overmagnified
the role of the external observer in the removal of the fringes.

3.2 Dynamical role of the local velocity field

Let us thus reconsider the problem from the Bohmian viewpoint. To
this end, a simple model based on the coherent superposition of two
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one-dimensional Gaussian wave packets [69]. In brief, to understand
the model and its physical meaning, consider a screen with two slits
separated by a distance d and both being parallel to the y-direction. In
this configuration, the x-axis cuts both slits in two symmetric halves
and the z axis is perpendicular to the screen containing the slits. If the
slits are much wider along the y direction than along the x direction,
and the incident momentum, parallel to the z-axis, is relatively high, so
that the angular spreading by diffraction is negligible compared to the
distance traveled along the z axis, the wave function of the system can
be simplified by a product state, where interference takes place along
the (transverse) x direction (further technical details on this modeling
of diffraction systems can be found in [76]). To further simplify, the
transmission function is assumed to be Gaussian, which produces two
diffracted Gaussian states at each slit. In spite of its simplicity, this
captures the essence of the phenomenon without any loss of generality.
Accordingly, consider that the two diffracted waves are denoted by the
coherent superposition of two Gaussian wave packets,

Ψ(x, t) = ψ−(x, t) + ψ+(x, t), (19)

where each one of these wave packets has the same form as (10) and
subscripts ± denote the position of their respective centers with respect
to x = 0, i.e., at x± = ±x0, with x0 = d/2. Recasting the wave packets
in polar form, the following expressions for the probability density and
the quantum flux are readily obtained:

ρ(x, t) = ρ+(x, t) + ρ−(x, t) + 2
√
ρ+(x, t)ρ−(x, t) cosϕ(x, t), (20a)

J(x, t) =
1

m

{
ρ+(x, t)

∂S+(x, t)

∂x
+ ρ−(x, t)

∂S−(x, t)

∂x

+
√
ρ+(x, t)ρ−(x, t)

∂ [S+(x, t) + S−(x, t)]

∂x
cosϕ(x, t)

}

+
~

2m

√
ρ+(x, t)ρ−(x, t)

[
1

ρ+(x, t)

∂ρ+(x, t)

∂x

− 1

ρ−(x, t)

∂ρ−(x, t)

∂x

]
sinϕ(x, t), (20b)

with ϕ(x, t) = [S+(x, t)− S−(x, t)]/~. The superposition principle does
not hold for any of these two magnitudes, since their expressions in-
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volve the density and phase partial fields in a rather nonlinear fashion,
in particular, Eq. (20b). From a dynamical point of view, this translates
into an interesting property in the flux that cannot be perceived in the
probability density: at any time, it is zero at x = 0. This readily leads
to an important physical consequence: the flux to the left of x = 0 can
never mix with the flux to the right [69]. Accordingly, although the idea
of constructive and destructive interference, based on how the proba-
bility density is constructed, is formally correct, we find that the usual
explanation of the two-slits experiment is, to some extent, physically in-
correct for it neglects the dynamics of the probability density in terms of
its flux. When the latter is considered, the fact that the flows associated
with each slit do not mix implies that the left part of the interference
pattern is always related to the left slit, while the right part concerns
to the right slit. In other words, the flow makes distinguishable which
part of the pattern is related with each slit, even if there is no way to
determine whether the same happens at an underlying level with each
individual real particle.

To above fact is better seen if Eqs. (20) are written explicitly in terms
of the two Gaussian wave packets and their parameters6:

ρ(x, t) = e−(x−x+)2/2σ2
t + e−(x−x−)2/2σ2

t + 2e−(x
2+x2

0)/2σ
2
t cos(κx),

(21a)

J(x, t) =
~2t

4m2σ2
0σ

2
t

[
(x− x+)e−(x−x+)2/2σ2

t + (x− x−)e−(x−x−)2/2σ2
t

+2xe−(x
2+x2

0)/2σ
2
t cos(κx)

]
− ~x0
mσ2

t

e−(x
2+x2

0)/2σ
2
t sin(κx), (21b)

with ϕ = −κx and κ = ~tx0/2mσ2
0σ

2
t . Moreover, consider the timescale

τ ≡ 2mσ2
0/~, which provides us with a measurement of the characteris-

tic dispersion time associated with the wave packet and, hence, different
dynamical regimes characterizing its evolution [17,69]. As it can be no-
ticed, for relative short times, t � τ (σt ≈ σ0), when diffraction starts
acting on each wave packet but it is not enough to achieve their over-
lapping (an important value of ρ in the vicinity of x = 0), Eq. (21a)

6For simplicity, the time-dependent normalizing prefactor has been neglected, be-
cause it is dynamically irrelevant (it only induces the gradual decrease of both quan-
tities as they spread out spatially).
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describes two separate Gaussian distributions [15, 17]. In turn, the flux
increases linearly with x from negative to positive in both regions x > 0
and x < 0, where the sharp separation at x = 0 removes any inconsis-
tency. This is a clear indication that, because both waves are present at
the same time, there are two dynamically separated spatial regions.

In the long-time limit, t � τ (σt ≈ ~t/2mσ0, κ ≈ 2mx0/~t), on the
other hand, the probability density covers long distances, x � x0, and
hence

ρ(x, t) ≈ 2e−2mσ
2
0x

2/~2t2
[

cosh(4mσ2
0x0x/~2t2) + cos(2mx0x/~t)

]
,

(22a)

J(x, t) ≈ 2x

t
e−2mσ

2
0x

2/~2t2
[

cosh(4mσ2
0x0x/~2t2) + cos(2mx0x/~t)

]
−2x0

t
e−2mσ

2
0x

2/~2t2 sinh(4mσ2
0x0x/~2t2). (22b)

The probability density, Eq. (22a), essentially consists of an oscillating
function modulated by a Gaussian prefactor, since the hyperbolic cosine
grows spatially relatively slowly at a given time t (like x/t2, slower than
the x/t dependence of the Gaussian prefactor or the cosine). Accord-
ingly, for a sufficiently large time, within the region of interest (ruled by
the argument of the Gaussian prefactor), the hyperbolic cosine can be
assumed to be close to the unity, so that Eqs. (22) can be conveniently
further approximated as

ρ(x, t) ≈ 4e−2mσ
2
0x

2/~2t2 cos2(mx0x/~t), (23a)

J(x, t) ≈ 4x

t
e−2mσ

2
0x

2/~2t2 cos2(mx0x/~t)

−2x0
t

e−2mσ
2
0x

2/~2t2 sinh(4mσ2
0x0x/~2t2). (23b)

From Eq. (23a) we notice that vanishing interference minima evolve in
time at a constant rate given by the expression

vmin
ν = (2ν + 1)

π~
md

, (24)

where ν = 0,±1,±2, . . . denote the interferential order. In turn, inter-
ference maxima (modulated by a Gaussian envelope) will also evolve at
the constant rate

vmax
ν =

2νπ~
md

. (25)
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Figure 3: Time-evolution of the probability density (a) and Bohm’s
quantum potential (b) for a coherent superposition of two Gaussian
wave packets simulating Young’s two-slit experiment along the trans-
verse coordinate (x). In the color scale, lower values (nearly zero for the
probability density and negative for the velocity field) are denoted with
blue, while the higher ones are represented with red; note that, without
any loss of generality, the quantum potential has been truncated both
from the bottom and also the top due to the high positive and negative
values that it reaches at some times and in some regions (in contrast with
the nearly constant value that it acquires along the regions associated
with the maxima of the probability density). The parameters considered
in this simulation are m = 1, ~ = 1, σ0 = 0.5 and x0 = 5 (d = 10), in
arbitrary units.

In both cases, the separation between adjacent interference minima and
maxima remains constant and depends on the inverse of the distance
between the slits, as in the optical Young experiment [57]. Concerning
Eq. (23b), despite the second term is negligible, it has not been disre-
garded, because it plays a major role in the dynamics, as it will be seen
later on. Note that, whenever the probability density vanishes, this term
does not.

The two regimes can be seen in the numerical simulation displayed
in Fig. 3(a), which represents the evolution of a coherent superposition
of two time-evolving Gaussian wave packets separated a distance d = 10
(x± = ±5) and with a initial width σ0 = 0.5 (without loss of gener-
ality, ~ = 1 and m = 1). These regimes can be better appreciated in
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the density plot below: two nearly freely propagating Gaussians at the
beginning, for t . 1, and well-defined interference fringes for t & 4,
with their minima located at xν(t) = ±0.1πt,±0.3πt, . . . (note that in
the particular case t = 10, the maxima are located at x = ±π,±3π, . . .
From a standard Bohmian perspective [4, 77–79], where the quantum
potential is a central quantity, we can see, by inspecting Fig. 3(b), that
there is not much difference, because it actually measures the curvature
of the probability density, following the second expression of Eq. (8).
Accordingly, the structure displayed by the quantum potential is going
to be pretty similar to that of the probability density, substituting the
interference maxima of the latter by plateaus and the nodes by deep
minima or “canyons” (because of the analogy with these geological for-
mations), which also satisfy the condition (25). Typically, it is assumed
that, because the quantum potential is nearly flat between two adja-
cent canyons (negligible quantum force, −∇Q ≈ 0), particles are going
to accumulate in such regions, giving rise to the interference maxima,
while they avoid staying at such canyons, where they are affected by the
action of an intense quantum force. No doubt, the idea is appealing.
However, not only it provides redundant information with respect to the
probability density (as mentioned above, it measures its curvature), but
totally neglects the dynamical role of the quantum phase, necessary to
explain, for instance, in the renowned non-crossing property satisfied by
the Bohmian trajectories.

In order to provide a, say, non-redundant dynamical description to
the emergence of the interference pattern, let us get back to Eqs. (22b).
It consists of two contributions. The first contribution is indeed the prob-
ability density multiplied by a prefactor x/t. This prefactor is a (trans-
verse) velocity that describes the overall spatial dispersion (spreading)
of the probability density. Unlike the even parity displayed by the prob-
ability density (with respect to x = 0), this term has odd parity due to
its additional dependence on x. The second contribution, on the other
hand, with an also odd parity, seems to play no role, since it does not
contain any information on interference and, moreover, decreases like t−1

all along x, thus becoming gradually less and less relevant. Regarding
the overall odd parity displayed by the flux, notice that it indicates that
the density is going to spread equally to both left and right. Then, tak-
ing into account these features, how can the emergence of interference be
explained without relying again, as in the case of the quantum potential
based explanation, on the probability density?
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To answer such a question, let us substitute Eqs. (20) into the second
expression of the equation of motion (6). Thus, for the two wave packets,
the latter equation reads as

ẋ(x, t) =
1

m

{
ρ+(x, t)

ρ(x, t)

∂S+(x, t)

∂x
+
ρ−(x, t)

ρ(x, t)

∂S−(x, t)

∂x

+

√
ρ+(x, t)ρ−(x, t)

ρ(x, t)

∂ [S+(x, t) + S−(x, t)]

∂x
cosϕ(x, t)

}

+
~
m

√
ρ+(x, t)ρ−(x, t)

ρ(x, t)

[
1

ρ+(x, t)

∂ρ+(x, t)

∂x

− 1

ρ−(x, t)

∂ρ−(x, t)

∂x

]
sinϕ(x, t), (26)

where ρ(x, t) is as given by Eq. (20a). If we now reconsider the above
limits, we find that, for short times, although the probability density
concentrates around either x+ or x−, Bohmian trajectories associated
with each wave packet are going to evolve seemingly like if the other
wave packet has no influence on them, i.e., like the trajectories related
to a single Gaussian wave packet problem [17,80]. This situation can be
seen in Fig. 4(a) up to t ' 1 (beyond this time the trajectories closer
to x = 0 start undergoing deviations from the single wave-packet case).
However, this is only in appearance, as it can be noticed by inspecting
Fig. 4(b), where the density plot represents the associated local velocity
field, which changes very abruptly at x = 0, as expected according to
the above discussion based on the quantum flux. It is observed that,
within the spatial domain of each slit, the flux associated to each slit is
the same and, therefore, the corresponding trajectories are expected to
display the same behavior.

As time increases and the probability density starts exhibiting inter-
ference maxima and minima [see Fig. 4(b)], the two swarms of Bohmian
trajectories acquire a non-regular distribution, loosing information about
each particular slit and evolving along the directions indicated by the
maxima, while they undergo dramatic turns at nodal regions in order
to avoid them. This is in agreement with the above quantum poten-
tial based argumentation. But, why does this happen? If Eqs. (23) are
explicitly substituted into Eq. (6), i.e., if the long-time limit is consid-
ered in Eq. (26), this latter equation can no longer be reduced to either
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Figure 4: Time-evolution of the probability density (a) and the local ve-
locity field (b) for a coherent superposition of two Gaussian wave packets
simulating Young’s two-slit experiment along the transverse coordinate
(x). In the color scale, lower values (nearly zero for the probability den-
sity and negative for the velocity field) are denoted with blue, while the
higher ones are represented with red; in the case of the velocity field,
vanishing values appear with green (along the central interference chan-
nel). For a better visualization of the dynamics, two sets of Bohmian
trajectories, each one associated with one slit (Gaussian wave packet),
are also on display (black solid lines). The parameters considered in this
simulation are m = 1, ~ = 1, σ0 = 0.5 and x0 = 5 (d = 10), in arbitrary
units.

one wave packet or the other, but needs to consider the full wave. The
equation of motion (6) reads now as

ẋ ≈ x

t
− x0

2t

sinh(4mσ2
0x0x/~2t2)

cos2(mx0x/~t)
. (27)

Following this expression for the local velocity it is clear that, out of the
reach of the nodes and at a given time, the flux increases linearly with
the position, since the first term on the r.h.s. is the dominant one. This
simply means that trajectories will move apart from x = 0 either with
positive velocity in the positive half-plane or with negative velocity in the
negative half-plane, as it is observed in the case of a simple Gaussian wave
packet [17]. Actually, if we take into account that the maximum value of
the cosine in the second term becomes maximum for mx0x/~t = νπ, with
ν = 0,±1,±2, . . ., on average, the expression for the velocity between
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two neighboring nodes is given by

ẋ =
νπ~
mx0

= v̄ν, (28)

where v̄ ≡ π~/mx0 = 2π~/md. This means that the velocity is a quan-
tized quantity, showing a ladder-type structure, where each step has
nearly the same width and describes an interference channel, i.e., a re-
gion that will accommodate an interference maximum of the probability
density. These structures are typical whenever diffraction channels ap-
pear regardless of whether they have been produced by two slits [81],
many slits [76] or scattering with a metal surface [82].

However, at the nodes, the numerator of the second term cancels out
and the velocity acquires a sudden change or kick either below or above
the value indicated by the first term. If the particle is in the positive
half-plane, the kick is negative; if its in the negative half-plane, then
the kick is positive. This translates into a reorientation of the trajecto-
ries, which instead of being pulled apart, as in the case of the Gaussian
wave packet, they are gradually redirected towards inner interferential
maxima. This can be seen in Fig. 4(b), where the effect of the kicks
appears as a fast twist in the trajectories each time they approach a
nodal point, inducing the passage of the trajectories from the region as-
sociated with an interference maximum to the immediately nearby one
(that is, the motion takes place in discrete jumps, one by one). In the
present example, this implies that central maxima eventually become
more populated than marginal ones, which, in turn, serves us to un-
derstand the evolution of the probability density displayed in Fig. 3(a).
This behavior, though, can readily be generalized to grating diffraction,
thus providing an extremely natural interpretation for the appearance
of diffraction orders, Bragg’s law or the relationship between the beam
size and the definition of diffractive features [76]. Analogously, the same
can be directly translated to the realm of optics, providing a more in-
tuitive picture of interference and diffraction phenomena [66, 67, 70, 81],
which is excellent agreement with the experimental findings reported by
Steinberg and coworkers regarding Young’s two-slit experiment several
years ago [61,83,84].

Summing up, it is interesting to note that, although the standard
or traditional Bohmian view based on Bohm’s quantum potential does
not allow to explain the dynamical origin of the renowned non-crossing
rule among trajectories, the local velocity field provides a rather com-
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plete understanding of the phenomenon. Again, this does not mean that
quantum particles cannot move in the most unexpected manners, be-
cause that is, so far, a challenging unknown. It simply means that the
flux describing the evolution of the probability density, which describes
how the swarm of quantum particles behaves (distributes) spatially on
average at each time, exhibits a very precise dynamics, according to
which it is indeed possible, to some extent, to establish a well-defined
separation between the regions covered by each slit at a dynamical level.
None of the (tracer) Bohmian trajectories starting in one of the slits will
ever cross the region dominated by the other slit, and vice versa. This
is, therefore, a physical manifestation (or evidence) of the quantum phe-
nomenon or quantum resource that we call coherence. As a consequence,
two-slit experiments turn out to be equivalent to single slit experiments
coupled to short-range attractive walls [69], where the presence of the
attractive well induces the appearance of long-living resonances near the
wall (associated with half the central maximum). This picture is quite
far from the usual one, although it resembles the typical reduction in
two-body classical scattering problems, where the two systems are sub-
stituted by a single one acted by an effective central force.

Furthermore, there is another important related consequence. By
inspecting Eq. (26), it is noticed that in order to remove any trait of
coherence, not only the interference term must be somehow removed, as
it is usually mentioned when dealing with the removal of interference in
the two-slit experiment. The disappearance of such a term simply means
that the flux does not include any wavy term. However, the information
about the existence of two slits open at once still persists. Therefore, the
non-crossing rule is still preserved, i.e., the Bohmian trajectories leaving
each slit are not going to mix [81, 85]. The fact that both slits still in-
fluence the dynamics means that there is coherence even if there is no
interference. In order to remove all traits of coherence, it is important to
also remove information about the other slit [86]. In the traditional pic-
ture of the two-slit experiment this actually happens when we decide to
include the action of an external observer (detector), which just removes
the contribution of one of the slits. Within the more refined description
provided by the theory of open quantum systems [87], this removal is
simply the effect of the different manner that the system gets entangled
with an environment when it crosses one slit or the other [88].
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4 Final remarks

Quantum mechanics is supposed to be the mechanical theory of quanta,
that is, of the ‘bits’ of matter (electrons, atoms, molecules, etc.) and
radiation (photons). However, what Bohm put forth was that quan-
tum mechanics had more of a non-mechanical theory, because of the
important role played by the whole over the individual. Formerly, it was
proposed as a counterexample to Von Neumann’s theorem on the im-
possibility of hidden variables in quantum mechanics, although the fact
that it introduces into this theory a language pretty similar to that of
the classical Hamilton-Jacobi formulation has led to associate the corre-
sponding trajectories with the actual motion displayed by real quantum
particles. Thus, in the same way that a classical (interaction) potential
function determines the motion of a (classical) particle, in the quan-
tum mechanical case it would be the combined action of such a function
plus the so-called Bohm’s quantum potential the mechanism behind the
topology displayed by the trajectories pursued by quantum particles. Of
course, this potential acts on quantum particles even in the case of free
motion, where there is no external interaction (V = 0). In such a case,
the bare action of Bohm’s potential shows very nicely how it accounts for
pure quantum effects, such as interference, as it can be seen not only with
a free particle (a freely released wave packet), but also in slit diffraction
problems [79]. Much has been discussed in the literature about this po-
tential, its properties and its applications (see [4] and references therein,
for instance), yet it is nothing but a measure of the local instantaneous
curvature of the probability density, thus providing us to some extent
with redundant information (the same information already provided by
the probability density). Nonetheless, recently it has received some at-
tention as a magnitude that, in principle, could be measured, particularly
if instead of massive particles one considers light [89, 90], taking advan-
tage of the one-to-one correspondence between Schrödinger’s equation
and the paraxial Helmholtz equation. Of course, this is not impossi-
ble, as it has also been the case of the transverse momentum [61], even
though stricto sensu none of these quantities correspond to quantum
observables.

In order to avoid such redundancy, here the discussion has turned
around the phase field and, more specifically, the associated local veloc-
ity field, which allows us to establish a connection between the proba-
bility density and the quantum flux, thus avoiding the extra Bohmian
postulate of a guidance condition. The implications of the single val-
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uedness of the quantum phase have long been discussed in the literature
to explain the non-crossing property exhibited by Bohmian trajectories
in the configurations space [4]. Unfortunately, the quantum phase only
manifests through interference, thus providing little clue on the dynam-
ics displayed by the probability density. The local velocity field, in turn,
is a well-defined quantity with a precise physical meaning, which can
be experimentally determined through weak measurements, as shown
in [61]. Accordingly, we have analyzed the dynamical information ren-
dered by this quantity, which allows us to understand and explain the
time-evolution shown by the probability density at each point of the
configuration (in positions) space. In analogy to classical hydrodynamic
systems, this velocity field can be probed by launching a series of tracers
and let them to move accordingly, which provides us with a more precise
picture at a local level of the probability flux across the configuration
space in the form of probability-flow streamlines or trajectories. These
trajectories are the usual Bohmian trajectories, which here arise in a nat-
ural way, without any need to introduce the concept of hidden variable.
It is in this way, used as tracers of the quantum dynamics, that Bohmian
trajectories constitute a remarkably beneficial tool to probe and under-
stand quantum phenomena with a language (that of dynamical systems)
closer to our experience than abstract Hilbert algebras —perhaps more
appropriate from a formal viewpoint, but totally useless to understand
what is going on in a real-lab experiment, where we know that we have
something that goes from somewhere to somewhere else, which can be
acted and measured, etc.

With the purpose to illustrate the advantages of the local velocity
field as a convenient tool to analyze and explain quantum dynamics,
Young-type interference has been studied. Thus, while the usual Bohm’s
potential view provides an interpretation similar to the Newtonian one
(particles moving in regions with nearly constant potential values, while
avoiding others with strong, sudden changes), the velocity field provides
us with a more precise description of different dynamical regions and
regimes. Accordingly, it is seen that, the center of symmetry of the
system, namely, the axis x = 0 in our case, is a zero-flux line, which
divides the configuration space into two dynamically different regions.
Of course, the fact that the flux vanishes along this axis, and so the
velocity field, does not preclude the possibility that, at a “subquantum”
level (i.e., at a level below the equilibrium described by Schrödinger’s
equation), particles might randomly cross this axis from one region to
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the other and vice versa, as it happens with chemicals (reactants and
products) under dynamical equilibrium conditions in a chemical reaction.
Yet this makes an important difference with respect to the traditional
explanation attributed to the two-slits experiments, where there is total
indistinguishability. Here, the distinguishability of dynamical domains
gives rise to trajectories leaving one of the slits that “know” of the exis-
tence of trajectories leaving the other slit. These trajectories probe the
dynamics associated with the flux, thus providing no clue on how the
motion of real particles might be, but only the resulting average (equi-
librium) motion. The reveal how the velocity field changes locally at
each time, undergoing fast and sudden turns whenever there is a strong
variation (similar to kicks), while moving nearly parallel in those regions
with (nearly) constant velocity. The latter region happen to be quan-
tized, i.e., the average velocity changes in units of π~/mx0 = 2π~/md
from one to the immediately neighboring one (both separated by a kick).
Each one of these regions constitutes an interference channel, i.e., a re-
gion along which trajectories tend to keep moving in a Newtonian sense.
These highly populated regions correspond to the interference maxima
displayed by the probability density.

If the mechanism to avoid regions with strong variations of the ve-
locity field is clear, which makes trajectories to get promoted from the
outer interference channels to the innermost ones, the same does not
hold to explain why trajectories cannot cross the x = 0 axis, along
which trajectories coming from both slits align. The non-crossing here
arises from having two different dynamical regimes well defined since
the very beginning. Note here another deviation with respect to the
standard view in terms of a simple superposition relation, which holds
true formally, but that cannot be accepted in dynamical terms, since it
will only appear provided both slits (both diffracted waves) are present
since the very beginning. Accordingly, the concept of coherence acquires
a different but totally unambiguous physical meaning, in terms of the
equivalence between this problem and that one of a single particle col-
liding with an attractive potential wall [69]. The attractive well happens
to be relatively shallow, but with an extension beyond the two wave
packets (diffracted beams), which implies their mutual knowledge even
if the probability density is negligible in between. Only if the informa-
tion about the existence (presence) of one of the slits disappears (either
gradually or suddenly), trajectories from one domain will start crossing
the trajectories from the other domain [81, 85, 86]. This situation thus
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describes a (partial or total) loss of coherence, which happens when the
system is strongly entangled with another environmental subsystem [88].

At this point, based on the above discussion, one may still wonder
whether real quantum motion is still accessible. As mentioned above, if
it exists, it must be found at a subquantum level. Nonetheless, the fact
that the local value of the velocity field (transverse momentum) can be
experimentally determined opens new perspectives in our understanding
of the quantum world. Now we know that not only quantum particles
distribute according to the usual probability density even though they
are totally uncorrelated, but also that in order to do it they necessarily
form currents. This means that the usual Copenhagian view in terms
of particle becoming a wave during the experiment and then a particle
again at the detector is currently getting blurred. We have a precise
quantum dynamical description of the average (equilibrium) behavior
of quantum systems where both their distribution (probability density)
and spatial motion (velocity field) can be determined without violating
any of the fundamental principles of quantum mechanics.

Because of the empirical impossibility to relate Bohmian trajectories
with the actual paths followed by real particles (in the sense that no
experiment will be able to reveal this very motion), one might wonder
whether it provides or not a solution to the so-called measurement prob-
lem [91]. It is clear that, apart from point-like particles traveling along
well-defined trajectories, a proper description of such a problem requires
including explicitly the presence of a second agent or system, namely
the detector. When doing so, entanglement immediately arises [92, 93],
which is the physical mechanism behind the fact that we observe the sys-
tem “collapsing” on any of the detector pointer states. However, if we
consider the simple experiment presented here, this is eventually equiv-
alent to make statistics over arrivals at certain spatial regions (pixels
of a given finite dimension). At this level, there is no need, therefore,
to provide a better description of how each photodetector state acts on
or gets entangled with the system wave function, because each arrival
itself can be counted (registered). The collection of these arrivals over
time will provide us with a relatively fair picture of the detection at
a local level (pixel by pixel), which is equivalent to monitor in time
the formation of a full image over the whole scanning surface (e.g., a
two-slit interference pattern with photons or electrons, or, in the case
of incoherent light, the appearance of a photograph). In the standard
quantum-mechanical approach the same is not possible, because the wave
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function considered gives us the full solution (full image), even if later on
some treatments (convolving functions) are required in order to adapt
such a solution to the finite-sized detection elements (pixels, slits, etc.).
In this sense, and leaving aside other ontological connotations, a fully
quantum-mechanical trajectory-based approach proves to be more pow-
erful than other standard quantum approaches, since we are able to ob-
tain first-principle theoretical descriptions of quantum phenomena closer
to real-life experiments without the need of extra treatments or elements
(only the necessary ones). So, in conclusion, once the “mysticism” that
usually accompanies Bohmian mechanics is removed, whether this first-
principle view can be considered of potential interest at a computational
or a fundamental level it is left to the reader’s opinion.
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ernik, J. Tüxen, M. Mayor, O. Cheshnovsky, and M. Arndt. Real-
time single-molecule imaging of quantum interference. Nat. Nan-
otech. 7, 297–300 (2012).

[41] A. Rose. Quantum effects in human vision. Adv. Biol. Med. Phys.
5, 211–242 (1957).

[42] N. D. Mermin. What’s wrong with this pillow? Physics Today
42(4), 9–11 (1989).

[43] J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics 1,
195–200 (1964).



Bohm’s quantum “non-mechanics” 59

[44] J. S. Bell. On the problem of hidden variables in quantum mechan-
ics. Rev. Mod. Phys. 38, 447–452 (1966).

[45] G. Muser. The wholeness of quantum reality: An interview
with physicist Basil Hiley. Sci. Am., November 4, 2013. Online:
https://blogs.scientificamerican.com/critical-opalescence/the-
wholeness-of-quantum-reality-an-interview-with-physicist-basil-
hiley/.

[46] Y. Aharonov, D. Z. Albert, and L. Vaidman. How the result of a
measurement of a component of the spin of a spin− 1

2 particle can
turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).

[47] I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan. The sense
in which a “weak measurement” of a spin-1/2 particle’s spin com-
ponent yields a value 100. Phys. Rev. D 40, 2112–2117 (1989).

[48] H. M. Wiseman. Grounding Bohmian mechanics in weak values and
Bayesianism. New J. Phys. 9, 165(1–12) (2007).

[49] D. Bohm and J. P. Vigier. Model of the causal interpretation of
quantum theory in terms of a fluid with irregular fluctuations. Phys.
Rev. 96, 208–216 (1954).

[50] D. Bohm and B. J. Hiley. Non-locality and locality in the stochas-
tic interpretation of quantum mechanics. Phys. Rep. 172, 93–122
(1989).

[51] E. Nelson. Derivation of the Schrödinger equation from Newtonian
mechanics. Phys. Rev. 150, 1079–1085 (1966).

[52] P. A. M. Dirac. Quantised singularities in the electromagnetic field.
Proc. R. Soc. Lond. A 133, 60–72 (1931).

[53] W. Pauli. Handbuch der Physik (Springer, Berlin, 1933), Vol. 24/1,
2nd Ed.

[54] D. Bohm. Quantum Theory (Dover, New York, 1989; first printed
by Prentice Hall, New York, in 1951).

[55] L. I. Schiff. Quantum Mechanics (McGraw-Hill, Singapore, 1968),
3rd Ed.



60 A. S. Sanz

[56] H. Goldstein, C. Poole, and J. Safko. Classical Mechanics (Addison
Wesley, New York, 2001), 3rd Ed.

[57] M. Born and E. Wolf. Principles of Optics. Electromagnetic Theory
of Propagation, Interference and Diffraction of Light (Cambridge
University Press, Cambridge, 1999), 7th Ed.

[58] L. de Broglie. Non-Linear Wave Mechanics. A Causal Interpreta-
tion (Elsevier, Amsterdam, 1960).
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[67] M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S.
Sanz, and A. Weis. Generalized arago-fresnel laws: The eme-flow-
line description. J. Russ. Laser Res. 31, 117–128 (2010).



Bohm’s quantum “non-mechanics” 61

[68] M. F. Pusey, J. Barrett, and T. Rudolph. On the reality of the
quantum state. Nature Phys. 8, 475–478 (2012).

[69] A. S. Sanz and S. Miret-Artés. A trajectory-based understanding of
quantum interference. J. Phys. A: Math. Theor. 41, 435303(1–23)
(2008).
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