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ABSTRACT. In this paper, a novel analytical method is proposed to 

directly obtain the solution of Maxwell's equations for the problem of 

electromagnetic radiation. This method does not make use of the Liénard-

Wiecher theory of electrodynamic potentials. The solution obtained offers a 

better understanding of the phenomenon of electromagnetic radiation, and 

could lead to new methods of electromagnetic analysis. The method could 

impact other branches of physics and technology, which make use of 

potentials to explain phenomena of nature. Potentials, it seems, are no 

longer be necessary.  

 

 

1 Introduction  

Throughout history there have been several attempts to solve the equations 

of Maxwell, for electromagnetic radiation, but in none of them could it be 

done directly, so other procedures were used. Heinrich Rudolf Hertz 

obtained approximate solutions with the potentials that he defined and that 

today bear his name, [1]. Between 1898 and 1900, the Liénard-Wiechert 

electrodynamic potentials were accepted and are still used today, [2, 3]. Here 

we propose a simpler procedure for obtaining the solutions directly, without 

using them.  

 

This paper is organized in six sections; the first is the present introduction. 

The second, entitled, the principle of linearity and wave equations, uses the 

linearity principle of Maxwell's equations to obtain the equations of radiated 

electromagnetic waves (EMW). The third corresponds to the, generalization 



238 E. L. Molina Morales.  

of the Biot-Savart and Coulomb laws, and it extends these laws to the case 

of electromagnetic waves. The fourth section, called, solutions of the wave 

equations, develops the method of solving these equations. The fifth is a 

brief discussion about the solutions obtained in the previous section. Finally, 

in the conclusions section, a summary of the main results obtained. At the 

end of the paper the references used are listed. 

 

2 The principle of linearity and wave equations  

2.1 The principle of linearity of Maxwell's equations 

Maxwell's equations are linear, therefore, they comply with the 

superposition principle, sum of two solutions is also a solution. Let us 

propose the principle of linearity as follows: 

 

�⃗� × �⃗⃗� = 𝜀0
𝜕�⃗� 

𝜕𝑡
+ 𝜀0

𝜕�⃗� 𝐸𝑥𝑐
𝜕𝑡

+ 𝐽  (1) 

and 

 

�⃗� × �⃗� = −𝜇0
𝜕�⃗⃗� 

𝜕𝑡
− 𝜇0

𝜕�⃗⃗� 𝐸𝑥𝑐
𝜕𝑡

, (𝟐) 

 

where (1) is the Ampère-Maxwell equation, in which we make 𝐽 = 0,  and 
(2) is the Faraday-Maxwell equation. In both, the curls operators of the left 

members can be equated to the superposition of the fields of the right 

members, where the second terms represent excitation fields, �⃗� 𝐸𝑥𝑐  and  

�⃗⃗� 𝐸𝑥𝑐. The condition 𝐽 = 0 is valid in the small space between the arms of a 

dipole, feeding point in which there are only displacement currents. 

 

 

2.2 Wave equation excited by magnetic field 

Applying the curl operation to both members of (1):  
 

�⃗� × �⃗� × �⃗⃗� = 𝜀0
𝜕

𝜕𝑡
(�⃗� × �⃗� ) + 𝜀0

𝜕

𝜕𝑡
(�⃗� × �⃗� 𝐸𝑥𝑐). (3) 

 

Expressing the left member of (3) according to the identity vector (4): 
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�⃗� × �⃗� × �⃗⃗� = 𝛻(𝛻 ∙ �⃗⃗� ) − 𝛻2�⃗⃗� , (4) 

 

then, substituting (2) in (3), and knowing that 𝛻 ∙ �⃗⃗� = 0 and that this 

implies 𝛻(𝛻 ∙ �⃗⃗� ) = 0, we get: 

 

𝛻2�⃗⃗� = 𝜇0𝜀0
𝜕2�⃗⃗� 

𝜕𝑡2
+ 𝜇0𝜀0

𝜕2�⃗⃗� 𝐸𝑥𝑐
𝜕𝑡2

, (5) 

 

however, for harmonic fields, [𝜕𝑛 𝜕𝑡𝑛⁄ ] → (𝑖𝜔)𝑛, where 𝑖 = √−1, the 

imaginary unit, ω the angular frequency, and 𝑛, an integer, in this case, 𝑛 =
2, therefore (5), in complex form, we have: 

 

𝛻2�⃗⃗� = 𝜇0𝜀0(𝑖𝜔)
2�⃗⃗� + 𝜇0𝜀0(𝑖𝜔)

2�⃗⃗� 𝐸𝑥𝑐 , (6) 

 

on the other hand, the speed of electromagnetic waves in a vacuum is: 

 

𝑐 =
1

√𝜇0𝜀0
, (7) 

 

where 𝜇0 = 4𝜋 ∙ 10
−7, [𝐻 𝑚⁄ ] and 𝜀0 = 8.85 ∙ 10

−12, [𝐹 𝑚⁄ ] are the 

magnetic permeability and the dielectric permittivity of the vacuum 

respectively. The propagation constant 𝑘, of the EMW is: 

 

𝑘 =
𝜔

𝑐
, (8) 

 

now, expressing (6) in its compact form: 

 

𝛻2�⃗⃗� = −𝑘2�⃗⃗� −𝑘2�⃗⃗� 𝐸𝑥𝑐 , 
(9) 
 

organizing (9), we finally arrive at a Helmholtz wave equation: 

 

𝛻2�⃗⃗� +𝑘2�⃗⃗� = −𝑘2�⃗⃗� 𝐸𝑥𝑐 . 
(10) 

 

That is, a nonhomogeneous differential equation for the intensity vector of 

the magnetic field �⃗⃗�  of a wave radiated by a magnetic source. On the right 

side of (10) we have the exciter function �⃗⃗� 𝐸𝑥𝑐. 
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2.3 Wave equation excited by electric field 

Following the same procedure as the previous case, in expression (𝟐):  
 

�⃗� × �⃗� × �⃗� = −𝜇0
𝜕

𝜕𝑡
(�⃗� × �⃗⃗� ) − 𝜇0

𝜕

𝜕𝑡
(�⃗� × �⃗⃗� 𝐸𝑥𝑐), (11) 

 

now, expressing the left member (11) as identity vector (12):  
 

�⃗� × �⃗� × �⃗� = 𝛻(𝛻 ∙ �⃗� ) − 𝛻2�⃗� , (12) 

 

substituting (12) in (11) and knowing that for EMW the 𝛻 ∙ �⃗� = 0 implies 

that 𝛻(𝛻 ∙ �⃗� ) = 0, so we get:  

 

𝛻2�⃗� = 𝜇0𝜀0
𝜕2�⃗� 

𝜕𝑡2
+ 𝜇0𝜀0

𝜕2�⃗� 𝐸𝑥𝑐
𝜕𝑡2

, (13) 

 

we can express (13)  in its phasorial form:  

 

𝛻2�⃗� = 𝜇0𝜀0(𝑖𝜔)
2�⃗� + 𝜇0𝜀0(𝑖𝜔)

2�⃗� 𝐸𝑥𝑐 , (14) 

 
furthermore, putting (14) as a function of the constant 𝑘, seen in (8), it 
results:  
 

𝛻2�⃗� = −𝑘2�⃗� −𝑘2�⃗� 𝐸𝑥𝑐 , (15) 

 
rearranging it conveniently:  
 

𝛻2�⃗� +𝑘2�⃗� = −𝑘2�⃗� 𝐸𝑥𝑐 . (16) 

 

That is, a nonhomogeneous differential equation for the intensity vector of 

the electric field �⃗�  of a wave radiated by an electric source. On the right side 

of (16) is the exciter function, �⃗� 𝐸𝑥𝑐. 
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3 Generalization of the Biot-Savart and Coulomb laws 

3.1 Biot-Savart and Coulomb laws  

For convenience we repeat equations (10) and (16) here: 

 

𝛻2�⃗⃗� +𝑘2�⃗⃗� = −𝑘2�⃗⃗� 𝐸𝑥𝑐 , 
 

𝛻2�⃗� +𝑘2�⃗� = −𝑘2�⃗� 𝐸𝑥𝑐 , 

(10) 

 
(16) 

 

now, as the excitation function �⃗⃗� 𝐸𝑥𝑐 in (10) we take the field distribution of  

Biot-Savart, [4], whose expression is the following: 

 

�⃗⃗� 𝐸𝑥𝑐 =
𝐼 ∙ 𝛿

4𝜋
[
1

𝑟2
] 𝑠𝑖𝑛(𝜃)  𝑖 𝜑, (17) 

 

and as excitation function �⃗� 𝐸𝑥𝑐, in (10), we take the field distribution of the 

Coulomb electric dipole, [5],  its expression is:  

 

�⃗� 𝐸𝑥𝑐 = −𝑖
𝐼 ∙ 𝛿

4𝜋𝜔𝜀0𝑟
3
(2 𝑐𝑜𝑠(𝜃) 𝑖 𝑟 − 𝑠𝑖𝑛(𝜃) 𝑖 𝜃). (18) 

 

In (17), 𝛿 is the length of the magnetic field support. The current flowing 

through support is 𝐼, and 𝑖 𝜑 is the unit vector of the spherical coordinate 

system that indicates the direction of the �⃗⃗� 𝐸𝑥𝑐. In(18), 𝛿 is the distance 

between charged ends of dipole, in this case electric field support. The 

relation [−𝑖 𝐼 𝜔⁄ ] is the electric charge 𝑞 that accumulates at the ends of 

dipole. In this case 𝑖 𝑟  and 𝑖 𝜃, are the unit vectors that indicate the direction 

of the components of the �⃗� 𝐸𝑥𝑐. 
Equations (17) and (18) are paired and either of them can be obtained from 

the other, using Maxwell's equations. When in equations (10) and (16) the 

excitatory functions (17) and (18) appear, they correspond to the field 

distributions of the Biot-Savart and Coulomb laws respectively, then these 

equations will be called, as, Helmholtz-Biot-Savart equation and Helmholtz-

Coulomb equation, respectively. The first part of the name corresponds to 

the type of inhomogeneous differential equation, and the second, to the type 

of excitatory function used. 
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4 Solutions of the wave equations  

4.1 Solution for magnetic field 

Then, the solution of the wave equation (10) is as follows:  

 

�⃗⃗� = 𝐶0𝑒
−𝑖𝑘∙𝑟 + 𝐶1𝑒

𝑖𝑘∙𝑟 , (19) 

 

where the first addend in (19) corresponds to a wave that is radiated from 

the source, and the second addend arrives from infinity. Now, applying the 

Sommerfeld radiation condition [6] to (19), only the first addend are taken 

into account. The parameter 𝐶0 represents the function to be determined. On 

it, the initial conditions of the wave formation process in the area of fields 

linked to the radiator is described as: 

 

�⃗⃗� = 𝐶0𝑒
−𝑖𝑘∙𝑟 , (20) 

 

to determine 𝐶0 the solution (20) is evaluated with the excitation function of 

the system �⃗⃗� 𝐸𝑥𝑐: 
 

�⃗⃗� 𝐸𝑥𝑐 = 𝐶0𝑒
−𝑖𝑘∙𝑟 , (21) 

 

substituting (18) in (21)  and solving for 𝐶0 we obtain: 

 

𝐶0 =
𝐼 ∙ 𝛿

4𝜋
[
𝑒𝑖𝑘∙𝑟

𝑟2
] 𝑠𝑖𝑛(𝜃)  𝑖 𝜑, (22) 

 

expressing the complex exponential of (22) in its trigonometric form, we 

have:  
 

𝐶0 =
𝐼 ∙ 𝛿

4𝜋
[
𝑐𝑜𝑠(𝑘 ∙ 𝑟)

𝑟2
+ 𝑖

𝑠𝑖𝑛(𝑘 ∙ 𝑟)

𝑟2
] 𝑠𝑖𝑛(𝜃) 𝑖 𝜑, (23) 

 

multiplying in (23) the sine function, 𝑘 up and down and conveniently 

separating the distance 𝑟 in the denominator, you reach the expression (24):  
 

𝐶0 =
𝐼 ∙ 𝛿

4𝜋
[
𝑐𝑜𝑠(𝑘 ∙ 𝑟)

𝑟2
+ 𝑖

𝑘

𝑟
∙
𝑠𝑖𝑛(𝑘 ∙ 𝑟)

(𝑘 ∙ 𝑟)
] 𝑠𝑖𝑛(𝜃) 𝑖 𝜑 . (24) 
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In (24), when the electrical distance 𝑘𝑟 is extremely small we are the zone 

of fields linked to the radiator. In this zone 𝑐𝑜𝑠(𝑘𝑟) → 1 and 
[𝑠𝑖𝑛(𝑘𝑟) 𝑘𝑟⁄ ] → 1, which reduces (24) to:  
 

𝐶0 =
𝐼 ∙ 𝛿

4𝜋
[
1

𝑟2
+
𝑖𝑘

𝑟
] 𝑠𝑖𝑛(𝜃)  𝑖 𝜑. (25) 

 

Finally, substituting (25) in (20) we arrive at the expression of the intensity 

vector of the magnetic field �⃗⃗� , solution of the wave equation (10). Inside 

the brackets, it has been multiplied up and down by 𝑘2 and 𝑘 respectively, 

and then 𝑘2 has been taken as a common factor: 

 

�⃗⃗� =
𝐼 ∙ 𝛿

4𝜋
𝑘2 [

1

(𝑘𝑟)2
+
𝑖

𝑘𝑟
] 𝑒−𝑖𝑘∙𝑟 𝑠𝑖𝑛(𝜃)  𝑖 𝜑. (26) 

 

See that (26) coincides with the expression of the Hertz dipole magnetic 

field intensity vector, obtained by the traditional method, that is, making use 

of the well-established theory of the Liénard-Wiechert electrodynamic 

potentials. It is important to point out that the solution (26) has been 

obtained by applying the Biot-Savart law to the displacement current 

filament existing in the electric dipole, when it is fed by an alternating 

current signal. Said displacement current is nothing more than the time-

varying electric field of the dipole given by the expression 𝐽 𝐷 = 𝜀0 𝜕�⃗� 𝜕𝑡⁄ . 

In this way, said current has all the characteristics of the electromagnetic 

field, and all the valid operations that can be carried out with Maxwell's 

system of equations are also applicable to it. 

 

4.2 Another way to get the solution for the magnetic field 

The solution (26), obtained previously, will now be obtained by a second 

method. Now, the wave equation for the magnetic field (11) will be solved 

by means of an expansion in series of powers of the complex exponential 

function (𝑒𝑖𝑘𝑟). This method will allow to observe the terms that remain 

hidden in the accepted classical solution. This procedure will also be used to 

find the solution to the electric field wave equation in the next section.  

 

Developing in power series the exponential in the bracket of (15): 
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𝑒𝑖𝑘𝑟

(𝑘𝑟)2
=

1

(𝑘𝑟)2
∑

(𝑖𝑘𝑟)𝑛

𝑛!

∞

𝑛=0

1

(𝑘𝑟)2
+
𝑖𝑘𝑟

(𝑘𝑟)2
+
(𝑖𝑘𝑟)2

2! (𝑘𝑟)2
+
(𝑖𝑘𝑟)3

3! (𝑘𝑟)2

+
(𝑖𝑘𝑟)4

4! (𝑘𝑟)2
+⋯. 

 
 
(27) 

 

See that the denominator in (27)  has been completed with the 𝑘 constant. 

Performing: 

 

𝑒𝑖𝑘𝑟

(𝑘𝑟)2
=

1

(𝑘𝑟)2
∑

(𝑖𝑘𝑟)𝑛

𝑛!

∞

𝑛=0

=
1

(𝑘𝑟)2
+

𝑖

(𝑘𝑟)
−
1

2
−
𝑖(𝑘𝑟)

6
+
(𝑘𝑟)2

24
−
(𝑖𝑘𝑟)3

120
+ ⋯, 

(28) 

 

and substituting (28) in (22): 
 

𝐶0 =
𝐼 ∙ 𝛿

4𝜋
[
1

(𝑘𝑟)2
+

𝑖

(𝑘𝑟)
−
1

2
−
𝑖(𝑘𝑟)

6
+
(𝑘𝑟)2

24
−
(𝑖𝑘𝑟)3

120

+ ⋯] 𝑠𝑖𝑛(𝜃)  𝑖 𝜑, 

(29) 

 

and taking the most influential terms when 𝑘𝑟 tends to zero, in the near 

fields zone:  

 

𝐶0 =
𝐼 ∙ 𝛿

4𝜋
[
1

(𝑘𝑟)2
+

𝑖

(𝑘𝑟)
−
1

2
] 𝑠𝑖𝑛(𝜃) 𝑖 𝜑 , (30) 

 

substituting (30) in (20) we has reached the expression of the �⃗⃗� , solution of 

the equation (10):  
 

�⃗⃗� =
𝐼 ∙ 𝛿

4𝜋
𝑘2 [

1

(𝑘𝑟)2
+
𝑖

𝑘𝑟
−
1

2
] 𝑒−𝑖𝑘∙𝑟 𝑠𝑖𝑛(𝜃)  𝑖 𝜑. (31) 

 

See in (31), that the difference with (26) consists in the appearance of a 

new term within the bracket, this term will be necessary for said field to 

match the electric field that will be obtained in the next section.  
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4.3 Solution for electric field  

The solution of (16) is of the form:  

 

�⃗� = 𝐶0𝑒
−𝑖𝑘∙𝑟 + 𝐶1𝑒

𝑖𝑘∙𝑟 , (32) 

 

applying Sommerfeld's condition: 

 

�⃗� = 𝐶0𝑒
−𝑖𝑘∙𝑟 , (33) 

 

and evaluating the solution (𝟑𝟑) with the excitation function �⃗⃗� 𝑬𝒙𝒄: 
 

�⃗� 𝐸𝑥𝑐 = 𝐶0𝑒
−𝑖𝑘∙𝑟 , (34) 

 

we get  

 

𝐶0 = �⃗� 𝐸𝑥𝑐𝑒
𝑖𝑘∙𝑟 , (35) 

 

substituting (𝟑𝟏) in (𝟑𝟓), it results: 

 

𝐶0 = −𝑖
𝐼 ∙ 𝛿

4𝜋𝜔𝜀0
𝑘3 [

𝑒𝑖𝑘𝑟

(𝑘𝑟)3
] (2 𝑐𝑜𝑠(𝜃) 𝑖 𝑟 − 𝑠𝑖𝑛(𝜃) 𝑖 𝜃). (36) 

 

Here, (𝟑𝟔) has been conveniently arranged and multiplied up and down by 

𝒌𝟑. Expressing the complex exponential as a series of powers divided by 

(𝒌𝒓)𝟑:  

 

𝑒𝑖𝑘𝑟

(𝑘𝑟)3
=

1

(𝑘𝑟)3
∑

(𝑖𝑘𝑟)𝑛

𝑛!
=

1

(𝑘𝑟)3
+
𝑖𝑘𝑟

(𝑘𝑟)3
+
(𝑖𝑘𝑟)2

2! (𝑘𝑟)3

∞

𝑛=0

+
(𝑖𝑘𝑟)3

3! (𝑘𝑟)3
+
(𝑖𝑘𝑟)4

4! (𝑘𝑟)3
+⋯ ,

 (37) 

 

solving:  
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𝑒𝑖𝑘𝑟

(𝑘𝑟)3
=

1

(𝑘𝑟)3
∑

(𝑖𝑘𝑟)𝑛

𝑛!

∞

𝑛=0

=
1

(𝑘𝑟)3
+

𝑖

(𝑘𝑟)2
−

1

2(𝑘𝑟)⏟              
𝑇𝐸𝑅𝑀𝑆 𝑂𝐹 𝑁𝐸𝐴𝑅 𝐹𝐼𝐸𝐿𝐷

−
𝑖

6

−
(𝑖𝑘𝑟)2

120
+ ⋯ ,

 (38) 

 

substituting what is inside the bracket of (𝟑𝟔) by (𝟑𝟖), we have:  

 

𝐶0 = −𝑖
𝐼 ∙ 𝛿

4𝜋𝜔𝜀0
𝑘3 ∙

∙ {2 [
1

(𝑘𝑟)3
+

𝑖

(𝑘𝑟)2
−

1

2(𝑘𝑟)
−
𝑖

6
+
(𝑘𝑟)

24
−
(𝑖𝑘𝑟)2

120
+ ⋯ ] 𝑐𝑜𝑠(𝜃) 𝑖 𝑟

−[
1

(𝑘𝑟)3
+

𝑖

(𝑘𝑟)2
−

1

2(𝑘𝑟)
−
𝑖

6
+
(𝑘𝑟)

24
−
(𝑖𝑘𝑟)2

120
+ ⋯ ] 𝑠𝑖𝑛(𝜃)  𝑖 𝜃} .

 (39) 

 

In(𝟑𝟗), when the electrical distance 𝒌𝒓 is extremely small, linked fields 

zone to the radiator, only the first three terms of the series contribute, 

reducing (𝟑𝟗) to:  

 

𝐶0 = −𝑖
𝐼 ∙ 𝛿

4𝜋𝜔𝜀0
𝑘3 {2 [

1

(𝑘𝑟)3
+

𝑖

(𝑘𝑟)2
−

1

2(𝑘𝑟)
] 𝑐𝑜𝑠(𝜃) 𝑖 𝑟

−[
1

(𝑘𝑟)3
+

𝑖

(𝑘𝑟)2
−

1

2(𝑘𝑟)
] 𝑠𝑖𝑛(𝜃) 𝑖 𝜃} ,

 (40) 

 

finally, substituting (𝟒𝟎) in (𝟑𝟒), the expression of the electric field 

intensity vector of the radiated wave is obtained, see that the relation 𝒌 𝝎𝜺𝟎⁄  

has been replaced by the intrinsic impedance of the fields in vacuum, 𝜼𝟎 =
𝟑𝟕𝟕 𝜴, then:  

 

�⃗� = −𝑖
𝐼 ∙ 𝛿 ∙ 𝜂0
4𝜋

𝑘2 {2 [
1

(𝑘𝑟)3
+

𝑖

(𝑘𝑟)2
−

1

2(𝑘𝑟)
] 𝑐𝑜𝑠(𝜃) 𝑖 𝑟

−[
1

(𝑘𝑟)3
+

𝑖

(𝑘𝑟)2
−

1

2(𝑘𝑟)
] 𝑠𝑖𝑛(𝜃)  𝑖 𝜃} 𝑒

−𝑖𝑘∙𝑟 .

 (41) 

 
The electric field solution given by (𝟒𝟏) is paired with the solution of 

magnetic field (𝟑𝟏). This does not happen between (𝟒𝟏) and (𝟐𝟔), by the 
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fact hidden terms exist. These terms are only observed through the procedure 

of expanding the complex exponentials in series. Now expression (𝟒𝟏) can 

be obtained by Maxwell's equations from (𝟑𝟏) and vice versa. 
 

5 Discussion  

Expression (41) is similar to that of the Hertz dipole, obtained by the 

traditional method of electrodynamic potentials and applied to a conduction 

current filament, on a segment of a metallic conductor much shorter than the 

wavelength that it radiates. However, (41) differs from the previous one, in 

that it has longitudinal component in the field of the far zone, terms 

associated with 1 (𝑘𝑟)⁄ . This component is necessary to explain the 

phenomenon of vortex closure of the electric field to form EMW. On the 

other hand, both equations (19) and (41) correspond to the radiation 

emitted by the displacement current filament that exists in the little space 

between the arms of a dipole. For this reason, it can be considered that the 

existence of this space is a mandatory condition for the phenomenon of 

electromagnetic radiation to take place. This space is also known as aperture 

and it has to meet the condition 𝛿 ≪ 𝜆. Another important point is that 

throughout the analysis, we have not consider the conduction current 

densities, 𝐽, since equation (1). But in a real system, such as a half-wave 

dipole, the conduction currents on the conductors must be considered, since 

they would have an impact on system parameters, such as the spatial 

characteristics of radiation, the input impedance and others. 

 

6 Conclusions 

A novel analytical method of direct obtaining a solution of Maxwell's 

equations for the phenomenon of electromagnetic radiation from an 

elemental source has been presented. This method offers a solution that is 

better adapted to the nature of the radiation. The procedure is simple and 

analytical, which could be the basis for the emergence of electromagnetic 

analysis methods, analytical and numerical, more precise and efficient than 

the current ones. It is interesting to note that the field associated with the 

Biot-Savart law, used as an excitatory function, dates from the year 1820, 

when the unified nature of the electromagnetic field had not yet been 

accepted. This came much later, with the theoretical contributions of James 

Clerk Maxwell, around the year 1848, and the birth as such, of the 

electromagnetic theory. On the other hand, the method presented here and 



248 E. L. Molina Morales.  

the solutions obtained could have an impact on other fields of physics and 

technology. The Liénard-Wiechert theory of electrodynamic potentials, in 

the light of the evidences, will no longer be necessary, since from now on 

Maxwell's equations can be solved directly. The theory presented here could 

also be considered as the generalization of the Biot-Savart and Coulomb 

laws to the electrodynamic case, something that professor Oleg Jeffimenko 

tried to demonstrate in 1966 [7], but that its foundation contains various 

inconsistencies and conceptual errors, as already analyzed, by professor 

David Griffight et al, in [8]. In future research, the densities of the 

conduction currents should be taken into account in the Maxwell equations 

associated with any real radiation system. This will allow to study with 

greater theoretical rigor the mechanisms and physical principles that 

intervene in the phenomenon of the formation and radiation of 

electromagnetic waves.  
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