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Did Louis de Broglie miss the discovery of the

Schrodinger equation?
AURELIEN DrEzET(!)

(1) Univ. Grenoble Alpes, CNRS, Institut Néel
F-38000 Grenoble, France

La nouvelle dynamique du point matériel libre est a l’ancienne
dynamique (y compris celle d’Finstein) ce que ['optique
géométrique est a 'optique ondulatoire.

Louis de Broglie, Quanta de lumiére, diffraction et inter-
férences. C. R. Acad. Sci. (Paris), 177, 548-560 (1923)

ABSTRACT. In this note, we discuss a historical point regarding
Schrodinger’s discovery of the famous quantum wave equation in 1926
following de Broglie’s fundamental works published in 1923-1925 re-
garding the introduction of matter waves. Drawing on the work of
historians and personal analysis, we show that de Broglie was very
close to the discovery of the Schrédinger equation (at least for the
stationary one-electron problem).

The title of this note is deliberately provocative. In this anniversary
year, when we celebrate Louis de Broglie’s fundamental discovery of mat-
ter waves in 1923 [1, 2, 3, 4], the question arises as to the developments
that immediately followed this pioneering work. One of the questions
that physicists and historians inevitably ask concerns Schréodinger’s wave
equation. How is it possible that Louis de Broglie missed the wave equa-
tion discovered by Erwin Schrodinger at the end of 1925 and published in
the spring of 19267 [5] This question is indirectly addressed by historians
V.V. Raman and Paul Forman, who in 1969 published an article entitled
"Why Was It Schrodinger Who Developed de Broglie’s Ideas? [6] The
authors answer the question of why Schrédinger’s scientific and cultural
background made him the most likely person to take the mathematical
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leap of putting Louis de Broglie’s work into a (wave) equation. More
recently, the great French historian Olivier Darrigol posed the question
that interests us in a 2013 work entitled "A few reasons why Louis de
Broglie discovered matter waves and yet did not discover Schrédinger’s
equation" [7] (see also [8]).

Darrigol’s nuanced answer is worth reproducing here. He begins by
recalling how de Broglie obtained his theory of matter waves and wave-
particle duality (or rather harmonious coexistence) in 1923 by following
an atypical and iconoclastic path. Indeed, based on his reading of the
proceedings of the first Solvay Congress in 1911, de Broglie was quickly
struck by the deep analogies between Fermat’s principle for waves in
the so-called "geometric" regime, on the one hand, and Maupertuis’
principle in classical material point mechanics, on the other (at a math-
ematical if not physical level, this link had been known since the work
of Hamilton and Jacobi in the 19th century). In connection with the
"phenomenological" Bohr-Sommerfeld quantization rule imposed on the
stationary orbits of atoms, de Broglie intuited a profound link between
these different problems. This is not the place to recall the details of de
Broglie’s reasoning in 1923, which enabled him to define and characterize
his matter wave accompanying the motion of any particle, as these will
be recalled in greater detail in other contributions to this special issue of
the annals celebrating "the centenary of the discovery of matter waves".

In his very rich article, Darrigol mentions an immediate link between
de Broglie’s work and Schrodinger’s wave equation. He shows quite
simply (I'll come back to this point later) that de Broglie could have
defined a refractive index for his matter wave (or phase wave) as early
as 1924, based on his thesis work [4]. This local index ng(x), defined
at the space point of coordinate x and written here in the relativistic
regime corresponding to de Broglie historical approach, reads

() = /10 - L e 0

where F is the energy for a particle with electric charge e and mass m
moving in an electrostatic potential V' (x). This index is quite natural
when one starts from de Broglie’s phase-wave theory, which imposes the
wave velocity as being
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which depends on the relativistic momentum P/c = /[(E — V)2 — m2c?].
Of course, it can also be deduced from Hamilton-Jacobi theory. By in-
troducing the Helmholtz wave equation :

V2U(x) + b ()T (x) = 0 (3)

for a stationary wave ¥(x)e ! with pulsation w, and using the Einstein-
de Broglie relation £ = Aw and the index formula Eq. 1, we naturally
find the relativistic Klein-Gordon stationary wave equation

V23U (x) + [(E—eV(x)? —m?c!¥(x) = 0. (4)

h2c?
Moreover, in the non-relativistic regime (writing £ = Exg + mc? with
|Exg — eV| < mc?) we get:

2m

V2¥(x) + -

[Exg — eV E)N(x) =0 (5)
which is the well known Schrédinger stationary wave equation for a single
particle in an external potential.

After these technical developments, Darrigol naturally asks why de
Broglie’s 1924 article lacks such reasoning. The passage from Darrigol’s
article that I would like to reproduce here is as follows:

Why did not de Broglie follow this simple track? A first el-
ement of the answer is that, notwithstanding with his grand
analogy between dynamics and optics, he was shy in adven-
turing beyond the approximation of geometrical optics. He
focused on retrieving results of the received quantum the-
ory such as the Bohr—Sommerfeld conditions, and he under-
played the more disturbing consequences of his concept of
matter waves. Another possible obstacle to his developing a
wave theory of matter was his conviction that both light and
matter had a dual nature, implying the synchronous mo-
tion of waves and particles. This duality focused him on
the interplay between waves and particles rather than on the
search for a new wave equation. Thirdly and most impor-
tantly, de Broglie believed that the analogy between light
and matter implied the electromagnetic nature of his mat-
ter waves. Consequently, he also believed that matter waves
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obeyed the d’Alembertian equation of electromagnetism. Di-
rect evidence of this conviction is found in a note of 1925 [9)
in which he describes the intrinsic oscillation of an electron in
its rest frame as the stationary superposition of the retarded
and advanced solutions of the d’Alembertian equation. The
same heuristic principle, the analogy between matter and
light, led de Broglie to the matter waves and prevented him
from seeking a specific equation for these waves!|[7]

Darrigol’s deduction is particularly clear, but I'd like to qualify it
here for several reasons. Firstly, de Broglie’s 1925 note [9] is indeed
fundamental, as it lays the foundations for what would later become de
Broglie’s double solution theory, a grandiose tantalizing unification of
waves and particles in which the particle appears (no doubt inspired by
Einstein’s ideas on the photon) as a kind of mathematical singularity in
motion of d’Alembert’s wave equation. The theory of the double solution
was then developed by de Broglie in more detail in 1926 and 1927 [10, 11],
based on the Klein-Gordon wave equation, and after a quarter-century
of neglect was revived by de Broglie and his students in the 1950s-60s
[12, 13], based on the theory of nonlinear wave equations giving rise to
so-called "solitons" or localized solutions.! What is remarkable in the
1925 paper, however, but not noted by Darrigol, is that it allows the
existence of a phase wave to be derived in the absence of a V potential:?

\I/(X, t) — e—i(Et—P'x)/h (6)

which is a solution of the Klein-Gordon equation while the full wave,
written u(x,t) by de Broglie in later works, and which for him is
the only physical and real wave, obeys the d’Alembert wave equation
[V? — L 02]u(x,t) = 0. However, although the 1925 article contains this
phase wave and de Broglie’s derivation, it does not mention that it is in-
deed a solution of the Klein-Gordon equation, which indeed had not yet

IFor a modern discussion of this theory, see references [14, 15, 16, 17], which
show that the double solution theory may be the future of physics (according to the
present author). We note in passing that the double solution theory gave birth the
same year to the "pilot wave" theory that de Broglie presented at the Solvay congress
of 1927 [11, 18, 19]. This pilot-wave theory has survived to the present day, where it
is known as the de Broglie Bohm theory or Bohmian mechanics [20] and constitutes
a very serious interpretation of quantum mechanics.

2In [9] de Broglie wrote (up to the sign difference) e~ («(t—2/Vwave) for a motion
of the wave along the z direction.
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been discovered! Schrédinger was the first to derive this Klein-Gordon
equation in December 1925 and it was first published by Louis de Broglie,
who rediscovered it in 1926 [10, 21| based on a detailed analysis of the
Hamilton-Jacobi equation (see [22] for an account of this complicated
story). So de Broglie was really very close to the wave equation as early
as 1925, and this allows us to qualify Darrigol’s assertion a little.

There are two other reasons why I believe that de Broglie was very
close to discovering the wave equation, and that his failure to do so
before Schrédinger was not just due to a lack of willpower. The first
point is a personal anecdote. A few years ago, at a physics symposium,
a retired French theorist who had attended Louis de Broglie’s lectures
in the 1950s in his youth confided in me that de Broglie had told him
that Schrodinger had somehow "robbed" him of the discovery of the
wave equation. Of course, this was just a remark made during a coffee-
break lecture, but it disturbed me greatly, and if given any semblance
of plausibility, it cast doubt on the idea of de Broglie having missed the
wave equation through lack of conviction or desire.

Fortunately, there’s another, slightly more objective reason to make
sense of what I'm talking about, and that’s Louis de Broglie’s book
Ondes et mouvements (Waves and motions) [23], published in 1926 but
written in 1925. This text, which is in fact de Broglie’s first book, is
completely in line with the note [9] published the same year. However,
the book goes further in its mathematical and physical developments.
The book has not been fully appreciated by historians of science, and
the fact is that de Broglie himself did everything in his power to ensure
that it was forgotten. So, although it was in this magnificent book
that de Broglie developed his first attempt at a double solution, it was
never cited by de Broglie and his followers in the 1950s-70s as a seminal
work. De Broglie will always instead refer to his 1927 article "Wave
mechanics and the atomic structure of matter" [11] as the true birth-act
of his conceptions of the double solution and the pilot wave. The book
has thus gone down in history and remained virtually ignored by the
community.?

There are undoubtedly several reasons for this: Firstly, as mentioned
by Darrigol, de Broglie’s theory uses delayed and advanced waves, which
implies a symmetrical causality running both forward from the past to
the future and from the future to the past! It is therefore possible that

3See, however, recent developments by the author [16, 17], and Daniel Shanahan’s
article [24] in this same issue.
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de Broglie, sensing the highly speculative nature of his ideas, took fright
and preferred to abandon them.? Another hypothesis is perhaps that
this work reminded him that he had indeed just missed Schrédinger’s
wave equation.

It’s all speculative, of course, but de Broglie’s book contains also a
remarkable chapter on diffraction and scattering by particles of matter.
This chapter of the book is important if only because it is one of the few
places where de Broglie talks explicitly about matter-wave scattering
in his early work. Indeed, everyone is familiar with the famous 1923
note [2], which contains the following short passage on matter particle
diffraction: °

This is where we may have to look for experimental confir-
mation of our ideas. [2]

It is also well known that it was this prediction that led to David-
son and Germer’s great experimental discovery published in 1927, and
its correct interpretation as confirmation of the existence of de Broglie’s
matter waves. Moreover, in chapter 10 of his book Ondes et mouvements,
entitled "Diffusion and Dispersion", de Broglie talks about Rutherford’s
famous experiment involving the Coulombian diffusion of charged parti-
cles by an atomic center. It is well known that Rutherford’s experiment
is regarded as a striking confirmation of the discrete, localized nature
of the atomic nucleus. De Broglie proposes to treat the same scattering
phenomenon qualitatively, using his phase-wave theory. The passage is
so important that I reproduce it here in full:

From our point of view, we can consider the same problem
from another angle. We have seen that the energy trajec-
tories F of a charge of value e and proper mass m coincide
with the rays of a homogeneous wave of the classical type
propagating in a medium of index defined at each point by
the law

eV ., miet

hu) h21/2]

ng =[(1

4the present author believes, however, that this was a misjudgment on de Broglie’s
part concerning his own work [16, 17]

5Tt is also known (see de Broglie’s biography by Georges Lochack [25]) that during
de Broglie thesis defense Perrin asked him how his wave could be observed, and
answered with a tone of obviousness: "by diffracting electrons!"
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V is the electrostatic potential, v the frequency E/h. If the
potential is created by a charge C, it will be proportional at
each point to the inverse of the distance to C'. To obtain the
scattering of a beam of electric particles under the influence
of the charge C, it will suffice to study the deformation of
an initially plane homogeneous wave as it propagates in a
medium whose index varies according to the law indicated.
The radii of this wave will be the trajectories of the deviated
particles. If, initially, the moving particles are "associated
with the same wave" in the sense we have given to this ex-
pression, the refracted wave will provide us with the phase
distribution of the associated waves along the various rays.
Since particle deflection occurs in a small space around C,
the deflected trajectories will appear at great distances to be
straight lines passing through C; the scattering charge will
therefore appear to be the center of rectilinear rays and the
classical wave, which in the distance represents the parti-
cle distribution, will be a spherical wave very approximately.
The distribution of amplitudes on the spherical wave will de-
pend on the statistical law studied by Rutherford, since the
square of this amplitude represents the average density of de-
viated particles. In short, if we limit ourselves to considering
the homogeneous wave that statistically represents motion,
and if we focus solely on describing phenomena far from the
scattering center, we can say: under the action of the incident
wave, the center emits a secondary spherical wave on which,
moreover, the amplitude is not uniformly distributed. This
statement reveals a deep kinship between the scattering of «
or B rays, for example, and the scattering of light conceived
according to classical ideas. [23]

The text is very rich for the historian and demonstrates that de
Broglie was ahead of his time on many concepts concerning quantum
and wave theory. First of all, this text clearly mentions the medium
index ng of our Eq. 1 (I've adapted de Broglie’s notations but kept the
frequency v = 5%). Also, de Broglie talks mainly about secondary and
primary waves, and all this is just another form for the Born scattering
formula

¥ — ei(szEt)/h+f(9) GZ(PTrEt)/h (7)
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where f(0) is the angular scattering coefficient and r is the distance from
the nucleus taken as origin. The text also anticipates Born’s statistical
interpretation of |¥|?, which should strictly speaking be called the de
Broglie-Born statistical formula. De Broglie was therefore fully aware
that his phase wave, which we note here as ¥, and which is only a part
of the total wave u, represents particle motion (anticipating the pilot-
wave of 1927). He was also the first to clearly perceive the statistical
interpretation of such a phase wave, which here also becomes an ampli-
tude wave. But that’s not all. Schrédinger’s theory clearly shows that
in general the angular distribution |f(#)|? can only recover Rutherford’s
formula in the semi-classical limit.® De Broglie doesn’t mention this
point here, but it raises some interesting questions. Could it be that de
Broglie restrained himself in his speculations on the wave equation for
fear of straying too far from experimental evidence? This is an interest-
ing speculation. Moreover, in the rest of his chapter, de Broglie discusses
the classical Rayleigh scattering theory of light and writes:

Qualitatively, the phenomenon will be analogous to the scat-
tering of a and B particles. The homogeneous wave that
statistically represents the movement of [light] quantas prop-
agates as if there were an index of refraction around the scat-
tering center. But this homogeneous wave is nothing other
than the wave of classical theories and, from the nature of the
validity attributed by us to these theories, we must believe
that they will still give us here an exact global representation
of this diffusion. [23]

All this shows that for de Broglie, the analogy between light and mat-
ter is perfect. He therefore had no reason to doubt the strength of his
general theory based on a ¥ wave of local index ng(x), even outside
the semi-classical limit. All of which goes to show that de Broglie had a
very accurate physical understanding of the underlying physics, and of
course it makes it all the stranger that the wave equation is not formally

61t is remarkable, however, that in the case of scattering by a Coulombian center
of charge C' = —Ze (e = —|e| being the electron’s negative charge), the formula ob-
tained for the classical Rutherford cross section coincides with the quantum scattering
formula obtained by Mott in the non-relativistic regime. Here we find a specificity of
the Coulombian potential that implies, among other things, that the Balmer formula
obtained with Schrédinger’s theory is identical to the semi-classical Bohr-Sommerfeld
formula recovered by de Broglie.
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explained. We find ourselves in the curious situation of a historian des-
perately looking for Newton’s formula F' = my in the famous Principia,
even though it was later introduced by Euler! Perhaps that’s where
the explanation lies. Schrédinger was a more experienced physicist than
Louis de Broglie, and as many historians have pointed out, he had no
trouble filling de Broglie’s mathematical gaps. In confirmation of this
point of view, I would like to mention the interview Louis de Broglie
gave to Fritz Kubli in 1968 (reproduced in [26] and discussed in [27]). I
will reproduce here a short extract from the interview:

F. K.: What interests me is what you said in another inter-
view, that you didn’t know at the time [1926] that Fermat’s
principle is a consequence of the wave equations by passage
to the limit!

L. de Broglie: Yes - perhaps I didn’t know the demonstration.
I knew that one could deduce the equation of geometrical
optics from the wave equation, but I don’t know if I had the
demonstration in mind - which I later gave in a number of
my books. Probably I didn’t know it, or didn’t know it until
Schrodinger’s time or thereabouts.

F. K.: And I think this demonstration is very important
because Schrédinger took it up again.

L. de Broglie: Yes, that’s it, that’s it [...]. [26]

The interview goes on to discuss Courant and Hilbert’s mathemat-
ical work, which is a reference for theoretical physicists and discusses
wave theory in particular. The fact that de Broglie was unaware of
this work in 1925 was for him a definite mathematical lacuna. Simi-
larly, he was unaware of the details of the Hamilton-Jacobi theory used
by Schrédinger. He made up for this after the event, making extensive
use of Hamilton-Jacobi theory in conjunction with Madelung’s hydro-
dynamic theory, also published in 1926, to form the basis of the double
solution and pilot wave theories. It’s also important to note that our
analysis concerns only the case of stationary theory (i.e. at constant
E energy), for a single particle. The many-body case (N electrons)
was also correctly guessed by Schrodinger within the framework of the
3N-dimensional configuration space, which lends itself well to the gen-
eralization of the classical Hamilton-Jacobi equation. The configuration
space is also a key element of the pilot—wave theory.
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At the very end of his book Ondes et mouvements, de Broglie (dur-
ing the proofreading stage) added that he just read the Schrodinger’s
articles [5] (that the author actually sent to him). De Broglie then sum-
marized the content of Schréodinger work by introducing precisely the
derivation that Darrigol mentioned in his article [7] (a derivation that
is, incidentally, simpler than Schrédinger’s in his original articles). This
completes the circle, but is only the beginning of the quantum story, as
we all know.

1 Note added following discussions with Oliver Dar-
rigol:

It’s important to note that our interpretation contains an element of
speculation. We don’t have access to all the information, and we’re
not trying to rewrite history here. It could indeed be argued, in a
similar way, that Dirac, Jordan or Heisenberg could also have found
Schrodinger’s equation in fine once they had gone beyond simple ma-
trix mechanics, which did not yet contain the notion of the "quantum
state". There is, however, another very strong argument in de Broglie’s
favor. In November 1924, he published a short note entitled "Sur la
dynamique du quantum de lumiére et les interférences" (On the dynam-
ics of the quantum of light and interference) [28], in which he spoke for
the first time of the material point (and not just for the photon, as in
Einstein’s case) as a singularity of the wave group: this was the act of
birth of the double solution (as confirmed by de Broglie himself in [26])!
Note that for de Broglie at this time, velocity was still defined by the
Hamilton-Rayleigh formula v = g—ﬁ for the group velocity. It wasn’t
until 1926-27 that he defined the speed of the particle in general terms
using the Hamilton-Jacobi formula, which in the non-relativistic regime
and in vacuum is written as v = AiVy/m where ¢ is the local phase of
Schrodinger’s guiding wave [10, 11]. To quote de Broglie in his note:

As T hinted in earlier notes, we thus obtain a new dynamic
which is to the old what wave optics is to geometrical optics.
The rays predicted by wave theories would therefore in all
cases [italics are mine| be the possible trajectories of the
quantum. In interference phenomena, the rays concentrate
in the so-called "bright fringes" and become rarefied in the
so-called "dark fringes".[28]

It’s clear from our previous analysis that de Broglie already had a fairly
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clear general scheme in mind, and that for him the point-like corpuscle,
whatever its nature, was always guided by a wave (and this not only
in the geometrical or semi-classical regime). This shows that de Broglie
was very close to defining a general guiding dynamic law that requires
a wave equationlike the one of Schrodinger. His 1925 note and book
[9, 23] extended his early ideas, but as we said, Schrodinger’s equation
was missed, probably mainly for reasons of time and mathematics.
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