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A nonlinear wave mechanical equation is proposed by inserting an
imaginary quantum potential into the Schrödinger equation. An ex-
plicit expression for its solution is given under certain assumptions and
it is shown that it entails attenuation related effects as non-unitary
evolution, non-exponential quantum decay and entropy production. In
the quantum hydrodynamical formulation the existence of circulation
effects for the osmotic velocity field is established. Finally, a time-
invariant equation for the probability density is derived, analogous to
the tensor Lighthill equation in aeroacoustics, which admits both re-
tarded and advanced solutions.

1 Introduction

One of the most spectacular aspects of quantum theory is that it can
be formulated in a variety of ways that even appear not to be equiva-
lent at first sight. In some occasions the mathematical formulation is
identical but the conceptual framework differs significantly, in other in-
stances even the mathematical formalism varies. It is well-known that
soon after the inception of quantum mechanics de Broglie proposed an
alternate formulation based on a guiding wave field, an idea rediscov-
ered later by Bohm [1]. Almost at the same time it became possible
to formulate the new theory in terms of a hydrodynamical model [2]
and this line of enquiry was later continued and perfected by Takabayasi
[3]. In both formulations, although in a different context, a prominent
place is given to what is called quantum potential. The Bohm quantum
potential should not be considered as another classical potential func-
tion acting on physical systems [4]. It is a rich physical concept with
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broader mereological implications and displays with clarity the inher-
ent wholeness and non-separability of an interacting many-body system
[5] since it does not necessarily diminish with distance and it is mani-
festly non-local. On the other hand its very reliance on a probabilistic
measure, namely the curvature of the amplitude of the wavefunction [4],
seems problematic within the scope of a deterministic theory like the de
Broglie-Bohm one. In the next section we examine some fundamental
considerations, introducing a non-linear wave mechanical equation and
relate its solution with the linear Schrödinger equation. In section 3 we
examine the hydrodynamic formulation and examine the effect of the
quantum potential to the osmotic velocity. A time symmetrical wave
equation with a non-homogeneous term for the probability density is
also derived that applies to the unmodified dynamical problem.

2 Foundational issues

Here we modify the Schrödinger dynamics by introducing an imaginary
Bohmian potential and then make a polar substitution for the wavefunc-
tion. In that way we have introduced a quantum potential term in both
the Hamilton Jacobi and the modified continuity equation as a point of
contact and consequently we recombine those two expressions in a differ-
ent manner assuming at the same time that the phase of the nonlinear
wavefunction is approximately the same with that of the linear equation.
Our point of departure is a modified nonlinear wave equation of the form

i~
∂Φ

∂t
=

(
− ~2

2m
∇2 + V (r, t)

)
Φ− iεQΦ, (1)

where

Q = − ~2

2m

∇2R

R
= − ~2

4mρ

[
∇2ρ− (∇ρ)2

2ρ

]
(2)

the Bohm quantum potential discussed earlier. Making a standard polar
substitution of the form Φ = ReiS/~ and S the multivalued phase of the
wavefunction gives the continuity equation

∂R

∂t
+

1

m
∇R · ∇S +

1

2m
R∇2S =

ε~
2m
∇2R, (3)

which can also be written as
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∂ρ

∂t
+∇ ·

(
ρ
∇S
m

)
= −2ε

~
ρQ. (4)

The Hamilton-Jacobi equation reads as

∂S

∂t
= − 1

2m
(∇S)

2 − V (r, t)−Q. (5)

It follows from (4) that even if the phase does not exhibit any spatial
variation the probability density may still be time-dependent. It can
be reduced to a nonlinear equation, transformed to a diffusion equation
like (3) and be readily solved provided that ε is positive, otherwise the
coefficient of diffusion will be negative and the problem ill-posed. On
the contrary ε < 0 describes amplification effects. A diffusion equation
requires initial conditions to be imposed in order to deal with a well-
posed problem, in other words if we use final conditions for (3) or (4)
this engenders the possibility of a blow-up to infinity and a singular-
ity in a finite time interval. This means that there is a preferred time
direction and it is not possible to retrodict solutions in the backward
time direction. If we allow only the first order derivative phase term to
remain we obtain a diffusion equation with convection that can still be
solved exactly. The existence of the Bohmian potential in (1) allows us
to establish a connection between the Hamilton-Jacobi and continuity
equations as

∂ρ

∂t
+∇ ·

(
ρ
∇S
m

)
= −2ε

~
ρ

[
∂S

∂t
+

1

2m
(∇S)2 + V (r, t)

]
. (6)

The right hand of the above expression, which can been seen as a source
term for the continuity equation, is related to the classical Schrödinger
equation [6]. The time-independent version of (6) is easily obtained
through the relations ∂ρ

∂t = 0, ∂S
∂t = −E. By introducing the convective

derivative which is expressed as

d

dt
=

∂

∂t
+ v · ∇ =

∂

∂t
+
∂

∂t

∇S
m
· ∇, (7)

it is possible to solve (6) for ρ = R2
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R(r, t) = e
∫ t
t0

[
− 2ε

~ ( ∂S∂τ + 1
2m (∇S)2+V (r,τ))−∇2S

2m

]
dτ
R(r0, t0). (8)

As in [7] we can write

ei
S(r,t)

~ = e
i
~
∫ t
t0
Ldτ

ei
S(r0,t)

~ , (9)

where L the system Lagrangian. Multiplying the last two equations we
obtain

Φ(r, t) = e
∫ t
t0

[
− 2ε

~ ( ∂S∂τ + 1
2m (∇S)2+V (r,τ))−∇2S

2m

]
dτ
e
i
~
∫ t
t0
Ldτ

Φ(r0, t0), (10a)

Φ(r, t) = e
∫ t
t0

(
− 2ε

~ Q−
∇2S
2m

)
dτ
e
i
~
∫ t
t0
Ldτ

Φ(r0, t0). (10b)

In that way we have generalized the expression for the quantum hydro-
dynamic propagator given in the de Broglie-Bohm theory [7]. Notice two
alternative gauge-independent expressions are given. These are formulas
relating the wavefunction Φ at two different times and spatial locations,
through an exponential factor that involves integration over past times.
It would be interesting to find a relation between Φ and Ψ at the same
time and location. In order to do this we need to make an assumption
about the phase. We assume that the phase of the unperturbed system
does not change significantly when we include the non-linear term. It
is reasonable to assume that the imaginary term will more appreciably
affect the evolution equation of the probability density and to a lesser
extent the time development of the phase since the Hamilton-Jacobi that
governs the evolution of the phase equation will remain unaltered. Cer-
tainly, we can add correction terms to this initial phase and use (5) to
obtain iteratively better approximate expressions. Using (8) and setting
ε = 0 we find

A(r, t) = e
− 1

2m

∫ t
t0
dτ∇2S

A(r, t0), (11)

where Ψ = AeiS/~. Multiplying both sides with eiS/~ and assuming that
R(r0, t0) = A(r0, t0) we find

Φ(r, t) = e
− 2ε

~
∫ t
t0

[ ∂S∂τ + 1
2m (∇S)2+V (r,τ)]dτΨ(r, t), (12a)

Φ(r, t) = e
− 2ε

~
∫ t
t0
Q0dτΨ(r, t). (12b)
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Hence we have found a proportionality relation between Φ and Ψ. No-
tice that the quantum potential Q0 corresponds to the state Ψ. This
approximate expression indicates that the total probability amplitude is
rescaled by an exponential integral factor with local phase dependency.
When the finite duration of the time aperture becomes instantaneous so
t0 → t the exponential becomes unity and we recover the linear solution
Ψ at equal times. Obviously we recover the linear limiting case too when
ε → 0. Within a many particle description the phase modifies a coin-
cidence probability density and features the non-local character of the
generated dissipation. It must be remembered that an essential hypoth-
esis, apart from the inclusion of the imaginary Bohmian potential, was
the assumption that the phase dependence of the modified wavefunction
is identical to the linear Schrödinger equation. Only then can we obtain
this compact relationship between the two wavefunctions which would
otherwise be unrelated. Since Φ is a solution of a nonlinear equation (1)
in contradistinction to Ψ it does not satisfy the superposition principle
due to the existence of the scale factor. Nevertheless, it has the same
phase so it may exhibit interference and correlation effects exactly as
a coherent superposition of Schrödinger equation solutions. A coherent
state for example will display the same phase properties but an amplitude
with a different spatio-temporal modulation. The presence of the state
associated quantum phase illustrates the kind of indivisible, essential
unity which is characteristic of the whole quantic system, more clearly
pronounced in the multi-particle case. Normalization concerns dictate
that Φ goes to zero at infinity and it may even involve non-Markovian
evolution and entail memory effects [8]. Using (12) we can re-express
(1) as a non-linear Schrödinger equation with an added integral term.
This is not a particular useful form but it is included here for the sake
of completeness

i~
(
∂Ψ

∂t
− 2ε

~
Q0Ψ

)
=
(
T̂ + V

)
Ψ− 2ε

~

(∫
T̂Q0dτ +Q

)
Ψ. (13)

Effectively the existence of the imaginary Bohm potential means that
the quantum action becomes complex

S′ → S +
2iε

~

∫ t

t0

[
∂S

∂τ
+

1

2m
(∇S − qA)2 + V (r, τ)

]
dτ, (14)
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where a vector potential has been introduced in the usual manner as
v = ∇S

m −
q
mA. The above relation suggests the following form for the

non-relativistic propagator from place r0, t0 to r, t

K =

∫ r

r0

D[r(τ)]e
iS[r(τ)]− 2ε

~
∫ t
t0

[ ∂S[r(τ)]
∂τ + 1

2m (∇S[r(τ)]−qA)2+V (r,τ)]dτ . (15)

This expression clearly implies non-unitary evolution. Again it must be
emphasized that it is this phase or action of the system that generates
dissipation, so it is a kind of self-induced decay and unlike the influence
functional or similar approaches we do not need to have recourse to a
heat bath that affects the sub-dynamics of the system under examina-
tion. This is of great consequence and illustrates the sharp conceptual
difference between the way irreversibility appears in the present formal-
ism and more common reservoir-system approaches. In fact, it may be
argued that strictly speaking it is not possible to trace out environmental
degrees of freedom and divide rigorously a system from its surroundings,
there is no sharp distinction between measured system and environment
since the quantum phase cannot be appropriated to individual particles
but points to the irreducible quantum compound and reveals its sub-
stantial unicity. If the action in the frequency domain is analytic in the
upper half then its real and imaginary parts are not independent but
they are related by a Hilbert integral transform

Re[Φ(r, ω)] =
1

2π2
P
∫ +∞

−∞

Im[
∫ +∞
−∞ g(r, ω′ − ω)Ψ(r, ω)dω]

ω − ω′
dω, (16)

where

g(r, ω) =
1

2π

∫ +∞

−∞
dte
− 2ε

~
∫ t
t0

( ∂S∂τ + 1
2m (∇S−qA)2+V (r,τ))dτeiωt, (17)

the frequency domain representation of the integral scale factor and
Ψ(r, ω) that of Ψ(r, t). Furthermore using the Fock-Krylov formula [9]
for the survival probability of an unstable system we find

p =

∣∣∣∣e− ε~ ∫ tt0 [ ∂S∂τ + 1
2m (∇S−qA)2+V (r,τ)]dτ

∫ +∞

−∞
g(E)e−iEtdE

∣∣∣∣2 , (18)
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which in general deviates from exponential decay law even if the density
of energy states is a Lorentzian function . The decay rate is

Λ =
2ε

~

∂S
∂τ + 1

2m (∇S − qA)2 + V (r, τ)

e
− 2ε

~
∫ t
t0

[ ∂S∂τ + 1
2m (∇S−qA)2+V (r,τ)]dτ

. (19)

It is straightforward to generalize (1) for a many-particle system (of equal
masses for convenience) or even a continuous one like a boson field. It is
evident that if it is possible to decompose the phase as a sum of functions
S = S1 + S2 + .. then the multiparticle wavefunction is separable. The
rate of change of the total probability P =

∫
ρd3x

dP

dt
=

∫
∂ρ

∂t
d3x = − ε~

2m

∫
1

2ρ

N∑
i=1

(∇iρ)
2
d3x < 0, (20)

We see then that the total probability is not conserved but diminishes
with time. What is important is that (1) entails the possibility of entropy
production. Using the entropy formula S = −

∫
ρlnρd3x we obtain

dS

dt
=

ε~
2m

∫ (
1 +

1

2
lnρ

)
1

2ρ

N∑
i=1

(∇iρ)
2
d3x > 0, (21)

which is positive. The positivity of entropy production is a general result
following directly from the modified dynamics and does not rely on the
phase approximation made earlier.

3 Quantum hydrodynamics and vorticity

It was stated in the introduction that quantum mechanics can be ex-
pressed in terms of quantum hydrodynamic variables, namely the proba-
bility density and the momentum field, even though the two formulations
are not equivalent as certain hydrodynamical solutions may not satisfy
the Schrödinger equation. The inhomogeneous continuity equation for
the probability density is analogous to the conservation of mass equa-
tion in fluid mechanics. It is possible to derive an equation analogous
to the momentum Navier equation [3, 6, 7]. Employing (4) we find the
continuity equation for the flux momentum

∂(ρv)

∂t
+∇(ρvv)− ρdv

dt
= − 2ε

m~
ρQv, (22)
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where the quantum force is the sum of the classical and quantum poten-
tials

F = m
dv

dt
= −∇(V +Q). (23)

It is possible to write (22) in a tensor form as in [6]

∂(ρvi)

∂t
+
∂(ρuivj)

∂xj
= − ρ

m

∂V

∂xi
− ∂σij
∂xj

− 2ε

m~
ρQvi, (24)

where the probability quantum stress tensor is written as

σij =
~2

4m2
(∂i∂jρ− ∂iρ∂j lnρ) . (25)

It is possible to recover the familiar expression for the tensor equation
[6] for the limiting case ε → 0. Following a development of the Navier-
Stokes equations found in the aerodynamic sound literature [10, 11, 12]
taking the time derivative of the continuity equation for the probability
density (4) and the divergence of (24) and subtracting them we can
eliminate the convection term. In that way we combine the two in a new
exact form as

∂2ρ

∂t2
+

2ε

m~
∂(ρQvi)

∂t
=

∂2

∂xi∂xj

(
ρvivj −

ρ

m
V δij + σij

)
, (26)

which contains both second and first order time derivatives and in order
to find its time evolution we need to know initial and final conditions for
ρ and ρt both. The second term in (26) contains non-constant coefficients
so the equation cannot be solved exactly but notice that it resembles the
telegrapher’s equation which admits solutions expressed by Heaviside
step functions. This indicates at least qualitatively that the solutions of
(26) will propagate not instantaneously but with finite speed. As in the
aeroacoustics case we subtract from both sides a second spatial derivative
term multiplied by an arbitrary reference velocity c0 that states the
propagation of ρ and obtain

∂2ρ

∂t2
+

2ε

m~
∂(ρQvi)

∂t
− c20

∂2ρ

∂xi∂xi
=

∂2Tij
∂xi∂xj

, (27)
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where the driving Lighthill tensor which includes a quantum potential
component with highly non-classical properties is expressed as

Tij = ρvivj − ρ
(
V

m
+ c20

)
δij + σij . (28)

For a two-dimensional problem we could write (27) in terms of a stream
function for the flow velocity v. If we omit the quantum potential term
and set ε = 0 in (27) we obtain a time symmetric equation which admits
solutions in both time directions. In contrast, the Schrödinger equation
admits solutions only in one direction in time and its complex conjugate
in the opposite one. In that limit (27) is reduced to an inhomogeneous
wave equation with a Lighthill source term [11, 12] and its solution is

ρ(x, t) =
1

4πc20

∂2

∂xi∂xj

∫ +∞

−∞

Tij

(
y, t− |x−y|c0

)
+ Tij

(
y, t+ |x−y|

c0

)
|x− y|

d3y,

(29)

where r = |x−y| the distance between a reception point x and the source
y. Even though this is a formal solution it still allow us to extract some
significant conclusions by including both retarded and advanced terms.
The existence of the retarded term is rather uncontroversial but this
cannot be said for the advanced term since unavoidably introduces an
element of retrocausation [13]. A similar issue is well-known in classical
radiation theory where the advanced terms are excluded on physical
grounds, but it is not clear if the same kind of argumentation could be
employed here. Since the Bohmian quantum potential implies nonlocal
effects it strongly suggests that we cannot discard advanced solutions
without loss of essential physics. Furthermore, for two or more particles
the coincidence probability density is connected to the total probability
that appears in Bell type theorems which is a clear indication that the
advanced term needs to be included in order to violate the classical
correlations. This is obviously not a mathematical argument and the
matter needs further consideration but it is plausible to assume that
the effect of advanced terms in a many-particle context would definitely
affect correlations and violate the usual assumed conditions for Bell-type
theorems [14]. Obviously in the context of a classical electromagnetic or
acoustic field there is no possibility of violating that family of inequalities
but this is cerainly not the case for a quantum coincidence probability.
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One of course could escape the conclusion by modifying the ordinary
Schrödinger dynamics. Introducing now the stochastic osmotic velocity
[7, 15], which is also implied in earlier formulas as in (21) and (25),

u =
~

2m

(
∇Φ

Φ
+
∇Φ∗

Φ∗

)
(30)

gives

u =
~

2m
∇ln|Ψ|2 − 2ε

m

∫ t

t0

(
∂v

∂τ
+ 2v∇ · v +∇V

)
dτ. (31)

This is a measurable, phase dependent diffusive velocity guided by the
deterministic flow velocity field. The many particle expression exhibits
dependency on the remote site locations which is a manifestation of
nonlocality. Notice that integration over past times can be extended in
principle to the initial probability distribution which makes a common
cause explanation [16] implausible. The total velocity is the stochastic
one in addition to the standard flux velocity. The intrinsic statistical
natural of the osmotic velocity field does not allow deterministic trajec-
tories and the rule of non-crossing is not applicable. The dilatation of
the osmotic field is given by

∇·u =
~∇2ln|Ψ|2

2m
−2ε

m

∫ t

t0

(
∂(∇ · v)

∂τ
+ 2(∇ · v)2 + 2v · ∇2v +∇2V

)
dτ.

(32)

More interesting is the vorticity of this stochastic velocity field. Taking
the curl of (31) we confirm that the first term is zero as the gradient
of a scalar function but the integral term has non-zero contribution and
some interesting implications. Using the fact that ∇× v = 0 yields

ω = ∇× u = −4ε

m

∫ t

t0

dτ(∇2v)× v. (33)

We see then that the quantum velocity has a non-zero component related
to circulation which could affect in principle the electron current in a
conducting ring as in the case of mesoscopic Josephson currents. It
also follows that other quantities related to circulation as the helicity
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H =
∫
V

u ·ωd3x may be non-zero too. The osmotic acceleration is given
by

du

dt
=

d

dt
∇ln|Ψ|2 − 2ε

m

(
∂v

∂τ
+ 2v∇ · v +∇V

)
(34)

and the vorticity rate of change is

dω

dt
= −4ε

m
(∇2v)× v. (35)

Defining the circulation as

Γ(t) =

∮
C

u · dr =
x

Σ

(∇× u) · dΣ = −4ε

m

x

Σ

(∫ t

t0

dτ(∇2v)× v

)
· dΣ,

(36)

and applying Stokes theorem we find

dΓ(t)

dt
=

∮
C

du

dt
· dr = −4ε

m

x

Σ

[∫ t

t0

dτ(∇2v)× v

]
· dΣ 6= 0. (37)

Hence, the circulation of the osmotic field does change with time and
the Kelvin circulation theorem [10, 17] is violated. It is important to
note that as with the entropy production and the tensor equation (27),
the non-zero vorticity effect is again a general result following from the
inclusion of an imaginary quantum potential and does not rely on the
phase assumption mentioned in section 2. It can be immediately verified
that the same result holds by substituting the exact expression (10) in
(30).

4 Concluding remarks

We have seen that the addition of an imaginary Bohm potential generates
quantum friction and leads to certain interesting implications. It induces
decay effects in the amplitude of probability, modifies the exponential
decay law, leads to entropy production and generates vorticity effects for
the osmotic velocity. The phase of the wavefunction, and its derivative
velocity field, has particular importance in the present formalism since



210 C. Dedes

it guides the osmotic velocity field. Furthermore, still in the hydrody-
namic formulation a generalized quantum hydrodynamic propagator has
been obtained. In the domain of standard dynamics, by combining the
two hydrodynamical equations a single non-homogeneous Lighthill wave
equation, manifestly time-symmetric, has been derived which in general
admits both retarded and advanced solutions. The wider physical im-
plications of this result suggest that we may need to choose between
backward causation and exploring the possibility of extending the stan-
dard formalism beyond the unitary regime.
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