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ABSTRACT. The quantum tunneling time (QTT) is estimated based
on the uncertainty principle. The result is model independent and can
be considered as a lower bound for different models and definitions
for the QTT. The result found leads to the exclusion of superluminal
effects claimed in some quantum tunneling (QT) phenomena.
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Introduction

Just after introducing the Schrodinger equation, quantum tunneling
(QT) (barrier penetration) was notified by Hund [1] in a calculation
of the splitting of the ground state in a double-well potential (e.g. the
ammonia molecule). In a few years, application of QT to nuclear physics
(α radioactive decay of nuclei) [2-4] and to solid state physics (the field
emission of electrons from a metallic surface) were discovered [5]. In
1934, and then in 1957 tunneling diodes invented by Zener and Esaki
based on the QT idea [6-7]. Newer applications of the QT were known
by the discovery of the Josephson effect in 1962 [8] and the invention of
the scanning tunneling microscope by Binnig and Rohrer in 1982 [9].

Although QT, as a pure quantum mechanical effect, has a well-known
theory with a number of applications, it is still under fundamental study
and investigation. Among other things, one of the most important prob-
lems corresponding to this effect is its time duration. In spite of a wide
variety of theories and research works, there isn’t a standard definition
of the QTT and a well-known method for experimental measurement of
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it yet. In this letter, an estimate for the tunneling time is given by a
fundamental argument based on the uncertainty principle. The result
which is found as a lower bound for QTT is model independent and
thus can be considered in all different definitions and theories used in
calculating QTT.

Quantum tunneling time (QTT)
Since the first time of raising the question on the subject by MacColl
in 1932 [10], there have been a number of sometimes conflicting theories
and definitions for the QTT [11-14]. Among others, one can introduce
three QTTs named as the Wigner time (i.e. phase time or group delay)
[15], the Büttiker -Landauer time (i.e. semiclassical time) [16], and the
Larmor time [17] (with Büttiker ’s modification [18]). The Wigner time is
the time interval between the arrival time of the peak of the incident wave
packet and the exit time of the peak of the transmitted wave packet which
is equal to the derivative of the phase of the tunneling amplitude with
respect to the energy of the particle. The Büttiker -Landauer time and its
modification the Larmor time is defined based on a thought experiment
and as an inverse of a characteristic frequency with a special scenario.
The basic reason for such a wide variety of definitions and interpretations
for QTT may be because of the non-availability of a quantum-mechanical
time operator.

A simple fundamental estimate of QTT
Let see how one can simply estimate the QTT in terms of the parti-
cle mass and the barrier width irrespective of other things and without
any other pre-assumption, particular definition, and special model. For
a quantum particle of mass m with the total energy E which is to be
penetrated through a potential barrier of height V (E<V ) and width
d, using the fundamental uncertainty principle, the minimum observ-
able time corresponding to this phenomenon should satisfy the following
inequality:

τobsmin ≈ h/∆E ≈
h

(∆p)
2
/m
≈ h

(h2/md2)
=
md2

h
(1)

in which we have considered two following facts:

1. The measured value of a quantity is experimentally reliable/observable
when its value is greater than its uncertainty.
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2. Under the barrier (the black unobservable box!), all quantities
can take a value at most of the order of their corresponding un-
certainties satisfying the Heisenberg relation and thus we have
used ∆E = ∆((p2/2m) + V ) = (2p∆p/2m) ≈ (∆p)2/m ≈
((h/∆x)2)/m ≈ (h2/md2) .

Therefore, for all different definitions and theories, QTT should sat-
isfy the following estimate:

(QTT )min ≈
md2

h
(2)

If the tunneling happens, the corresponding time cannot be less than
the above expression which depends only on the barrier width d and
the mass of the particle. Less massive, more rapidly tunneled, and more
massive with more delay. The above relation can be considered as a
lower bound test for the QTT.

Is QT a superluminal effect?

Based on some definitions, QT seems to deal with the superluminal effect
problem (e.g. the Wigner time in the Hartman effect [19]); but of course,
some modern experiments reason on this fact that QT is a subluminal
phenomenon [e.g. 20-21].

Although there isn’t a definite velocity\speed under the barrier, an
average velocity\speed may be simply defined as the ratio of the bar-
rier width to the QTT. Using (2), one can have an upper bound on
the average speed of the particle during tunneling the barrier as in the
following:

v̄QT ≤
d

(QTT )min
≤ h

md
(3)

As we know, fundamentally, the minimum distance about which one
can do quantum mechanical calculation for a particle of mass m, is its
corresponding Compton wavelength λcompton = h

mc ; in other words, QT
is observable only if the barrier width satisfies:

d ≥ λcompton ⇒ d ≥ h

mc
(4)
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Using (3) and (4), it is found that:

v̄QT ≤ c (5)

Considering (2) and (5), it is found that QT takes a finite time and
doesn’t happen instantaneously, but with a speed less than the speed of
light in vacuum.

Numerical estimate for two real experimentally well-
confirmed phenomena
Among a number of real experimentally confirmed phenomena which
are either designed based on QT or justified by QT in different fields
of physics and even other branches of modern science as in quantum
biology, let have an estimate for cold emission as one of the old well-
confirmed experiences [22]. The width of the barrier in cold emission
is:

d =
W

eE
(6)

where W is the work function of the metal under consideration and E
is the strong electric field strength. Considering a real case for which
the work function W is at the order of 1eV and the electric field is
at the order of 100 V/microns and thus d is about 10-2 microns (10
nanometers) and using (2) for an electron tunneling through such a
distance, it is found:

(QTT )coldemission ≈
(9.1 ∗ 10−31kg)(10−8m)

2

6.63 ∗ 10−34j.s
≈ 1.3 ∗ 10−13 sec . (7)

Clearly, this a lower bound for QTT of the problem under consideration.
Using (3), one can have an upper bound on the average speed of the

tunneled electrons as:

v̄QT (coldemission) ≤
6.63 ∗ 10−34j.s

(9.1 ∗ 10−31kg)(10−8m)
≈ 7.3 ∗ 104m/s (8)

This is smaller than %0.025 speed of light reasoning on this fact that
the tunneling occurs completely non-relativistic.

As a modern recently reported experiment in which rubidium atoms
(87Rb) tunnel through a barrier of thickness 1.3 micrometers [21]. Ac-
cording to (3), the average speed of the atoms should satisfy:

v̄QT ≤
h

md
≈ 6.63× 10−34

(87× 1.66× 10−27 × 1.3× 10−6)
≈ 3.5× 10−3m/s (9)
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thus, the corresponding QTT should be greater than (1.3×10−6m)
(3.5×10−3m/s) ≈

(3.7× 10−4)s.
An observable boundary value of 0.61(7) milliseconds has been re-

ported in [21] which is about 1.67 greater than the fundamental mini-
mum value (0.37 milliseconds) estimated here.

What about the massless particles?

Theoretical considerations of QT for photons and their corresponding
modern experiments are already well-known with controversial deduc-
tions on the possibility of faster than light signaling [23-25]. Here, in
continue of the above-noted calculations for massive particles, let check
what can we say about the massless particles. Although the standard
non-relativistic quantum mechanics cannot be applied to photons and
there isn’t any standard relativistic generalization of the uncertainty
principle for massless particles, we can simply use the energy-time rela-
tion as in the following:

τobsmassless ≈ h/∆E ≈
h

(∆p)c
≈ h

(h/d)c
=
d

c
(10)

This is an acceptable natural result; it not only gives us a finite lower
bound for QTT but also confirms this fact that QT for photons happens
with a speed of at most c.

Conclusion and discussion

What has been found in this letter is a fundamental lower bound for QTT
irrelevance of different possible definitions, models, and theories which
are usually considered in describing QT effect. The estimate found in
(2) may be considered as a criterion to test different proposed theories
for QT. Indeed, the criterion (2) is a lower bound for QTT based on
the uncertainty relation which ensures the observability\measurability of
the QT. Moreover, this criterion keeps the consistency with the special
theory of relativity because it excludes superluminal effects.

At last, let discuss about another point about the restriction (maybe
condition) on the potential height , and the barrier width value d (the
black box). In fact, both fundamentally and because of technical re-
strictions in observing quantum objects, one deals with a non-localized
object whose non-localizability cannot be fundamentally removed down
to a fundamental least value well-known as the Compton wavelength
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corresponding to the “particle” under consideration λc = h
mc ; thus, for a

particle (quantum object) of mass m, one cannot “speak” any quantum
phenomenon (e.g. quantum tunneling effect) for spatial scale smaller
than the Compton wavelength. This means that in quantum tunneling
effect the barrier width satisfies d > h/mc which is simply satisfied in
practice (because of the great value of the speed of light c). Moe clearly,
this is because the quantum object under consideration is spread over a
distance at least larger than its Compton wavelength and therefore for
barriers of width less than this value it is “instantaneously” cited at the
left and the right parts of the tunnel. About the potential height , in
order to tunneling happens, the maximum value of the barrier height
should satisfy:

Vmax . − E ≈ (∆p)2/m⇒ Vmax . = E + (∆p)2/m (11)

This is because for the case of a particle (quantum object) at the least
possibility of “success” to tunnel the potential barrier it should have
an “energy” value equal to (∆p)2/m or h2/md2 which is about h/τmin .

value ; this is a reasonable estimate in agreement to the energy-time
uncertainty relation. From other point of view, considering the well-
known transition probability amplitude for the quantum tunneling effect

based on the standard quantum mechanics T ∼ e−
√

2m
~2 (V−E)d [26], it is

obvious that tunneling doesn’t occur for large values of 2m
~2 (V −E)d; thus,

even for a very low energy particle (quantum object), if the potential
barrier doesn’t exceed the h2/md2 value, quantum tunneling happens.
This proposes us a scenario for finding out not only an upper bound
on the potential barrier but also a method in such a case that with
varying (lowering) the kinetic energy of the particle (quantum object) so
that just at the condition of the minimum value of the energy for which
tunneling occurs one can get more information about the value of the
potential barrier and possible restrictions on it.
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