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RESUMÉ. Les théories quantiques relativistes à deux particules de spin
1

2
 

liées entre elles, initiées dans “La nouvelle Théorie de la Lumière“ et la 
“Théorie de la Fusion” de L.De Broglie, sont revues et complétées par l’ 
étude d’ équations quantiques relativistes à deux particules dans lesquelles 
les deux particules peuvent se mouvoir indépendamment. Nous focalisons 
ici l’ étude sur des solutions simples de l’ équation de Durt et Pelcé qui a l’ 
avantage, par rapport à celle de Bohm et Hiley, d’ être invariante par 
transformations de Lorentz. L’ étude du corpuscule composé montre que les 
dynamiques déterminées par la méthode de fusion de L.De Broglie et par l’ 
équation de Durt et Pelcé sont les mêmes. L’ étude du mouvement relatif 
permet d’ obtenir la correction relativiste à la corrélation de spins mesurée, 
avec les appareils A et B, à différents angles avec l’ axe Oz, le long des 

vecteurs  a
!

et  b
!

. 
 

ABSTRACT. Relativistic quantum theories for two particles of spin 
1

2
 

bound together, initiated in “La nouvelle Théorie de la Lumière“ and la 
“Théorie de la Fusion” de L.De Broglie, are reviewed and completed by the 
study of relativistic quantum equations for two particles in which the two 
particles can move independently. Here we focus the study on simple 
solutions of the Durt and Pelcé equation, which has the advantage compared 
to the Bohm and Hiley equation, to be invariant under Lorentz 
transformations. The study of the motion of the compound particle shows 
that the dynamics determined from the L.De Broglie fusion method and the 
Durt and Pelcé equation are the same. The study of the relative motion 
allows to obtain the relativistic correction to the spin correlation measured 
with apparatus A and B, at different angles with the Oz axis, along the 

vectors  a
!

and b
!

. 
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1 Introduction 

   I thank the organizers of the “100 ans d’ onde de matière”, an international 
conference dedicated to the three historical papers of L.De Broglie of 1923, 
to invite me to  give a lecture on the connection between fusion theories of 
L.De Broglie and recent developments of the quantum relativistic equations 
for two particles. It was an occasion to make the book “La nouvelle Théorie 
de la Lumière” bound with beautiful leather, from a faded copy that I bought 
800FF, 25 years ago.  
   Quantum mechanics has had a considerable development after the 
determination of quantum equations for the wave function, first for one and 
many non relativistic particles with E.Schrödinger [1], then for relativistic 
particles with Klein and Gordon [2] and L.De Broglie [3], then for the 

electron of spin 
1

2
 with the quantum relativistic equation of Dirac [4].  

   The development of relativistic quantum mechanics with many particles 
has quickly eclipsed the wave equations, with the essential argument that the 
number of particles cannot be conserved during a certain dynamics, since 
energy can be transformed in mass energy of a new particle. A new 
formalism has been developed from 1926 to 1950, which implies the 
concepts of identical particles, bosons, fermions, Fock space, operators 
annihilation and creation, second quantification, Feynman diagrams, leading 
to an exceptional agreement between theory and experiments [5].    
   However, the study of relativistic quantum equations with many particles, 
which remained marginal, is still active. As we explain for instance in  
section 3, it has been shown in the past [6] that the equation proposed by 
Bohm and Hiley to describe a pair of non-interacting Dirac fermions is not 
relativistically invariant, but it suggests another equation, the Durt and Pelcé 
equation [7], which is well invariant under Lorentz transformations. Contrary 
to the Bohm-Hiley equation, the density associated to the Durt-Pelcé 
equation is however not always positive. Actually, we were unable to find a 
two particle equations which is at the same time relativistically invariant and 
characterized by a positive conserved density. Despite of this frustrating 
result, the Durt-Pelcé equation presents however substantial advantages 
regarding the Bohm-Hiley equation : 
   -it is directly connected, as previously shown in [8], to the fusion theory of 
L.De Broglie, already mentionned in the abstract, and presented with more 
details in section 2 ; henceforth it can be used to study simple solutions, as 
plane waves of a compound particle, as we show here in section 4. The study 
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of the motion of the compound particle actually shows that the dynamics 
determined from the 
L.De Broglie fusion method and the Durt-Pelcé équation are the same. 
   -the DP equation also allows us to solve the problem of spin correlation in 
the Bohm version of the EPR experiment in the relativistic range, as we also 
show in section 4, where we study the relative motion of two particles of  

spin 
1

2
 emitted from a same source, moving in two opposite directions along 

a same Ox axis, providing a relativistic correction to the well-known non- 
relativistic formula.  

 
2     Nouvelle Théorie de la Lumière et Théorie de la Fusion 

 
   One can again attribute to L.De Broglie, having initiated this field of 
research. After his great success in the 1920’s on the wave mechanics of 
matter particles, L.De Broglie proposes, at the beginning of the 1940’s, in 
“La nouvelle Théorie de la Lumière” to establish, along similar lines, a wave 
mechanics for photon [9]. However the problem appears more complex. The 
equation has to be invariant under Lorentz transformations, and at that time 
one only knows the Dirac equation for the electron. Then he proposes to 

consider the photon as a particle composed of two particles of spin 
1

2
 and 

same masses. The two particles play a complementary role in the compound 
particle, since one of the particle of wave function ϕ  satisfies the Dirac 
equation, the other of wave function ψ  satisfying the conjugate of the Dirac 

equation. The photon wave function Φ ik =ϕ iψ k  has 16 components. They 
satisfy two groups of 16 equations that one determines with the Dirac 
equation and its conjugate, both particles being coupled by the binding 
condition 

                    ϕ
k

∂Ψ
i

∂q
=
∂ϕ

k

∂q
Ψ i =

1
2

∂(ϕ
k
Ψ
i
)

∂q
=
1
2

∂Φ
ik

∂q
(1)  

 
q being any of the four coordinates x, y, z, t.                        
   L.De Broglie interprets this condition as the equality of energies and 
momenta of the two bound particles. As he told himself, this binding 
condition is in principle not correct, but succeeds. With his colleague 
J.Géhéniau [10], they show that one can build with the 16 components of the 
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wave function, the components of an electromagnetic field which satisfy the 
Proca equation, the mass which appears in the equation being the common 
mass of the particles. In a remarkable way, when this mass tends to 0, these 
equations give the Maxwell equations. This theory raised the problem of an 
eventual possible mass for the photon, which will however be extremely 

small, less than the observation limit, of the order of 10-52 g.  
   Then, in 1943, L.De Broglie gives a new formulation of his theory in  “La 
Théorie de la Fusion” in order to apply it to any particle composed of two 

particles of spin 
1

2
 and same masses, the difference with the previous theory 

being that the wave functions of the particles satisfy both the same Dirac 
equation, playing now a symmetric role in the compound particle [11]. The 
same binding condition (1) is used, leading as previously to two groups of 16 
equations for the wave function of the compound particle.          
   This reformulation of the theory takes on a more mathematical character, 
above all with G.Petiau, A.M.Tonnelat, then G.Lochak [12], since with the 
help of the two matrices Λ=-iγ 2γ 4 and Γ=-iγ 3γ 1 , they decompose the 
matrices ΨΛ ( Petiau et Tonnelat ) and ΨΓ ( Lochak ) on the Clifford 
algebra, where Ψ  is the 4-4 matrix built with the 16 components of the wave 
function, the decomposition factors being the components of an 
electromagnetic field. They satisfy Maxwellian equations, at the origin of the 
usual electric photon with the first matrix, and  a magnetic photon with the 
second. 
   When we manipulate the 16 equations for the wave function of the 
compound boson, one can in particular obtain one group of 16 equations of 
which 8 evolution equations with a time derivative and 8 condition equations 
without time derivative. This group of equations, called the form III, 
determines the dynamics of a compound boson, which as already shown in 
[8], can be obtained more generally as a solution of the Durt and Pelcé 
equation for two particles. Here the two particles can move in general 
independently, but the two particles may be however eventually linked, when 
we equal the spatio-temporal coordinates of the two particles in the 
configuration space.  
 
3    Quantum relativistic equations for two particles 
 
   Here, we take up the same problem, but in a broader context, since, in our 
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approach, the two particles of spin 
1

2
 can move independently. One has to 

determine the quantum relativistic equation for the wave function of the two 
particles in the configuration space, as the Schrödinger equation for two 
particles describes this dynamics in the non relativistic range. The first 
equation proposed is the Bohm and Hiley equation [13] which aligns the two 
spatial parts of the Dirac equation taken at the coordinates of each particle, 
with one common time, as the Schrödinger equation aligns the two Laplacien 
terms for the coordinates of each particle. Thus the wave function of the two 
particles system has 16 components, as the photon wave function introduced 
by L.De Broglie. The major flaw of the Bohm and Hiley equation is that is 
not invariant under Lorentz transformations, as we originally showed in [6]. 
To show that, one has to assign in the wave equation a different time to each 
particle, as did G.Wentzel in his “Quantum theory of fields” (1949) [14], 
since for instance a simple Lorentz transform along the Oz axis 

 

                                         ′t =
t-
V
c2
z

1-
V2

c2

(2)  

 
gives two different times to the two particles in the new frame, when they are 
at two different points at the same time in the old frame. We first recall the 

Dirac equation for a free particle of mass m and spin 
1

2
 wich can be written 

as [4] 
                       (P0 -α1P1-α2P2 -α3P3-α0mc)Ψk =0 (3)  

where                           

                      
 
P0 =i!

∂

c∂t
Pr =-i!

∂

∂xr
, r=1,2,3 (4)  

 
and where the Dirac matrices are expressed in the standard form as 
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α0 =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(5)

α1=

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
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⎞

⎠

⎟
⎟⎟

α2 =

0 0 0 -i
0 0 i 0
0 -i 0 0
i 0 0 0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

α3=

0 0 1 0
0 0 0 -1
1 0 0 0
0 -1 0 0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 
This equation conserves a current 

 

                                             j
!
=Ψ+α
"!
Ψ (6)  

with the density 
                                              ρ=Ψ+1Ψ (7)  
 

definite positive, which can be associated to a probability density. One can 
also associate to this equation a spin density 

 

                
σ x =iΨ+α2α 3Ψ, σ y =iΨ+α 3α1Ψ, σ z =iΨ+α1α2Ψ (8)

σ 0 =iΨ+α1α2α 3Ψ
 

 
   This equation has three important properties : It conserves a current with a 
definite positive density, it is invariant under Lorentz transformations and 
tends to the Schrödinger equation in the non relativistic limit. 
   The quantum relativistic equation of Bohm and Hiley for two particles, 
with one time for each particle, can be written as [6], [8] 

 

          

 

((1AP0
A -α A
! "!
.PA
! "!
-mAcα0

A )⊗1B

                      +1A ⊗ (1BP0
B-α B
! "!
.PB
!"!
-mBcα0

B))ΨAB=0 (9)
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where we notice that with the tensorial product, the 4-4 Dirac matrices 
become 16-16 matrices acting on the wave function for two particles ΨAB  of 
16 components. 
   For the Dirac equation, we apply the Lorentz transformation along Oz to 
the sub group of components Ψ1 , Ψ3  [6,15]. Taking a linear combination of 
these equations, one can rebuild the original equation since the determinant 
of the associated homogeneous system vanishes [13]. 
   For the Bohm and Hiley equation [6], we apply the Lorentz transformation 
along Oz to the sub group of components Ψ11 , Ψ13 , Ψ31 ,Ψ33 . Taking a 
linear combination of these 4 equations, one cannot rebuild the original 
equation since the corresponding determinant does not vanish [6]. 
   Another way to understand why the single particle Dirac equation is 
relativistically invariant is to note that it extermizes a Lagrangien that is 
invariant ( scalar ) under Lorentz transformations. It is out of the scope of the 
present paper to study this argument in details here, but it is based [16] on a 
well known mathematical property of spinors and spinorial representations of 
the Lorentz group : quadratic expressions of the type Ψ+α iΨ  transforms like 

the spatial components of a relativistic 4-vector, while Ψ+Ψ transforms like 
the time component of the same relativistic vector. Henceforth, 
Ψ+P0Ψ+

i=1,2,3
∑ Ψ+α iPiΨ transforms like a Lorentz scalar. Moreover 

Ψ+α0Ψ transforms like a Lorentz scalar. 
   In the same line of thought, the Bohm and Hiley equation is not invariant 
under Lorentz transformation since the associated Lagrangien contains sums 
of products (Ψ+ )AΨA and (Ψ+ )BΨB , where A and B refer to the particles A 
and B. Under a Lorentz boost of transformation matrix T [15], these products 
transform as (Ψ+ )A ((TA )-1)+ (TA )-1ΨA  and (Ψ+ )B((TB)-1)+ (TB)-1ΨB , 
which are different from the initial ones since T is not unitary, showing that 
the Lagrangian is not invariant [7]. As noticed by Th.Durt [7], the 
introduction of the Dirac matrix α0 in these products, for instance as 

(Ψ+ )A ((TA )-1)+α0 (T
A )-1ΨA allows to recover the initial product because of 

the identity [16] 
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                                     T+=α0T
-1α0 (10)  

 
making now the corresponding Lagrangian invariant by Lorentz 
transformations. This allows to dermine a new quantum relativistic equation 
for two particles, the Durt and Pelcé which can be written as [7], 

             

     

 

((1AP0
A -α A
! "!
.PA
! "!
-mAcα0

A )⊗α0
B

                      +α0
A ⊗ (1BP0

B-α B
! "!
.PB
!"!
-mBcα0

B))ΨAB=0 (11)
 

               
where the unity matrices of eqn.(9) are replaced by the Dirac matrix α0 .  
   The eqn.(11) has two important properties : It is invariant under Lorentz 
transformations and gives back the Schrödinger equation for two particles in 
the non relativistic limit. However it has the significant defect to conserve a 
current whose density is not definite positive, as the Klein-Gordon equation. 
Indeed, one can determine from eqn.(11) the conservation of the current 
 

                
ρ
AB
=Ψ

AB

+ (α
0

A ⊗1B+1A ⊗α
0

B)Ψ
AB

j
!
A
=Ψ

AB

+ α
"!A

⊗α
0

BΨ
AB
, j
!
B
=Ψ

AB

+ α
0

A ⊗α
"!B

Ψ
AB

(12)
 

                            
whose first expression is formed with square terms, some positive and other 
negative, because of the presence of the Dirac matrix α0 . 
   It has not been found up to now any quantum relativistic equation for two 
particles having these three properties, as it is for the Dirac equation. 
However we will use the Durt and Pelcé equation, checking in the solutions 
that we determine, that the density remains positive.  
   Note that, if we compare eqns.(6) and (7) with eqn.(12), we build density 
and current in the same way, but for the Durt and Pelcé equation, by 
distinguishing the quantities relating to each particle, in multiplying with a 
tensorial product the corresponding Dirac matrix by the matrix α0  , on the 
right or on the left. We can thus anticipate from eqn.(8), the form that will 
take the spin density in the Durt and Pelcé equation. One has to replace in the 
Dirac expressions, the Dirac matrices by the same matrices multiplied with 
tensorial product with the matrix α0 , on the right or on the left , for the 
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particle A or the particle B. Thus, we obtain the spatial components of the 
spin components for the particles A and B, 

 
 

σ
x

A =iΨ
AB

+ α
2
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0

Bα
3
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0

BΨ
AB
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0
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2
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σ
y
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AB

+ α
3
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0

Bα
1
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0

BΨ
AB

, σ
y

B =iΨ
AB

+ α
0

A ⊗α
3

Bα
0

A ⊗α
1

BΨ
AB

σ
z

A =iΨ
AB

+ α
1

A ⊗α
0

Bα
2

A ⊗α
0

BΨ
AB

, σ
z

B =iΨ
AB

+ α
0

A ⊗α
1

Bα
0

A ⊗α
2

BΨ
AB

(13)

 

 
   The connection with L.De Broglie fusion theory [8] is that the second 
group of equations on the form III of the fusion theory is the same as the 
coalesced Durt and Pelcé equation, i.e. the equation obtained when the 
particles are at the same spatio- temporal coordinates in the configuration 
space. Because of Pauli principle, the two particles have to be different.  

          

4 From compound boson to spin correlation 

   One looks for a solution of the Durt and Pelcé equation, whose time 

dependence is proportional to exp-i(E+mA+mB)
t
2 , where 2t is the common 

time of the two particles in the laboratory frame considered here, and E the 
kinetic energy of the two particles. Notice that if in general the equation has 
two times, in order to solve the equation, we can choose the two times equal 
in the laboratory frame. For the compound boson, xA=xB=x , and we look 
for a solution of these 16 equations under the form of a plane wave, 

  Ψ11=Aexpipxx , Ψ12 =Bexpipxx , Ψ21=Cexpipxx , Ψ22 =Dexpipxx (14)    

From eqns.(DP.1-2) and (DP.5-6) of the appendix A, and the other 
components obtained from eqn.(A.2) of the appendix A, one determines 
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    Ψ13 =
E

2px
Ψ12  , Ψ14 =

E
2px

Ψ11,Ψ23 =
E

2px
Ψ22 , Ψ24 =

E
2px

Ψ21 (15)      

They are compatible with the Durt and Pelcé equations if the total 
energyW=E+mA+m B satisfies 

                                   W2-4p
x

2 =(m
A
+m

B
)2 (16)                                     

where one recognizes the relativistic dispersion relation for the energy of a 
particle of mass mA+mB and momentum 2p

x
. We determine the components 

of the currents from eqns.(12), 

                 
j0A=j0B=(1-α

2 )( A 2 + B 2 + C 2 + D 2 )

j1A=j1B=2(1-α )
E
2px

( A 2 + B 2 + C 2 + D 2 ) (17)
                   

whose first the densities, are in this particular definite positive. The velocity 
of the compound particle is 

                                     u=
j
1A
+j
1B

j
0A
+j
0B

=
2p

x
W

(18)                                        

the same expression as the velocity of a free relativistic Dirac particle of 
momentum 2p

x
[15]. If one does the same calculations with the Bohm and 

Hiley equation, the masses of particles A and B have to be equal in order to 
satisfy the equality of the currents of the two particles. Notice that this 
condition of same masses was taken at the beginning in the fusion theory of 
L.De Broglie [9,11].  
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   Consider now, on the figure, as in the Bohm version of the EPR 

experiment, two particles of spin 
1

2
 which move away from a common 

source along the Ox axis, with no potential interaction between them. One 
can measure the spin of each particle with the apparatus A and B 

                

Figure : Simultaneous emission of two particles of spin
1

2
 moving along the 

Ox axis in opposite directions. The polarizer orientations  a
!

 and  b
!

 are shown 
on the two reception screens. 

   For this relative motion, as the source has no momentum, the particle 
momenta are opposite and of same magnitude p

x
. By using the appendix A, 

the Durt and Pelcé equations become 16 differential equations of first order 
in the relative spatial coordinate u=xA -xB . We look for a solution of these 
16 equations under the form of a plane wave, 

  Ψ11=Aexpipxu , Ψ12 =Bexpipxu , Ψ21=Cexpipxu , Ψ22 =Dexpipxu (19)  

From eqns.(DP.1-2) and (DP.5-6) of the appendix A, and the other 
components obtained from eqn.(A.3) of the appendix A, one determines 
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  Ψ13 =-
E

2px
Ψ12  , Ψ14 =-

E
2px

Ψ11,Ψ23 =-
E

2px
Ψ22 , Ψ24 =-

E
2px

Ψ21 (20)       

They are compatible with the Durt and Pelcé equations if the total 
energyW=E+mA+m B satisfies the dispersion relation for the energy (16).          

   Thus the Durt and Pelcé equation restores to a usual form, the relation 
obtained when we solved the Bohm and Hiley equation [17], but very 
unusual, probably due to the non invariance of this equation under Lorentz 
transformations. With the help of the general relation for the currents exposed 
before (12), we determine the components of the current associated to the 
plane wave, 

                    
ρA=ρB=(1-α

2 )( A 2 + B 2 + C 2 + D 2 )

j1A=-j1B=2(1-α )
E
2px

( A 2 + B 2 + C 2 + D 2 ) (21)
                                                            

whose densities are also here definite positive. One can deduce the velocities 
of the two particles as 

                         uA=-uB=
j1A
ρA

=
2

(1+α )
E
2px

=
2p

x

W
(22)  

the same expression as the velocity of a free relativistic Dirac particle of 
momentum 2p

x
[15]. Notice the following paradox, the two particles have 

different masses, but same momenta, thus in classical mechanics they would 
have different velocities. In relation (22) they are opposite and of same 
magnitude. This is not the case with the Bohm and Hiley equation [17].  

   For the spin correlation, let us recall first the result obtained in non 
relativistic quantum mechanics for the spin correlation measured by the 
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apparatus A and B. The quantum state of the two particles is an entangled 
state, the singlet state of total spin 0, 

                                 Ψ0 =
1
2 ( +,- - -,+ ) (23)                                     

so that one easily determines the spin measurements correlation in this state,  

                                  
 
σ A.a
!
σ B.b
"! =-a! .b"! (24)                                      

This expression became famous, with the Bell hypothesis of hidden variables 
[18], since it was always verified by experiments.                                      

   In the relativistic range, by using eqn.(13) and the Dirac matrices (5), one 
determines the spin correlation from the spin density of the Durt and Pelcé 
equation, applying first the spin operator for the particle B, followed by the 
spin operator of the particle A. Then, by using the components of the plane 
wave of the relative motion, obtained by eqns.(19-21) and (A.3), one obtains 
the three spatial components of the spin correlation (25), 

  

ΨAB
+ SAxSBxΨAB=-ΨAB

+ α
2

A ⊗α
0

Bα
3

A ⊗α
0

Bα
0

A ⊗α
2

Bα
0

A ⊗α
3

BΨ
AB

=((1+α 2 )+2(
E

2px
)2 )(AD*+A*D+BC*+B*C)

ΨAB
+ SAySByΨAB=-ΨAB

+ α
3

A ⊗α
0

Bα
1

A ⊗α
0

Bα
0

A ⊗α
3

Bα
0

A ⊗α
1

BΨ
AB

(25)

=((1+α 2 )-2(
E

2px
)2 )(-AD*-A*D+BC*+B*C)

ΨAB
+ SAzSBzΨAB=-ΨAB

+ α
1

A ⊗α
0

Bα
2

A ⊗α
0

Bα
0

A ⊗α
1

Bα
0

A ⊗α
2

BΨ
AB

=((1+α 2 )-2(
E

2px
)2 )(AA*-BB*-CC*+DD*)
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   If we want to get closer to the non relativistic singlet state, one has to take 
A=D=0, B=-C=λ , for the components Ψ12  and  Ψ21 . so that, after 

determination of λ by normalization of the wave function of components 
Ψ
12
,Ψ

21
,Ψ

13
,Ψ

24
,Ψ

42
,Ψ

31
,Ψ

43
,Ψ

34
, one obtains from eqn.(25) and the 

spin matrices of the appendix B, by using eqn.(22),    

         ΨAB
+ SA
!"!
SB
!"!

ΨAB=-
(1-
1
2
(1+α )2

(1+α 2 )
uA
2 )

(1+
1
2
(1+α )2

(1+α 2 )
uA
2 )
(ayby + azbz )-axbx (26)    

which gives back (24)  in the non relativistic limit. The motion along Ox 
manifests itself relativistically, since the components of vectors  a

!
 and  b

!
 

along Ox are particularized. There is an analogous symmetry breaking with 
the Bohm and Hiley equation ( unpublished ).    

   In the Lamehi-Richti and Mittig experiment [19], a beam of protons of 
10Mev, delivered by the Saclay tandem accelerator, hits an hydrogen target 
of polyethylene, releasing two protons in different directions. In the 
analyzers, the protons are scattered by a carbon foil and the coïncidences 
between the detectors of one analyser and the detectors of the other are 
counted. This experiment was realized to test Bell inequalities resulting from 
the hypothesis of hidden local variables. The results are at 3% in agreement 
with the spin correlation (24) of non relativistic quantum mechanics. Let us 
evaluate the order of magnitude of the relativistic correction (26). The kinetic 
energy of the beam is   

                                      Ec=mpc
2 (

1

1-
v2

c2

-1) (27)  
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Taking mpc
2=940Mev , Ec=10Mev , one deduces from eqn.(27), 

v

c
=0,15 . 

Taking  α  of the order 0,01, the factor of (ayby + azbz )  in eqn.(26) is of the 
order of 0,98, compatible with the error of  3% of the Lamehi.Richti and 
Mittig experiment [19].             

5   Conclusion 

   The Schrödinger equation for many particles is now well established, and 
provides a solid basis for quantum mechanics of many particles in the non 
relativistic range. This is not the case in the relativistic range. One has the 
essential Dirac equation for one particle with three essential properties : It 
conserves a current with a definite positive density, it is invariant under 
Lorentz transformations, it tends to the Schrödinger equation in the non 
relativistic limit. The case of two particles is still in progress. It appears that, 
for the problem of invariance under Lorentz transformation, one time has to 
be affected separately to each particle sothat, which is conceptually new, a 
quantum relativistic equation for two particles contains two times. One 
considers first the adapted Bohm and Hiley equation for two particles which 
has only two of the  required properties, it conserves a current with a definite 
positive density and tends to the Schrödinger equation in the non relativistic 
limit. But it is not invariant under Lorentz transformations. The Durt and 
Pelcé equation, adapted from the two times Bohm and Hiley equation in 
replacing  unity matrices by the Dirac matrices α0 , makes the previous 
equation invariant under Lorentz transformations, but the density of the 
conserved current is no more definite positive. Thus the real Dirac equation 
for two particles with the three required properties mentionned above is still 
unknown.  

   However, the Durt and Pelcé equation has interesting simple solutions like 
the compound boson and the relative motion, which present currents with a 
definite positive density. The more interesting one is the relative motion of 
two particles emitted in opposite directions from a single source along the 
same Ox axis, which can be measured by two distant polarizers, as in the 
Bohm version of the EPR experiment. With the 16 components of the 
corresponding wave function, we can compute the spin correlation measured 
with apparatus A and B, at different angles with the Oz axis, along the 
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vectors a
!

 and  b
!

. Of course, in the non relativistic limit, one finds again the 

well known scalar product of the vectors  a
!

 and  b
!

, which became famous 
with the Bell inequalities. More unexpected is the symmetry breaking of this 
formula obtained in the relativistic range with the Durt and Pelcé equation, 
the y and z part of the scalar product being multiplied by a factor less than 
one, decreasing when the particles velocity increases. It is suggested that the 
old experiment of Lamehi-Richti and Mittig [19] will be done another time to 
test this prediction.      
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Appendix A  : The 16 equations developed along the Ox axis of the  Durt 
and Pelcé equation ( ! =c=1 ). 
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Summing all the plane wave equations 2 by 2, (1-16; 2-15; 3-14; 4-13; 5-12; 
6-11; 7-10; 8-9), one obtains respectively for the compound boson and the 
relative motion      

                                          

Ψ44 =αΨ11, Ψ43=αΨ12

Ψ42 =Ψ13, Ψ41=Ψ14 (A.2)

Ψ34 =αΨ21, Ψ33=αΨ22

Ψ32 =Ψ23, Ψ31=Ψ24

         

and 

                                          

Ψ44 =-αΨ11, Ψ43=-αΨ12

Ψ42 =-Ψ13, Ψ41=-Ψ14 (A.3)

Ψ34 =-αΨ21, Ψ33=-αΨ22

Ψ32 =-Ψ23, Ψ31=-Ψ24

 

where 

                                               α=
E

E+2(mA+mB)
(A.4)  
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Appendix B : Spin matrices. 
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